Doc# ARC-2015-1917-AllJoyn-oneM2M_Interworking_Mapping_Principles.doc

	Input Contribution

	Meeting ID*
	ARC17.0

	Title:*
	AllJoyn-oneM2M Interworking Resource Structure

	Source:*
	Josef Blanz, Qualcomm Inc (TIA), jblanz@qti.qualcomm.com

	Uploaded Date:*
	2015-05-20

	Document(s)

Impacted*
	WI-0018 AllJoyn-Interworking
TR-0014 v0.3.0

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	Include the proposed text into TR-0014

	Template Version:23 February 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction

This contribution is based on the material discussed in ARC-2015-1916-AllJoyn-Interworking_Discussion. It is suggested to include the following text proposal that contains more information on how to use a hybrid of exisiting resource types and newly defined resource types for defining the service mapping between AllJoyn and oneM2M.
================ Start or Text Proposal 1 ======================
7.2.
Service Mapping

Based on the AllJoyn entity relationship, an AllJoyn service is represented by one or more objects and the objects are represented by one or more interfaces and its members, methods, signals and properties. In order to expose various AllJoyn services, the defined AllJoyn interfaces that is used for an AllJoyn functionality are mapped to oneM2M resource types that are understandable to oneM2M system entity.

This section describes which oneM2M resource types are appropriate for service mapping between two systems and the pros and cons of each solutions.
7.2.1.
Solution 1: <container> Resource Type

In this solution, it is proposed that AllJoyn interfaces are mapped to <container> resource type and the AllJoyn interface members’ information is stored in the <contentInstance> resource type. The specific information of AllJoyn interface member is contained in the ‘content’ attribute in the relevant <contentInstance> resource type.

The figure 7-X captures how an AllJoyn interface is mapped to <container> resource type and each interface members are mapped to <contentInstance> as a child resource type of the <container> resource type.

[image: image1]
Figure 7-X
Service Mapping using <container> resource type

7.2.1.1.
Pros
There is no need to define a new oneM2M resource type for service mapping.
7.2.1.2.
Cons
Since whole information of the AllJoyn services exposed to oneM2M system is gathered in the MN-CSE (or gateway), it is important to distinguish which service is exposed toward which oneM2M entity under the access control policy. Plus, since AllSeen Alliance members have been developping service-unit access control in their Security 2.0 working group under the Core working group, this interworking should support this.

If the AllJoyn interface members are mapped to <contentInstance> resource type, the specific access control of methods, signals and properties is not allowed since <contentInstance> is not the resource type which can have its own <accessControlPolicyID>.

7.2.2.
Solution 2: Newly defined Resource Type

In this solution, it is proposed that a new resource type is used for this service mapping. The resource type should be designed to store an AllJoyn Interface and child resources should contain the AllJoyn interface members.

Similar to <mgmtObj> resource type, the new resource type for AllJoyn Interworking can be mapped various AllJoyn interfaces and its members instantiated in the proximal network.

This resource type contains interface information and has child resources to contain property and methods information as represented in the figure 7-Y.

[image: image2]
 Figure 7-Y
Service Mapping using a New Resource Type for AllJoyn Interworking

7.2.2.1.
Pros
The access control to the level of AllJoyn Interface members is allowed and the high context compatibility between AllJoyn service and oneM2M Resoruce type, which means that specific attribute for AllJoyn service or interface can be defined in this solution.
7.2.2.2.
Cons

It is required to define dedicated oneM2M resources for AllJoyn service interfaces.
7.2.3
Solution 3: Hybrid of existing and newly defined Resource Types
7.2.3.1 Motivation
In order to better understand the motiviation for this solution, we should consider once more the different ways how AllJoyn services are being provided or consumed. As already explained in section 5.1.2.3, the AllJoyn applications are using a common “AllJoyn Core” which essentially allows the definition of service objects using interfaces as depicted in Figure 7-Z.

[image: image7.emf]Resource structure for control panel services framework

controlPanel <container>

Resource structure for service objects of external producer Y

Resource structure for service objects of internal producer X

allJoynRoot <container>

svcFrameWorks <container>

base <container>

Resource structure for notification services framework

notification <container>

dismiss <container>

0000001 <container>

ntfcnObjData <contentInstance>

listenerIPE <subscription>

dissmisRequest <contentInstance>

consumerXXX <subscription>

dismiss <container>

0000002 <container>

ntfcnObjData <contentInstance>

listenerIPE <subscription>

dissmisRequest <contentInstance>

consumerYYY <subscription>

other

Resource structure for connected lighting services framework

ontectedLighting <container>

appSpecifcSvcs <container>

internalProducerX <container>

externalProducerY <container>

Existing or New Resource Types

Existing or New Resource Types

Existing or New Resource Types

Existing or New Resource Types

[image: image3]
Figure 7-Z
Service Objects as a basic paradigm for producing and consuming services in AllJoyn
The basic paradigm to produce and consume services in an AllJoyn proximal network is the use of such service objects which comprise of Signals (event communication, similar to oneM2M Notifications), Properties (data elements that can be set/get, similar to oneM2M contentInstances) and Methods (remote procedure calls, which need to be mapped on some complex oneM2M resource structure similar to mgmtCommand).

However, besides the use of this basic “Service Objects” paradigm to produce or consume services, AllJoyn is using very extensively so called “Service Frameworks”, as depicted in Figure 7-ZZ. A specific Service Framework exposes a specific API to applications wich specific data models. Normally, the use of such API is greatly simplifying the usage of a specific service and makes it very easy for an application to produce or consume the corresponding service.

[image: image8.png]Notifications are sent/received as a ntfcnObject which has a number of data members
(text in one or more languages, Icons, audio URL, msgld,...) and a dismiss() function

Producer uses API
function for sending

a notification:
—_—

Send(
ntfcnObject)

Also available:
DeleteLastNtfcn(
ntfcnType)

AllJoyn Producer Device

(’ Notification Service
§ Producer API
p——————

Notification Service

AllJoyn Consumer Device

‘/ Notification Service

Consumer API J
<
Notification Service

T Aljoyn)

Notification

“ Alljoyn l
.

Interface

[Alljoyn Core

I{ Notification ‘
Interface

_
—_— <

Alljoyn Core

Consumer provides

a callback function to
consume a
___notification:

Receive(
ntfcnObject)

Another callback:
Dismiss(
msgld, appld)

[image: image4]
Figure 7-ZZ
Services Frameworks Concept in AllJoyn
As an example for such a Service Framework, the so-called “Notification Service” shall be considered very briefly. The Notification Service Framewqork provide a very simple interface for sending and receiving human-readable messages to notify a human about some events that may need their attention. These notifications are optionally carrying information about “rich” content such as icons to display or audio data to play. Notifications can be assigned different priority types, language preferences can beconfigured. The Notification Framework aslo supports optionally subsequent interactions with the notified person in response to notifications. Figure ZZZ depicts a simple configuration of a Notification Producer and a Notification Consumer.

[image: image5]
Figure 7-ZZZ
Notification Services Frameworks Concept in AllJoyn
A Notification Consumer actually will receive a notification by passing a Notification Object to a call-back function that the Consumer provides. The Notification object contains all the data for the notification – text, references to icon etc – and a method to dismiss the notification, i.e. to tell the system that the notified person did consume the notification and it is not longer needed to display it anywhere, When a notification is getting dismissed by a consumer, the core sytem and and other consumers need to get informed about this. In AllJoyn this is done by sending signals that trigger the execution of another call-back function “Dismiss” in the consumers.

This example of Notification Service Framework was described in this section, so it is easier to understand why it makes sense to re-use existing resource types in oneM2M for exposing / injecting services that are using simple AllJoyn Service Frameworks. In what follows, it is suggested to consider a resource structure for interacting with AllJoyn IPEs that accommodate different sub-trees for services that use native AllJoyn Service Objects (Signals, Properties, Methods) versus services that are using Service Frameworks.

7.2.3.1 Resource Mapping

It is suggested to consider a resource structure for mapping between AllJoyn services and oneM2M Resources as depicted in principle in Figure ZZZZ. The most important aspects of such a resource maping are summarized as follows

· A common container (named “allJoynRoot” in this example) is used for interworking with AllJoyn services on a a given CSE that is the Registrar CSE of an AllJoyn IPE. The resourceName and resourceID of this common root container for interworking with a particular AJ proximity network may have to be selected such that it can be correlated with an identifier of that proximity network. Also it may be useful to attach a standardized label to this common root container, which would enable to discover AJ interworking resources easily.

· Two child containers “svcFrameWorks” and “appSpecifcSvcs” are used to differentiate services using a Service Framework or native, aoplication-specific Servie Objects, respectively

· Within “svcFrameWorks” there are two child containers

· One for AllJoyn base Service Frameworks named “base”

· Within “base” there are child containers for each exposed base service framework, e.g.

· One container named “notification” for the Notification Service Framework

· One container named “controlPanel” for the Control Panel Service Framework

· One for other Service Frameworks named “other”

· Whithin “other” there are child containers fo each exposed other service framework, e.g.

· One container named “connectedLighting” for the Connected Lighting Service Framework

· Within “appSpecificSvcs”, a separate container is used for each internal (within the interworking AJ network) or external (not within the interworking AJ network) service producer, in order to expose or inject the respective service.

Whether exising resource types or newely defined resource types need to be used for exposing or injecting a service from/to the AJ proximity network depends very much on whether it is a service within a given Service Framework and which one of them.

For instance, with the depicted resource structure for the Notification Service Framework in Figure ZZZZ, it seems possible to accommodate exposure and injection of Notifications between the AJ Network and the oneM2M network just based on <container>, <contentInstance>, <subscription> resources only.

The Hybrid approach discussed in this section basically suggests the forllowng

· define the resource tree structure for interworking using <container> resources as outlined in this claue above,

· follow the principle of designing an appropriate resource structure re-using already existing resource types whenever possible and feasible,

· only use newly defined resource types when otherwise not possible or not feasible.

7.2.3.1
Pros
In cases where newly defined resource types are deemed to be necessary, the access control to the level of AllJoyn Interface members is possible to be supported via oneM2M ACP mechanism. Also a high context compatibility between AllJoyn service and oneM2M Resoruce type can be achieved, which means that specific attribute for AllJoyn service or interface can be defined in this solution.

In case where existing resource types are sufficient – which seems to be the case for some AllJoyn Service Frameworks – there is no need to define any new oneM2M resource type for service mapping. So in that case the impact on normative parts of oneM2M specifications can be minimized and implementations of existing resource types and corresponding procedures can be re-used
7.2.3.2
Cons

In cases where newly defined resource types are deemed to be necessary, it is required to do normative work to define dedicated oneM2M resources for AllJoyn service interfaces.
[image: image9.png]Aloyn Interface

org.alljoynabout

[About interface]
AWoyn Properties orgalljoyn About
Version -
[Properties]
AWoyn Methods
GetAboutData [Methods]
- GetAboutData
I—(Description - input/output) - GetObjectDescription
GetObjectDescription [Signals]

- Announce
Description - input/output

[image: image6]
Notwithstanding the provisions of the copyright clause related to the text of the present document, oneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

History

	Publication history

	V.1.1.1
	<dd Mmm yyyy>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V.0.0.1
	29/10/2014
	 Skeleton draft

	V.0.1.0
	05/12/2014
	Applied the following CRs:

ARC-2014-1630R01-TR-0014_Introduction_to_AllJoyn
ARC-2014-1641R02-Scenarios_for_OneM2M_and_AllJoyn_Interworking

	V.0.2.0
	16/03/2015
	Applied the following CRs:

ARC-2015-1701R01-TR-0014_Technical_Comparisons

	V.0.3.0
	04/05/2015
	Applied the following CRs:

ARC-2015-1757R02-TR-0014_AllJoyn_Gateway_Agent
ARC-2015-1789-TR-0014_Service_Mapping_for_AllJoyn_Interworking
ARC-2015-1790R01-TR-0014_Functional_Architecture_for_oneM2M_and_AllJoyn_Interworking
ARC-2015-1791-TR-0014-The_relationship_of_AllJoyn_Entities

	
	
	

� EMBED Visio.Drawing.11 ���

© 2015 oneM2M Partners

Page 1 (of 2)

[image: image10.png]AllJoyn Application oneM2M CSE
()
App Code AlloynLighting | <AE>
Al Service F ke L p
Clasi[je:vic&&umewu[ks... OY?__ ervice Frameworks Connected Lighting| <container>
; Onboarding Configration Co.nne.cted I_
! Lighting More Interface #1 <container>
i| Notification Control Smart Home
H Panel
<method>
<contentlnstance>
AllJoyn Core Library -

- N Interface definition of Object <signal>
Advertisement || Session || oo properties, creation and <contentlnstance>
and discovery creation > d !

signals handling
q <property>
<contentlnstance>
(e
AllJoyn Router
Advertisement Session Bus — .
and discovery Handling Management Notification <container>
Message and Signal Transport Security Interface #1 <container>
Transport Abstraction Layer Interface #2 <container>
L U\ J

[image: image11.png]Producer Device Consumer Device

Alljoyn App AllJoyn App One or more Interfaces:
* Methods (RPC)
Servi . ;
;ﬁ,-‘g: Properties (set, get)

L Signals (P->C)
—
—

AllJoyn Bus Alljoyn Bus

[image: image12.png]Uses Service Framework-
specific API

Examples:

* Notifications
* Control Panel
¢ Onboarding

¢ Configuration

AllJoyn Device

App

Service App-Specific_|

Frameworks

Services

AllJoyn Router

Uses Service Objects
for exposure

/

[image: image13.emf]Resource structure for control panel services framework

controlPanel <container>

Resource structure for service objects of external producer Y

Resource structure for service objects of internal producer X

allJoynRoot <container>

svcFrameWorks <container>

base <container>

Resource structure for notification services framework

notification <container>

dismiss <container>

0000001 <container>

ntfcnObjData <contentInstance>

listenerIPE <subscription>

dissmisRequest <contentInstance>

consumerXXX <subscription>

dismiss <container>

0000002 <container>

ntfcnObjData <contentInstance>

listenerIPE <subscription>

dissmisRequest <contentInstance>

consumerYYY <subscription>

other

Resource structure for connected lighting services framework

ontectedLighting <container>

appSpecifcSvcs <container>

internalProducerX <container>

externalProducerY <container>

Existing or New Resource Types

Existing or New Resource Types

Existing or New Resource Types

Existing or New Resource Types

_1493612000.vsd
allJoynRoot

svcFrameWorks

base

<container>

<container>

<container>

notification

<container>

listenerIPE

<subscription>

controlPanel

<container>

dismiss

<container>

0000001

<container>

ntfcnObjData

<contentInstance>

dissmisRequest

<contentInstance>

consumerXXX

<subscription>

dismiss

<container>

0000002

<container>

ntfcnObjData

<contentInstance>

listenerIPE

<subscription>

dissmisRequest

<contentInstance>

consumerYYY

<subscription>

Resource structure for notification services framework

Existing or New Resource Types

Resource structure for control panel services framework

other

Resource structure for connected lighting services framework

ontectedLighting

<container>

Existing or New Resource Types

appSpecifcSvcs

<container>

internalProducerX

<container>

externalProducerY

<container>

Resource structure for service objects of internal producer X

Resource structure for service objects of external producer Y

Existing or New Resource Types

Existing or New Resource Types

