
	[image: image39.emf]Resource structure for control panel services framework

controlPanel <container>

Resource structure for service objects of external producer Y

Resource structure for service objects of internal producer X

allJoynRoot <container>

svcFrameWorks <container>

base <container>

Resource structure for notification services framework

notification <container>

dismiss <container>

0000001 <container>

ntfcnObjData <contentInstance>

listenerIPE <subscription>

dissmisRequest <contentInstance>

consumerXXX <subscription>

dismiss <container>

0000002 <container>

ntfcnObjData <contentInstance>

listenerIPE <subscription>

dissmisRequest <contentInstance>

consumerYYY <subscription>

other

Resource structure for connected lighting services framework

ontectedLighting <container>

appSpecifcSvcs <container>

internalProducerX <container>

externalProducerY <container>

Existing or New Resource Types

Existing or New Resource Types

Existing or New Resource Types

Existing or New Resource Types

	oneM2M
Technical Report

	Document Number
	TR-0014-V0.4.0

	Document Name:
	oneM2M and AllJoyn Interworking

	Date:
	2015-Jul-20

	Abstract:
	This technical report indetifies interworking scenarios and its requirements between oneM2M and AllJoyn systems and analyze possible architectural solutions to address the requirements.

This Specification is provided for future development work within oneM2M only. The Partners accept no liability for any use of this Specification.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

No part of this document may be reproduced, in an electronic retrieval system or otherwise, except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

© 2014, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC).

All rights reserved.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
4
2
References
4
2.1
Normative references
4
2.2
Informative references
4
3
Definitions, symbols, abbreviations and acronyms
5
3.1
Definitions
5
3.2
Symbols
5
3.3
Abbreviations
5
3.4
Acronyms
5
4
Conventions,
5
5
Technical Comparison of oneM2M and AllJoyn
6
5.1
Introduction to AllJoyn
6
5.1.1
Design Principle
6
5.1.2
System Architecture
7
5.1.2.1
AllJoyn System Overview
7
5.1.2.2
Network Architecture
8
5.1.2.2.1
Standalone AllJoyn Network
8
5.1.2.2.2
Remote Accessible AllJoyn Network
8
5.1.2.3
Device Architecture
9
5.1.2.4
AllJoyn System Protocol Stack
10
5.1.3
AllJoyn Entity Relationship
10
5.1.4
AllJoyn Gateway Agent
11
5.1.4.1
Concept
11
5.1.4.2
Architecture
12
5.1.4.3
Remote Access
13
5.1.4.4
oneM2M Interworking with Gateway Agent
13
5.2
Technical Comparison
14
5.2.1
API Styles
14
5.2.2
Service Discovery / Advertisement
16
6
Scenarios for oneM2M and AllJoyn Interworking
17
7.
Possible Solutions for oneM2M and AllJoyn Interworking
20
7.1.
Functional Architecture for Interworking
20
7.1.3
Solution 1: Interworking using IPE
20
7.2.
Service Mapping
21
7.2.1.
Solution 1: <container> Resource Type
21
7.2.1.1.
Pros
22
7.2.1.2.
Cons
22
7.2.2.
Solution 2: Newly defined Resource Type
22
7.2.2.1.
Pros
23
7.2.2.2.
Cons
23
History
24

1
Scope

This technical report describes:

· Technical comparison of oneM2M and AllJoyn Systems

· Identification of interworking scenarios between oneM2M and AllJoyn systems and the resulting new requirements on the oneM2M system

· Identification of architectural solutions to address the new requirements. These solutions will include the following aspects:

· Functional architecture configurations

· Resource mapping definitions

· Procedure descriptions

· Identification of possible impact on existing oneM2M Technical Specifications as well as need for new Technical Specification
· Avoiding any overlaps with existing oneM2M work items.
2
References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

The following referenced documents are necessary for the application of the present document.
Not applicable.

2.2
Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
oneM2M Drafting Rules (http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc)
[i.2]
AllJoyn System Description version 14.06

[i.3]
ITU-T Y.2060, Overview of the Internet of Things
[i.4]
D-Bus Tutorial

(http://dbus.freedesktop.org/doc/dbus-tutorial.html#objects)

[i.5]
oneM2M-TS-0001
oneM2M Functional Architecture
[i.6]
AllJoyn Gateway Agent, High-level Design, Rev 1 Update 1
3
Definitions, symbols, abbreviations and acronyms
For the purpose of the present document, the terms and definitions given in oneM2M TS-0011, AllJoyn System Description and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in oneM2M TS-0011 or AllJoyn System Description.
3.1
Definitions

For the purposes of the present document, the following terms and definitions apply:

AllJoyn service : A service provided over the AllJoyn platform. Generally, an AllJoyn service is implemented by one or more AllJoyn objects. Therefore, an AllJoyn application installed in an AllJoyn-enabled device can include providing AllJoyn services or consuming AllJoyn services or both.

3.2
Symbols

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

3.3
Abbreviations

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

3.4
Acronyms

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

4
Conventions,

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
Technical Comparison of oneM2M and AllJoyn
5.1
Introduction to AllJoyn
This section describes the introduction to AllJoyn system as basic information for comparison of oneM2M and AllJoyn System. For more detail of the AllJoyn system is described in [i.2].

5.1.1
Design Principle

The main objectives of the AllJoyn system is to interwork between proximal IoT networks via Internet and to enable devices for the IoT within each proximal network dynamically discover and communicate over direct peer-to-peer(P2P) connection. As can be clearly seen in the figure below, devices within each proximal network can also discovery and communicate with additional cloud-based service to make use of specific functionality (e.g., remote device management).

[image: image2.emf]Proximal

Network

Proximal

Network

Internet

Proximal

Network

Internet

Cloud

Services

Local

Area

Wide

Area

Figure 5.1.1-1
IoT Network (From AllJoyn System Viewpoint)

NOTE: For cases where some of these devices are behind NAT, the can discover each other via some cloud-based discovery services.
5.1.2
System Architecture

5.1.2.1
AllJoyn System Overview

The AllJoyn software system is a proximity-based, P2P communication platform that can be embedded in heterogeneous distributed systems. Within each proximal network as depicted in the figure 5.1.2.1-1, AllJoyn-enabled devices run one or more AllJoyn applications and form a P2P AllJoyn network and an AllJoyn-enabled application can be a provider (implementing services and advertising) and a consumer (discovering interested services) or both depending on its service model.

[image: image3.emf]AllJoyn Framework

App App

AllJoyn Framework

App App

AllJoyn Framework

App App

AllJoyn-Enabled Device

AllJoyn-Enabled Device

AllJoyn-Enabled Device

Provider

Consumer

Provider+ Consumer

AllJoyn

Proximal

Network

Figure 5.1.2.1-1
AllJoyn Proximal Network

In the figure 5.1.2.1-1, the AllJoyn framework establishes an underlying bus architecture for communication among AllJoyn-enabled devices and AllJoyn Applications can advertise, discover and make use of each other’s functionality. One of key components of the AllJoyn framework is AllJoyn router that provides core functionality of the AllJoyn framework, including P2P advertisement/discovery, connection establishment, broadcast signalling and control/data messages routing.
5.1.2.2

Network Architecture
The AllJoyn network can be divided into two different architecture that is dependent upon the network deployment scenarios.

5.1.2.2.1
Standalone AllJoyn Network

As described in the figure 5.1.2.1-1, this architecture is simple with two or more AllJoyn-enabled devices coming together to form an AllJoyn Network. The devices can be connected over different access networks such as Wi-Fi.

5.1.2.2.2
Remote Accessible AllJoyn Network

This architecture supports remote access to devices within AllJoyn proximal network so the devices are accessible and/or controllable from outside the proximal network. The remote accessibility is achieved by deploying a Gateway node in the network. The Gateway node exposes AllJoyn-enabled application’s functionality and control to cloud-based service via standardized APIs (e.g., REST) so device outside the proximal network can communicate with devices in the proximal network via the Gateway node.

For example, oneM2M IN-CSE can play the role of a cloud-based service node and MN-CSE can be installed in the Gateway node with AllJoyn framework.

[image: image4.emf]AllJoyn-Enabled

Device

AllJoyn

Proximal

Network

AllJoyn-Enabled

Device

AllJoyn-Enabled

Device

Gateway

Node

Cloud

Services

Internet

Device

(Remote Access)

Figure 5.1.2.2.2-1 Remote Accessible AllJoyn Network Architecture
5.1.2.3
Device Architecture
As previously stated, the AllJoyn router can be bundled with each of these applications on devices. The app supports application-specific services and one or more AllJoyn service framework. The application connects to the AllJoyn router via the AllJoyn standard core library call.

[image: image5.emf]AllJoyn Router

Device OS

App

AllJoyn-Enabled Device

AllJoyn Service Frameworks

App-Specific Services

AllJoyn App Package

AllJoyn Core Library

Figure 5.1.2.3-1 AllJoyn Device Architecture

· AllJoyn Service Framework (Base service)

AllJoyn Service Framework provides some of the basic and core functionalities as enablers for higher layer application services. This service frameworks sit on top of the AllJoyn router and provide APIs to application developer to invoke the functions. This is similar concept of CSE defined by oneM2M.
· Application Layer Service (App-specific service)

Application Layer Service provides services to achieve intended application functionality. This service can make use of the AllJoyn Service Framework. This is similar concept of AE which contains application-specific service logic.

Note that [i.2] defines the other AllJoyn device architectures such as multiple app with bundled AllJoyn router and multiple apps with standalone AllJoyn router.

5.1.2.4
AllJoyn System Protocol Stack

[image: image6.emf]App

AllJoyn-Enabled Device

Layer 1

Layer 2

Network (IP/non-IP)

Transport (Wireless/Wired)

AllJoyn Router

Transport Abstraction Layer

AllJoyn Core Library

AllJoyn Service Frameworks

App-Specific Services

Device

Layer

Network

Layer

Service

Layer

App

Layer

IoT Reference

Model

Figure 5.1.2.4-1 AllJoyn Protocol Stack

The AllJoyn router support multiple underlying transports for discovery and communication and provides an abstraction layer for each supported transport. Based on the definition of ITU-T Y.2060 IoT Reference Model [i.2], the AllJoyn system components belongs to Service Layer except for the app-specific services.
5.1.3
AllJoyn Entity Relationship

For better understanding of AllJoyn System, it is important to understand how different AllJoyn entities realte to each other.

The figure 5.1.3-1 shows the relationship between various AllJoyn entities, AllJoyn devices, AllJoyn application, AllJoyn objects, Interface and interface members. Assume that there is an AllJoyn-enabled device in a proximal network.

· An AllJoyn-enabled device can support one or more AllJoyn applications

· Each AllJoyn application can support one or more AllJoyn Objects that implement desired application functionality.

· Precisely, the application functionality can include providing AllJoyn Services or consuming AllJoyn Services or both. Accordingly, objects supported by the AllJoyn application can be service objects, proxy objects, or combination of both.

· Briefly, the object and service are similar concept.

· An object exposes its functionality via one or more AllJoyn interfaces.

· Each AllJoyn interface can support one or more of methods, signals and properties.
[image: image7.png]——= Allioyn Interface A
——= Allioyn Interface B
—— Allioyn Interface C

——= Allloyn Interface

Figure 5.1.3-1
AllJoyn Entity Relationship

5.1.4
AllJoyn Gateway Agent
5.1.4.1
Concept
Editor’s Note: Consumer/provider mode for Gateway Agent needs more investigation.

Basically, a user can enjoy AllJoyn services with his/her AllJoyn devices in a proximal network (e.g., home network). Gateway Agent enables the user seamlessesly expirence the AllJoyn services while away from the proximal network. To do this, in the proximal network the user sets the list of services(device/app/interface) that will be accessable remotely. And then the user access the serivces remotely via cloud.

Service provider defines web protocols to connect Gateway Agent to its cloud services. This connecction is permanent and the protocol is service provider specific.

[image: image8]
Figure 5.1.4.1-1
Gateway Agent Concept
User uses Control App away from proximal network as well as within proximal network.
· Control App : enables users to set a remote profile within a proximal network and also control devices, receive notifications away from the proximal network.
Gateway Agent component which enables remote access consists of:

· Gateway Management App : enables Control App to manage remote profiles and exposes the profiles to the Connector app. This also manages config file which is used by the AllJoyn router.

· Connector App : provides IoT devices connections to cloud services. This also provides protocol translation between AllJoyn and web-based protocol.
Control App discovers Gateway Management App by announcement-based discovery. Gateway Management App and Connector App communicates each other via the same AllJoyn Router preinstalled on the Gateway Agent.

5.1.4.2
Architecture
Each Gateway Agent is associated with a single service provider.

Gateway Agent component and Control App enables remote accesses using the interfaces exposed by Gateway Management App:
· profile management interface to Control App

· methods: create/get/update/delete/activate/de-activate profiles, get profile status/list

· app access interface to Connector App

· methods: get profile, update connection status

· signals: profile updated, profile deleted, shutdown app
Gateway Management app updates the config file when the profile is activated and de-activated. One config file exists per Gateway Agent and is used by AllJoyn router to decide whether it allows the message transmission between Connector Apps and AllJoyn apps in the proximal network.

Control App provides UI(User Interface) to configure profiles. User sets a remote profile that describes which device/app/interace is allowed for remote access. Control App creates and activates a profile, then a Connector App per profile is started by Gateway Management App and connects to the cloud service as defined in the profile. Due to security reasons, the profiles are only configured in proximal networks.

Connector App which provides connection between cloud and proximal network updates connection status to the corresponding profile. One Connector App is mapped to one cloud service.

[image: image9]
Figure 5.1.4.2-1
Gateway Agent Architecture

5.1.4.3
Remote Access
AllJoyn applications exchange data by accessing inteface members which are methods, properties and signals. Remote accesses by Gateway Agent are exchanging method call, property get/set and signal messages from/to the proximal network.

Control App outside the proximal network invokes method calls, get/set properties. The invocation is delivered to Connector App on within the proximal network via a cloud service. Then the Connector App establishes AllJoyn session to the target applications and exchanges the translated message. Connector App also translates the signals from applications in the proximal network and send to the Control App via the cloud service.
5.1.4.4
oneM2M Interworking with Gateway Agent
For security reasons, AllJoyn system does not allow to configure remote profiles outside the proximal network. It means when a user is away from the proximal network, he/she cannot set/change remote access policy to AllJoyn devices. Note that oneM2M system allows an application to change configurations wherever it is once it has proper access rights.

Curretnly, AllJoyn Security 1.0 uses a password, PIN, or other key materials for accessing secure interfaces. Control App gets proper password, PIN, or other key materials from a user and send it to the cloud. Every time remote access is invoked by the cloud, key materials are included as part of the request and sent to the remote application. The key materials are recommended not to be stored in Connector app for security. With this, only the Control App which configured the profile for remote access can access the device/application away from the proximal network.

AllJoyn Security 2.0 is under development and this includes permission management which is similar to oneM2M. Therefore AllJoyn system may allow application other than Control App to remote accesses later.

5.2
Technical Comparison
This section describes the technical comparison of oneM2M and AllJoyn. The factors collected by this comparison work can be used to specify how two different systems can interface.
5.2.1
API Styles

The table 5.2.1-1 demonstrates how API styles of oneM2M and AllJoyn system are different to expose its services that can provide some functionality.
Table 5.2.1-1
The Comparison of API Styles of oneM2M and AllJoyn System

	
	oneM2M
	AllJoyn

	API Style
	Resource based API (RESTful Architecture). It assigns all procedures, instances of data a resource identified by a URI and leverage web-based protocol’s operations (CRUD) to define service behaviors.
	D-Bus [i.4] based API. It defines a protocol for exposing a typical object-oriented language-based service to other applications that consume the service.

	Representation of a Service
	An oneM2M Service is defined by one or more Resources specified in [i.5].

An oneM2M resource defines a set of representations of data. Each resource has attributes that stores information regarding the resource itself, procedures or data.
	An AllJoyn Service is defined by one or more AllJoyn Interfaces.

An AllJoyn interface can include one or more of following types of members:

· Methods: a function call that typically takes a set of inputs, performs and returns.

· Properties: a variable that holds values.

· Signals: an asynchronous notification that is generated by a service to notify remote peers of an event or change.

Following, the table 5.2.1-2 and 5-3 give examples how an oneM2M and AllJoyn service is described respectively. Both examples demonstrate a schema or introspection that describes location service to acquire the location information of a target information.

Table 5.2.1-2
Resource Schema pertaining to <locationPolicy> (example)
	<xs:schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.onem2m.org/xml/protocols"

 xmlns:m2m="http://www.onem2m.org/xml/protocols"

elementFormDefault="unqualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="CDT-commonTypes-v0_7_1.xsd" />

<xs:element name="locationPolicy">

<xs:complexType>

<xs:complexContent>

 <!--
Inherit Announce able Attributes from announceableResourceType -->

<xs:extension base="m2m:announceableResourceType">

<xs:sequence>

 <!--

Resource Specific Attributes -->

<xs:element name="locationSource" type="m2m:locationSource" />

<xs:element name="locationUpdatePeriod" type="xs:duration" minOccurs="0" />

<xs:element name="locationTargetID" type="m2m:nodeID" minOccurs="0" />

<xs:element name="locationServer" type="xs:anyURI" minOccurs="0" />

<xs:element name="locationContainerID" type="xs:anyURI" minOccurs="0" />

<xs:element name="locationContainerName" type="xs:string" minOccurs="0" />

<xs:element name="locationStatus" type="xs:string" minOccurs="0" />

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:element>

</xs:schema>

Furthermore, the resource schema described in table 5.2.1-2 can be also graphically represented as the figure 5.2.1-1.

[image: image10.emf]<locationPolicy>

1

locationSource

0..1

locationUpdatePeriod

0..1

locationTargetID

0..1

locationServer

0..1

locationContainerID

0..1

locationContainerName

1

locationStatus

<subscription>

0..n

Figure 5.2.1-1
Structure of <locationPolicy> resource

Table 5.2.1-3
Introspection XML of an AllJoyn Location Service (example)
	<node name="/com/alljoyn/LocationService">

<interface name="com.alljoyn.LocationService">

<method name="getLocation">

<arg name="locationSource" type="s" direction="in"> </arg>

<arg name="targetID" type="s" direction="in"> </arg>

</method>

<signal name="locationPoint" sessionless="true> </signal>

<property name="locationStatus" type="y" access="read"> </property>

</interface>

</node>

5.2.2
Service Discovery / Advertisement

One of most significant features of service layer protocol for the IoT is to advertise or discover services to a remote entity or application. Both systems have specified significantly different advertisement and discovery mechanism.

Table 5.2.2-1 The Comparison of API Styles of oneM2M and AllJoyn System
	
	oneM2M
	AllJoyn

	Service Consumer
	Since oneM2M is a web-based architecture, the service consumer firstly discover a target service instantiated in a CSE using GET method.

The discovery message is sent over unicast transport protocol.

If the target service is found, the service consumer consumes the service subject to access control.

This behavior is just like resource searching by using web-browser.
	A service consumer in AllJoyn network send a DNS-SD query message over Multicast DNS (mDNS) network to discover a target service implemented in other applications/devices.

Since a site-local IP multicast mechanism is used for mDNS, the DNS-SD query can be sent toward mDNS multicast members within proximal network.

In order to enable secure access a service resides in the remote network, AllSeen Alliance has been specifying a Gateway Agent feature [i.6].

Note: this procedure supports after 14.06 version of AllJoyn system.

	Service Provider
	The notification for service advertisement which is sent toward unspecified applications causes network collapse due to the broadcast message flooding. Thus, oneM2M does not specify the proactive advertisement method acting by service provider.

However, oneM2M has specified the service information forwarding (toward target node) method, “Announcement”.
	If the services specified in the received query is provided by the service provider, the service provider responds a DNS-SD response message over unicast to the service consumer.

Note: this procedure supports after 14.06 version of AllJoyn system.

6
Scenarios for oneM2M and AllJoyn Interworking
Several scenarios are presented in this section. The oneM2M system may support several of these scenarios simultaneously.
In the following figures, the arrows between the AllJoyn Network or the AllJoyn enabled mobile device and the oneM2M system may use the interfaces which are the conversions of Mca/Mcc, or may be the new defined interfaces up to the solutions.
Figure 6-1 shows the scenario that the AllJoyn network is deployed in the field domain, the AllJoyn network communicates with an oneM2M Infrastructure Domain network. An AllJoyn enabled mobile device accesses the oneM2M Infrastructure Domain network and remotely controls the devices in the AllJoyn network through the oneM2M Infrastructure domain. The vertical line represents the demarcation between the field domain and the infrastructure domain.

[image: image11.emf]Field Domain

Infrastructure Domain

Infrastructure

Domain of oneM2M

Service Provider

AllJoyn Network

in the field

domain

AllJoyn

enabled

mobile

device

Figure 6-1: AllJoyn enabled mobile device controls AllJoyn Network in the field domain
through oneM2M Infrastructure Domain
In Figure 6-2 the AllJoyn network is also deployed in the field domain, the difference with the above scenario in Figure 6-1 is that An oneM2M enabled mobile device remotely controls the devices in the AllJoyn network through the oneM2M Infrastructure domain. Considering the oneM2M system may support interworking with multiple IOT technologies, i.e. there are many local networks in field domain using different IOT technologies, these local networks all have ability to interworking with an oneM2M platform for remote control. It’s possible to use multiple control applications installed in one mobile device or even multiple mobile devices each specially for one IOT technology to remotely control the local networks, but if we can use a generic oneM2M enabled mobile device to remotely control the devices using different IOT technologies, it will be more efficient.

[image: image12.emf]Field Domain

Infrastructure Domain

Infrastructure

Domain of oneM2M

Service Provider

AllJoyn Network

in the field

domain

oneM2M

enabled

mobile

device

Figure 6-2: oneM2M enabled mobile device controls AllJoyn Network in the field domain
through oneM2M Infrastructure Domain
Figure 6-3 provides the scenario that two AllJoyn Network in the field domain communicates with each other through oneM2M Infrastructure Domain. One device in an AllJoyn network may need to communicate with a device in another AllJoyn network, but if the two AllJoyn networks are deployed at different location, it is impossible for them to communicate directly. If the two AllJoyn Network are both able to communicate with the oneM2M Infrastructure Domain, it’s possible for them to communicate with each other through the oneM2M Infrastructure Domain.

[image: image13.emf]Field Domain

Infrastructure Domain

Infrastructure

Domain of oneM2M

Service Provider

AllJoyn Network

in the field

domain

AllJoyn Network

in the field

domain

Figure 6-3: Two AllJoyn Network in the field domain communicates with each other
through oneM2M Infrastructure Domain
The scenario depicts in Figure 6-4 is similar with Figure 6-3, the difference is one field domain network is AllJoyn network, the other is the oneM2M Field Domain Network, they can communicate with each other through oneM2M Infrastructure Domain.

[image: image14.emf]Field Domain

Infrastructure Domain

Infrastructure

Domain of oneM2M

Service Provider

oneM2M Field

Domain Network

AllJoyn Network

in the field

domain

Figure 6-4: AllJoyn Network in the field domain communicates with oneM2M field domain Network through oneM2M Infrastructure Domain
Figure 6-5 provides the scenario that an AllJoyn Network in the field domain directly communicates with an oneM2M Field Domain Network. The assumption is the two networks are deployed in the same location, thus it’s possible for them to communication with each other locally without going through the oneM2M Infrastructure Domain.

[image: image15.emf]Field Domain

Infrastructure Domain

Infrastructure

Domain of oneM2M

Service Provider

oneM2M Field

Domain Network

AllJoyn Network

in the field

domain

Figure 6-5: AllJoyn Network in the field domain directly communicates with oneM2M field domain Network
7.
Possible Solutions for oneM2M and AllJoyn Interworking

This section describes possible solutions for oneM2M and AllJoyn interworking. In detail, the solutions are divided into 1) functional architecture, 2) service mapping provided by both system and 3) security.
7.1.
Functional Architecture for Interworking

7.1.1
Solution 1: Interworking using IPE
7.1.1.1

Functional Entities
The IPE (Interworking Proxy Entity) is a specialized interworking Application Entity(AE). As depicited in the figure 7.1.1.1-1, the IPE is characterized by the support of a non-oneM2M reference point and by the mapping the non-oneM2M data or service model to the oneM2M resources exposed via the Mca reference point.

	
[image: image16.emf]Non-oneM2M

Application

oneM2M

CSE

IPE

Non-oneM2M Interface

Mca Reference point

	
	
[image: image17.emf]AllJoyn

Router

oneM2M

CSE

 IPE

AllJoyn Router

–

 App Interface

Mca Reference point

AllJoyn App

oneM2M AE

	Figure 7.1.1.1-1
Proposed Functional Architecture derived from IPE concept

From the IPE concept, the IPE can be an intermediate entity that translates different protocol messages and exposes services provided both system, oneM2M and AllJoyn. The proposed functional architecture compromises the following functions:

· AllJoyn Router : AllJoyn Router provides core functionality of the AllJoyn framework, including P2P advertisement/discovery, connection establishment, broadcast signalling and control/data messages routing.
· IPE : The IPE can play a service proxy role for AllJoyn interworking. In order to expose AllJoyn services toward oneM2M CSE and vise versa, the IPE shall connect to an AllJoyn Router installed in a gateway and the IPE shall also connect to an oneM2M CSE. From AllJoyn perspective, the IPE can be the Connector App defined in the Gateway Agent concept. Please see the clause 5.1.3.
· oneM2M CSE : A Common Service Entity represents an instantiation of a set of “common service function” of the M2M/IoT environments. Such service functions are exposed to other entities through the Mca and Mcc reference points.

The definition of interfaces mentioned in the proposed architecture is the same as defined in TS-0001 and AllJoyn
The figure 7.1.1.1-2 demonstrates one of possible configurations between various entities supported within the proposed interworking architecture.

[image: image18.emf]AllJoyn Device

AJ Router

AJ Applications

AllJoyn Device

AJ Router

AJ Applications

G/W

AJ Routing MN-CSE

IPE

oneM2M Device

ASN-CSE

ASN-AE

Mcc

Cloud

IN-CSE

Mcc

Mca

oneM2M Device

ASN-AE

ADN-AE

Mca

Mca

Figure 7.1.1.1-2
Configuration supported by the Interworking Architecture
7.1.1.2
Configurations of Solution 1 Using AllJoyn Gateway Agent(s)

Solution 1 as defined in the previous section can be applied to different connfigurations such as the oe shown in Figure 7.1.1.1-2. The main focus for interworking is on the IPE that resides in the gatewas termed “G/W” in Figure 7.1.1.1-2. This depicted configuration can be specialized into a number of useful configurations with similar topologies but slightly different grouping of functions.

In this section, a few important configurations using Solution 1 will be described that integrate well with the AllJoyn Gateway Agent described in Section 5.1.4. In addition to the functional partitioning that is described in the previous section, the configurations described in the section also indicate the location of oneM2M-specified resources that may be used to expose or consume AllJoyn services.

The first specialization of a configuration for Solution 1 is depicted in Figure 7.1.1.2-1 below. In this configuration, a couple of AllJoyn Apps that act as service producers are located in an AllJoyn proximal network., see “AJ App 1” and “AJ App 2” in Figure Figure 7.1.1.2-1. The services produced by those two AllJoyn applications are supposed to be exposed to oneM2M entities via a gateway on which an AllJoyn Gateway Agent is implemented. For the sake of simplicity only one AllJoyn Gateway Agent Connector App, see section 5.1.4, is depicted. This Gateway Agent Connector App is termed “Service Exposing App” in Figure Figure 7.1.1.2-1. The attached AllJoyn Router and the AllJoyn Gateway Managemet App are not show in Figure Figure 7.1.1.2-1to keep it less busy. The depicted Gateway Agent Connector App termed “Service Exposing App” is acting at the same time as an AE towards other oneM2M entites and acrually plays the role of an IPE. This “dual” role of the Gateway Agent Connector App / IPE is indicated by using two different colors in Figure 7.1.1.2-1 for this entity. Each of the services produced by “AJ App 1” and “AJ App 2, is getting exposed to other oneM2M entities via a set of resources termed “Rsc 1” and “Rsc 2”,respectively. These resources are hosted on an IN-CSE termed “CSE3” in Figure 7.1.1.2-1. The details of the resource structures “Rsc 1” and “Rsc 2” are not defined in this section. Entities in the oneM2M system interested to consume the exposed services can use standard oneM2M procedures like discovery, resource access operations, access control etc to interact with the exposed services.

Even though not explicitly depicted in Figure 7.1.1.2-1, the same configuration could be used for exposing services of the oneM2M system via the resource sets “Rsc 1” and “Rsc 2” to the AJ Network by consuming the services via the Gateway Connector App / IPE and exposing them as AllJoyn services inside the AJ Network.

The configuration depicted in Figure 7.1.1.2-1 corresponds to a special case of the configuration in Figure 7.1.1.1-2, where no CSE is hosted on the gateway “G/W” and only the Mca reference point towards an IN-CSE is used for interacting with oneM2M entities. This case also covers the interworking scenarios described in Figures 6-2 and 6-4 of section 6. The oneM2M Field Domain referred to in Figure 6-4 is not explicitly mentioned in Figure 7.1.1.2-1, but it is assumed it can be included in what is termed “oneM2M Network”.

[image: image1.png]

[image: image19]
Figure 7.1.1.2-1
1st specialized configuration supported by the interworking architecture according to solution 1

A slightly more complex configuration for Solution 1 is depicted in Figure 7.1.1.2-2. The main difference to the prvious one is that the resources that are used for interacting between AllJoyn and oneM2M are now hosted on a CSE that is integrated into the Gateway. In order to facilitate discovery of these resources on the IN-CSE, it may be advantageous to announce them to the IN-CSE, which is also depicted in Figure 7.1.1.2-2.

The configuration depicted in Figure 7.1.1.2-2 is a specialization of the one shown in Figure 7.1.1.2-1, where the IPE interacts via the Mca reference point with a gateway-internal CSE, termed “CSE 1” and indirectly via CSE 1 with other oneM2M entities such as CSE 3 on the IN or oneM2M AE X or oneM2M AE Y in the infrastructure domain.

This configuration covers the interworking scenarios described in Figures 6-2 and 6-4 of section 6. The oneM2M Field Domain referred to in Figure 6-4 is not explicitly mentioned in Figure 7.1.1.2-1, but it is assumed it can be included in what is termed “oneM2M Network”. Furthermore, this configuration also covers the interworking scenario described in Figure 6-5 if it is assumed that also other oneM2M entities such as other AEs are communicating in the field domain with CSE 1 in Figure 7.1.1.2-2, see oneM2M AE Z in Figure 7.1.1.2-2.

[image: image28.emf]Resource structure for control panel services framework

controlPanel <container>

Resource structure for service objects of external producer Y

Resource structure for service objects of internal producer X

allJoynRoot <container>

svcFrameWorks <container>

base <container>

Resource structure for notification services framework

notification <container>

dismiss <container>

0000001 <container>

ntfcnObjData <contentInstance>

listenerIPE <subscription>

dissmisRequest <contentInstance>

consumerXXX <subscription>

dismiss <container>

0000002 <container>

ntfcnObjData <contentInstance>

listenerIPE <subscription>

dissmisRequest <contentInstance>

consumerYYY <subscription>

other

Resource structure for connected lighting services framework

ontectedLighting <container>

appSpecifcSvcs <container>

internalProducerX <container>

externalProducerY <container>

Existing or New Resource Types

Existing or New Resource Types

Existing or New Resource Types

Existing or New Resource Types

[image: image20]
Figure 7.1.1.2-2
2nd specialized configuration supported by the interworking architecture according to solution 1

The 3rd specialized configuration for Solution 1 is depicted in Figure 7.1.1.2-3 below. In this configuration, it is assumed that a second AllJoyn Network is supported which hosts two more AllJoyn service producer applications “AJ App A” and “AJ App B”. In addition to what was already stated for the previous two specialized configurations, this one shows how Solution 1 can also support interworking scenarios described in Figure 6-3 of section 6. In fact – assuming the 2nd AJ Netowork on the bottom of Figure 7.1.1.2-3 is just internal to a mobile device that hosts an AllJoyn Gateway Agent, this configuration also supports interworking scenario in Figure 6-1 of section 6.

[image: image29.png]Notifications are sent/received as a ntfcnObject which has a number of data members
(text in one or more languages, Icons, audio URL, msgld,...) and a dismiss() function

Producer uses API
function for sending

a notification:
—_—

Send(
ntfcnObject)

Also available:
DeleteLastNtfcn(
ntfcnType)

AllJoyn Producer Device

(’ Notification Service
§ Producer API
p——————

Notification Service

AllJoyn Consumer Device

‘/ Notification Service

Consumer API J
<
Notification Service

T Aljoyn)

Notification

“ Alljoyn l
.

Interface

[Alljoyn Core

I{ Notification ‘
Interface

_
—_— <

Alljoyn Core

Consumer provides

a callback function to
consume a
___notification:

Receive(
ntfcnObject)

Another callback:
Dismiss(
msgld, appld)

[image: image21]
Figure 7.1.1.2-3
3rd specialized configuration supported by the interworking architecture according to solution 1
7.2.
Service Mapping

Based on the AllJoyn entity relationship, an AllJoyn service is represented by one or more objects and the objects are represented by one or more interfaces and its members, methods, signals and properties. In order to expose various AllJoyn services, the defined AllJoyn interfaces that is used for an AllJoyn functionality are mapped to oneM2M resource types that are understandable to oneM2M system entity.

This section describes which oneM2M resource types are appropriate for service mapping between two systems and the pros and cons of each solutions.
7.2.1.
Solution 1: <container> Resource Type

In this solution, it is proposed that AllJoyn interfaces are mapped to <container> resource type and the AllJoyn interface members’ information is stored in the <contentInstance> resource type. The specific information of AllJoyn interface member is contained in the ‘content’ attribute in the relevant <contentInstance> resource type.

The figure 72.1-1 captures how an AllJoyn interface is mapped to <container> resource type and each interface members are mapped to <contentInstance> as a child resource type of the <container> resource type.

[image: image22]
Figure 7.2.1-1
Service Mapping using <container> resource type

7.2.1.1.
Pros
There is no need to define a new oneM2M resource type for service mapping.
7.2.1.2.
Cons
Since whole information of the AllJoyn services exposed to oneM2M system is gathered in the MN-CSE (or gateway), it is important to distinguish which service is exposed toward which oneM2M entity under the access control policy. Plus, since AllSeen Alliance members have been developping service-unit access control in their Security 2.0 working group under the Core working group, this interworking should support this.

If the AllJoyn interface members are mapped to <contentInstance> resource type, the specific access control of methods, signals and properties is not allowed since <contentInstance> is not the resource type which can have its own <accessControlPolicyID>.

7.2.2.
Solution 2: Newly defined Resource Type

In this solution, it is proposed that a new resource type is used for this service mapping. The resource type should be designed to store an AllJoyn Interface and child resources should contain the AllJoyn interface members.

Similar to <mgmtObj> resource type, the new resource type for AllJoyn Interworking can be mapped various AllJoyn interfaces and its members instantiated in the proximal network.

This resource type contains interface information and has child resources to contain property and methods information as represented in the figure 7.2.2-1.

[image: image23]
 Figure 7.2.2-1
Service Mapping using a New Resource Type for AllJoyn Interworking

7.2.2.1.
Pros
The access control to the level of AllJoyn Interface members is allowed and the high context compatibility between AllJoyn service and oneM2M Resoruce type, which means that specific attribute for AllJoyn service or interface can be defined in this solution.
7.2.2.2.
Cons

It is required to define dedicated oneM2M resources for AllJoyn service interfaces.
7.2.3
Solution 3: Hybrid of existing and newly defined Resource Types
7.2.3.1
Motivation
In order to better understand the motiviation for this solution, we should consider once more the different ways how AllJoyn services are being provided or consumed. As already explained in section 5.1.2.3, the AllJoyn applications are using a common “AllJoyn Core” which essentially allows the definition of service objects using interfaces as depicted in Figure 7.2.3.1-1.

[image: image30.png]Aloyn Interface

org.alljoynabout

[About interface]
AWoyn Properties orgalljoyn About
Version -
[Properties]
AWoyn Methods
GetAboutData [Methods]
- GetAboutData
I—(Description - input/output) - GetObjectDescription
GetObjectDescription [Signals]

- Announce
Description - input/output

[image: image24]
Figure 7.2.3.1-1
Service Objects as a basic paradigm for producing and consuming services in AllJoyn
The basic paradigm to produce and consume services in an AllJoyn proximal network is the use of such service objects which comprise of Signals (event communication, similar to oneM2M Notifications), Properties (data elements that can be set/get, similar to oneM2M contentInstances) and Methods (remote procedure calls, which need to be mapped on some complex oneM2M resource structure similar to mgmtCommand).

However, besides the use of this basic “Service Objects” paradigm to produce or consume services, AllJoyn is using very extensively so called “Service Frameworks”, as depicted in Figure 7.2.3.1-2. A specific Service Framework exposes a specific API to applications wich specific data models. Normally, the use of such API is greatly simplifying the usage of a specific service and makes it very easy for an application to produce or consume the corresponding service.

[image: image31.png]AllJoyn Application oneM2M CSE
()
App Code AlloynLighting | <AE>
Al Service F ke L p
Clasi[je:vic&&umewu[ks... OY?__ ervice Frameworks Connected Lighting| <container>
; Onboarding Configration Co.nne.cted I_
! Lighting More Interface #1 <container>
i| Notification Control Smart Home
H Panel
<method>
<contentlnstance>
AllJoyn Core Library -

- N Interface definition of Object <signal>
Advertisement || Session || oo properties, creation and <contentlnstance>
and discovery creation > d !

signals handling
q <property>
<contentlnstance>
(e
AllJoyn Router
Advertisement Session Bus — .
and discovery Handling Management Notification <container>
Message and Signal Transport Security Interface #1 <container>
Transport Abstraction Layer Interface #2 <container>
L U\ J

[image: image25]
Figure 7.2.3.1-2
Services Frameworks Concept in AllJoyn
As an example for such a Service Framework, the so-called “Notification Service” shall be considered very briefly. The Notification Service Framewqork provide a very simple interface for sending and receiving human-readable messages to notify a human about some events that may need their attention. These notifications are optionally carrying information about “rich” content such as icons to display or audio data to play. Notifications can be assigned different priority types, language preferences can beconfigured. The Notification Framework aslo supports optionally subsequent interactions with the notified person in response to notifications. Figure 7.2.3.1.-3 depicts a simple configuration of a Notification Producer and a Notification Consumer.

[image: image26]
Figure 7.2.3.1-3
Notification Services Frameworks Concept in AllJoyn
A Notification Consumer actually will receive a notification by passing a Notification Object to a call-back function that the Consumer provides. The Notification object contains all the data for the notification – text, references to icon etc – and a method to dismiss the notification, i.e. to tell the system that the notified person did consume the notification and it is not longer needed to display it anywhere, When a notification is getting dismissed by a consumer, the core sytem and and other consumers need to get informed about this. In AllJoyn this is done by sending signals that trigger the execution of another call-back function “Dismiss” in the consumers.

This example of Notification Service Framework was described in this section, so it is easier to understand why it makes sense to re-use existing resource types in oneM2M for exposing / injecting services that are using simple AllJoyn Service Frameworks. In what follows, it is suggested to consider a resource structure for interacting with AllJoyn IPEs that accommodate different sub-trees for services that use native AllJoyn Service Objects (Signals, Properties, Methods) versus services that are using Service Frameworks.

7.2.3.2
Resource Mapping

It is suggested to consider a resource structure for mapping between AllJoyn services and oneM2M Resources as depicted in principle in Figure 7.2.3.2-1. The most important aspects of such a resource maping are summarized as follows

· A common container (named “allJoynRoot” in this example) is used for interworking with AllJoyn services on a a given CSE that is the Registrar CSE of an AllJoyn IPE. The resourceName and resourceID of this common root container for interworking with a particular AJ proximity network may have to be selected such that it can be correlated with an identifier of that proximity network. Also it may be useful to attach a standardized label to this common root container, which would enable to discover AJ interworking resources easily.

· Two child containers “svcFrameWorks” and “appSpecifcSvcs” are used to differentiate services using a Service Framework or native, aoplication-specific Servie Objects, respectively

· Within “svcFrameWorks” there are two child containers

· One for AllJoyn base Service Frameworks named “base”

· Within “base” there are child containers for each exposed base service framework, e.g.

· One container named “notification” for the Notification Service Framework

· One container named “controlPanel” for the Control Panel Service Framework

· One for other Service Frameworks named “other”

· Whithin “other” there are child containers fo each exposed other service framework, e.g.

· One container named “connectedLighting” for the Connected Lighting Service Framework

· Within “appSpecificSvcs”, a separate container is used for each internal (within the interworking AJ network) or external (not within the interworking AJ network) service producer, in order to expose or inject the respective service.

Whether exising resource types or newely defined resource types need to be used for exposing or injecting a service from/to the AJ proximity network depends very much on whether it is a service within a given Service Framework and which one of them.

For instance, with the depicted resource structure for the Notification Service Framework in Figure ZZZZ, it seems possible to accommodate exposure and injection of Notifications between the AJ Network and the oneM2M network just based on <container>, <contentInstance>, <subscription> resources only.

The Hybrid approach discussed in this section basically suggests the forllowng

· define the resource tree structure for interworking using <container> resources as outlined in this claue above,

· follow the principle of designing an appropriate resource structure re-using already existing resource types whenever possible and feasible,

· only use newly defined resource types when otherwise not possible or not feasible.

7.2.3.1
Pros
In cases where newly defined resource types are deemed to be necessary, the access control to the level of AllJoyn Interface members is possible to be supported via oneM2M ACP mechanism. Also a high context compatibility between AllJoyn service and oneM2M Resoruce type can be achieved, which means that specific attribute for AllJoyn service or interface can be defined in this solution.

In case where existing resource types are sufficient – which seems to be the case for some AllJoyn Service Frameworks – there is no need to define any new oneM2M resource type for service mapping. So in that case the impact on normative parts of oneM2M specifications can be minimized and implementations of existing resource types and corresponding procedures can be re-used
7.2.3.2
Cons

In cases where newly defined resource types are deemed to be necessary, it is required to do normative work to define dedicated oneM2M resources for AllJoyn service interfaces.
[image: image32.png]/ Gateway Agent \
profile
|

I

config

AllJoyn Lib. file

config file policy
enforcement

Cloud Service

7

(&

AllJoyn Dev

[image: image27]
Figure 7.2.3.2-1. Resource structure for mapping between AllJoyn services and oneM2M resources
Notwithstanding the provisions of the copyright clause related to the text of the present document, oneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

History

	Publication history

	V.1.1.1
	<dd Mmm yyyy>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V.0.0.1
	29/10/2014
	 Skeleton draft

	V.0.1.0
	05/12/2014
	Applied the following CRs:

ARC-2014-1630R01-TR-0014_Introduction_to_AllJoyn
ARC-2014-1641R02-Scenarios_for_OneM2M_and_AllJoyn_Interworking

	V.0.2.0
	16/03/2015
	Applied the following CRs:

ARC-2015-1701R01-TR-0014_Technical_Comparisons

	V.0.3.0
	04/05/2015
	Applied the following CRs:
ARC-2015-1757R02-TR-0014_AllJoyn_Gateway_Agent
ARC-2015-1789-TR-0014_Service_Mapping_for_AllJoyn_Interworking
ARC-2015-1790R01-TR-0014_Functional_Architecture_for_oneM2M_and_AllJoyn_Interworking
ARC-2015-1791-TR-0014-The_relationship_of_AllJoyn_Entities

	V.0.4.0
	08/07/2015
	Applied the following CRs:

ARC-2015-1917- AllJoyn-oneM2M Interworking Mapping Principles
ARC-2015-1918- AllJoyn-oneM2M Interworking Resource Structure
Fixed the numbers for figures and tables.

� EMBED Visio.Drawing.11 ���

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC)
Page 30 of 30
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

[image: image33.png]Cloud Service

AllJoyn
Device 1

Gateway Agent

—— | Alloyn
Device 2

Mobile Device

move out of home Mobile Device

proximal network

[image: image34.png]Al
Network

Service
Exposing App

Al Gateway Agent
with oneM2M AE = IPE

oneM2M
Exposure AE 12

oneM2M IN CSE 3

oneM2M AEY

oneM2M AE Z

oneM2M Network

Provide AJ service
\>

[image: image35.png]Al Gateway Agent
with oneM2M AE=IPE & CSE
Al

Network Service Rscsrv1
Exposing App

Rsc srv 2
Annc Rsc 1

Annc Rsc 2

oneM2M Network

Provide AJ service
\>

[image: image36.png]Connector AJ Gateway Agent
Apps with oneM2M AE=IPE & CSE

AJ App \ A

Connector AJ Gateway Agent

Apps with oneM2M AE=IPE & CSE

A Service Rscsrv A oneM2M Network

Network Exposing App R B
sc srv

AJApp A X mirror App 1
AJAppB mirror App 2

Provide AJ service
\>

[image: image37.png]Producer Device Consumer Device

Alljoyn App AllJoyn App One or more Interfaces:
* Methods (RPC)
Servi . ;
;ﬁ,-‘g: Properties (set, get)

L Signals (P->C)
—
—

AllJoyn Bus Alljoyn Bus

[image: image38.png]Uses Service Framework-
specific API

Examples:

* Notifications
* Control Panel
¢ Onboarding

¢ Configuration

AllJoyn Device

App

Service App-Specific_|

Frameworks

Services

AllJoyn Router

Uses Service Objects
for exposure

/

Proximal
Network
Proximal
Network
Internet
Proximal
Network
Internet
Cloud
Services
Local
Area
Wide
Area

_1477371791.vsd

Non-oneM2M Application
oneM2M
CSE
IPE
Non-oneM2M Interface
Mca Reference point

AllJoyn Device
AJ Router
AJ Applications
AllJoyn Device
AJ Router
AJ Applications
G/W
AJ Routing
MN-CSE
IPE
oneM2M Device
ASN-CSE
ASN-AE
Mcc
Cloud
IN-CSE
Mcc
Mca
oneM2M Device
ASN-AE
ADN-AE
Mca
Mca

_1493612000.vsd
allJoynRoot

svcFrameWorks

base

<container>

<container>

<container>

notification

<container>

listenerIPE

<subscription>

controlPanel

<container>

dismiss

<container>

0000001

<container>

ntfcnObjData

<contentInstance>

dissmisRequest

<contentInstance>

consumerXXX

<subscription>

dismiss

<container>

0000002

<container>

ntfcnObjData

<contentInstance>

listenerIPE

<subscription>

dissmisRequest

<contentInstance>

consumerYYY

<subscription>

Resource structure for notification services framework

Existing or New Resource Types

Resource structure for control panel services framework

other

Resource structure for connected lighting services framework

ontectedLighting

<container>

Existing or New Resource Types

appSpecifcSvcs

<container>

internalProducerX

<container>

externalProducerY

<container>

Resource structure for service objects of internal producer X

Resource structure for service objects of external producer Y

Existing or New Resource Types

Existing or New Resource Types

AllJoyn
Router
oneM2M
CSE
IPE
AllJoyn Router – App Interface
Mca Reference point
AllJoyn App
oneM2M AE

_1477371870.vsd

_1477371558.vsd

_1477371584.vsd

_1477371606.vsd

AllJoyn-Enabled
Device
AllJoyn
Proximal
Network
AllJoyn-Enabled
Device
AllJoyn-Enabled
Device
Gateway
Node
Cloud
Services
Internet

Device
(Remote Access)

AllJoyn Router
Device OS
App
AllJoyn-Enabled Device
AllJoyn Service Frameworks
App-Specific Services
AllJoyn App Package
AllJoyn Core Library

App
AllJoyn-Enabled Device
Layer 1
Layer 2
Network (IP/non-IP)
Transport (Wireless/Wired)
AllJoyn Router
Transport Abstraction Layer
AllJoyn Core Library
AllJoyn Service Frameworks
App-Specific Services
Device
Layer
Network
Layer
Service
Layer
App
Layer
IoT Reference Model

AllJoyn Framework
App
App

AllJoyn Framework
App
App

AllJoyn Framework
App
App
AllJoyn-Enabled Device
AllJoyn-Enabled Device
AllJoyn-Enabled Device
Provider
Consumer
Provider+ Consumer
AllJoyn
Proximal
Network

_1466930609.vsd

