Doc# ARC-2015-1701R01-TR-0014_Technical_Comparisons.doc

	INPUT CONTRIBUTION

	Group Name:*
	TP#15

	Title:*
	Technical Comparison of oneM2M and AllJoyn

	Source:*
	LG Electronics

	Contact:
	Hongbeom.ahn@lge.com

	Date:*
	2015-1-21

	Abstract:*
	This input describes Technical Comparison of oneM2M and AllJoyn

	Agenda Item:*
	

	Work item(s):
	WI 0018 - oneM2M and AllJoyn Interworking

	Document(s)

Impacted*
	Technical Report TR 0014 - oneM2M and AllJoyn Interworking

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	Discuss and consider to be incorporated in the target document

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
1. Rationale
This input describes the technical comparison of both systems, oneM2M and AllJoyn.
In this input, the some technical comparisons are following:

1. API Styles

2. Service Discovery (or Advertisement)
-- Change #1--
2.2
Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
oneM2M Drafting Rules (http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc)

[i.2]
AllJoyn System Description version 14.06

[i.3]
ITU-T Y.2060, Overview of the Internet of Things
[i.4]
D-Bus Tutorial

(http://dbus.freedesktop.org/doc/dbus-tutorial.html#objects)

[i.5]
oneM2M-TS-0001
oneM2M Functional Architecture
[i.6]
AllJoyn Gateway Agent, High-level Design, Rev 1 Update 1

-- Change #2--
5.2
Technical Comparison
This section describes the technical comparison of oneM2M and AllJoyn. The factors collected by this comparison work can be used to specify how two different systems can interface.
5.2.1
API Styles
The table 5-1 demonstrates how API styles of oneM2M and AllJoyn system are different to expose its services that can provide some functionality.
Table 5-1
The Comparison of API Styles of oneM2M and AllJoyn System
	
	oneM2M
	AllJoyn

	API Style
	Resource based API (RESTful Architecture). It assigns all procedures, instances of data a resource identified by a URI and leverage web-based protocol’s operations (CRUD) to define service behaviors.
	D-Bus [i.4] based API. It defines a protocol for exposing a typical object-oriented language-based service to other applications that consume the service.

	Representation of a Service
	An oneM2M Service is defined by one or more Resources specified in [i.5].

An oneM2M resource defines a set of representations of data. Each resource has attributes that stores information regarding the resource itself, procedures or data.
	An AllJoyn Service is defined by one or more AllJoyn Interfaces.

An AllJoyn interface can include one or more of following types of members:

· Methods: a function call that typically takes a set of inputs, performs and returns.

· Properties: a variable that holds values.

· Signals: an asynchronous notification that is generated by a service to notify remote peers of an event or change.

Following, the table 5-2 and 5-3 give examples how an oneM2M and AllJoyn service is described respectively. Both examples demonstrate a schema or introspection that describes location service to acquire the location information of a target information.
Table 5-2
Resource Schema pertaining to <locationPolicy> (example)
	<xs:schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.onem2m.org/xml/protocols"

 xmlns:m2m="http://www.onem2m.org/xml/protocols"

elementFormDefault="unqualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="CDT-commonTypes-v0_7_1.xsd" />

<xs:element name="locationPolicy">

<xs:complexType>

<xs:complexContent>

 <!--
Inherit Announce able Attributes from announceableResourceType -->

<xs:extension base="m2m:announceableResourceType">

<xs:sequence>

 <!--

Resource Specific Attributes -->

<xs:element name="locationSource" type="m2m:locationSource" />

<xs:element name="locationUpdatePeriod" type="xs:duration" minOccurs="0" />

<xs:element name="locationTargetID" type="m2m:nodeID" minOccurs="0" />

<xs:element name="locationServer" type="xs:anyURI" minOccurs="0" />

<xs:element name="locationContainerID" type="xs:anyURI" minOccurs="0" />

<xs:element name="locationContainerName" type="xs:string" minOccurs="0" />

<xs:element name="locationStatus" type="xs:string" minOccurs="0" />

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:element>

</xs:schema>

Furthermore, the resource schema described in table 5-2 can be also graphically represented as the figure 5-X.

[image: image1.emf]<locationPolicy>

1

locationSource

0..1

locationUpdatePeriod

0..1

locationTargetID

0..1

locationServer

0..1

locationContainerID

0..1

locationContainerName

1

locationStatus

<subscription>

0..n

Figure 5-X
Structure of <locationPolicy> resource

Table 5-3
Introspection XML of an AllJoyn Location Service (example)
	<node name="/com/alljoyn/LocationService">

<interface name="com.alljoyn.LocationService">

<method name="getLocation">

<arg name="locationSource" type="s" direction="in"> </arg>

<arg name="targetID" type="s" direction="in"> </arg>

</method>

<signal name="locationPoint" sessionless="true> </signal>

<property name="locationStatus" type="y" access="read"> </property>

</interface>

</node>

5.2.2
Service Discovery / Advertisement
One of most significant features of service layer protocol for the IoT is to advertise or discover services to a remote entity or application. Both systems have specified significantly different advertisement and discovery mechanism.
Table 5-4
The Comparison of API Styles of oneM2M and AllJoyn System
	
	oneM2M
	AllJoyn

	Service Consumer
	Since oneM2M is a web-based architecture, the service consumer firstly discover a target service instantiated in a CSE using GET method.

The discovery message is sent over unicast transport protocol.
If the target service is found, the service consumer consumes the service subject to access control.
This behavior is just like resource searching by using web-browser.
	A service consumer in AllJoyn network send a DNS-SD query message over Multicast DNS (mDNS) network to discover a target service implemented in other applications/devices.
Since a site-local IP multicast mechanism is used for mDNS, the DNS-SD query can be sent toward mDNS multicast members within proximal network.
In order to enable secure access a service resides in the remote network, AllSeen Alliance has been specifying a Gateway Agent feature [i.6].

Note: this procedure supports after 14.06 version of AllJoyn system.

	Service Provider
	The notification for service advertisement which is sent toward unspecified applications causes network collapse due to the broadcast message flooding. Thus, oneM2M does not specify the proactive advertisement method acting by service provider.

However, oneM2M has specified the service information forwarding (toward target node) method, “Announcement”.
	If the services specified in the received query is provided by the service provider, the service provider responds a DNS-SD response message over unicast to the service consumer.
Note: this procedure supports after 14.06 version of AllJoyn system.

© 2015 oneM2M Partners

Page 6 (of 6)

_1466930609.vsd

