	Doc# oneM2M-Template-Change-Request.doc
Change Request
	[image: image7.png]

	

	CHANGE REQUEST

	Meeting:*
	ARC 20.4(joint with SEC)

	Source:*
	FUJITSU

	Date:*
	2016-01-06

	Contact:*
	Shingo Fujimoto,FUJITSU,shingo_fujimoto@jp.fujitsu.com

	Reason for Change/s:*
	<exact change/s to be provided below>

	CR against: Release*
	1

	CR against: WI*
	 FORMCHECKBOX
 Active <Work Item number>

 FORMCHECKBOX
 MNT maintenace / < Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0003 V1.3.0

	Clauses/Sub Clauses*
	

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 Change to existing feature or functionality
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO
This CR is a mirror CR? YES FORMCHECKBOX
 if YES, please indicate the document number of the original CR: <Document Number) : NO FORMCHECKBOX

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
The Role Based Access Control was not implementable with the specification as is.
SEC-2015-0666 introduced possible solution with re-using App-ID to determine the 'Role' of the application.

This contribution ask to change for implementing the idea of SEC-2015-0666.

R01: Add Editor's Node for TODO list.
-----------------------Start of change 1---
5
Security Architecture

5.1
Overview

Figure 5.1-1 provides a high level overview of the Security architecture.

The architecture consists of following layers:

a) Security Functions layer:
This layer contains a set of security functions that are exposed at reference point Mca and Mcc. These security functions can be classified into six categories; they are Identification, Authentication, Authorization, Security Association, Sensitive Data Handling and Security Administration.
b) Security Environment Abstraction Layer:
This layer implements various security capabilities such as key derivation, data encryption/decryption, signature generation/verification, security credential read/write from/to the Secure Environments, and so on. The security functions in the Security Functions Layer invoke these functions in order to do the operations related to the Secure Environments. In addition this layer also provides physical access to the Secure Environments. Implementation of this is out of scope of the present document. This layer is not specified in the initial release but is expected to be considered in future releases.

c) Secure Environment layer:

This layer contains one or multiple secure environments that provide various security services related to sensitive data storage and sensitive function execution. The sensitive data includes SE capability, security keys, local credentials, security policies, identity information, subscription information, and so on. The sensitive functions include data encryption, data decryption, and so on. Implementation of secure environments is out of scope of the present document.

[image: image1.emf]Security Services

Secure Environment Abstraction Layer(not specified in the present document)

SecurityAPI (Mca, Mcc)(not specified in the present document)

Security Functions Layer

Security

Association

Identification

and

Authentication

Authorization

Security

Administration

Identity

Management

Sensitive Data

Handling

Secure Environments Layer

Security Environments 1

Security Environments 2

Secure Environment n

Sensitive Data Sensitive Functions

Figure 5.1-1: High level overview of the Security architecture

Design principles:

d) Security Services are modular and configurable according to the needs of the hosting CSE, its supported reference points and its purpose.

e) The architecture is split into several components and sub-components providing a modular design. With this design, mapping of the architecture to different nodes and entities is enabled.

f) Depending on the requirements of each entity, Security should consist of components relevant to fulfil the requirements of the respective node or entity and the intended use case.

g) The architecture may need to be adapted to be suitable for implementation in different entities. For example, the architecture can be mapped to different device classes.

h) The security administration component shall enable administration of all sensitive resources (data and functions) and shall also allow configuration and extension of Security services itself.

i) The Secure Environment within the CSE is accessed via the Secure Environment Abstraction layer and shall hold all sensitive resources.

5.1.1
Identification and Authentication

The Identification and Authentication function shall be in charge of identification and mutual authentication of CSEs and AEs.
Identification is the process of checking if the identity provided for authentication is valid. How to perform an identification process shall depend on the purpose of authentication. For example, in the case of resource access, the authentication function may require to check if the AE or CSE has registered with the local CSE; in the case of AE or CSE registration, the authentication function may require to check if the identity provided by an AE or CSE fits a certificate. When the checking process has been completed, the AE or CSE is identified.
Authentication is the process of validating supplied credential. How to perform an authentication process shall depend on which authentication mechanism is used. For example, in the case of using certificate based authentication mechanism, the authentication function may require to verify a digital signature; in the case of using symmetric key based authentication mechanism, the authentication function may require to verify a Message Integrity Code (MIC). When this validating process has been completed, the AE or CSE is authenticated.
5.1.2
Authorization

The Authorization function is responsible for authorizing services and data access to authenticated entities according to provisioned Access Control Policies (ACPs) . Then Authorization function may optionally assign the Role(s) to the AE .

Access Control Policy is defined as sets of conditions that define whether entities should be permitted access to a protected resource. The Authorization function may support different authorization mechanisms, such as Access Control List (ACL), Role Based Access Control (RBAC), etc. The Authorization function may need to evaluate multiple access control policies in an authorization process in order to get a finial access control decision. This process is further described in clause 7 "Authorization".
When ACPs for Role Based Access Control is configured for the protected rsource at <m2mServiceSubscriptionProfile> resource, Authorization function shall check whether the Application ID(App-ID) attribute value in <AE> for the AE is allowed, and assign the Role for the App-ID. The authorization evaluation process may also need to consider contextual attributes such as time or geographic location.

Prior to authorization mutual authentication between the originator CSE or AE and hosting CSE shall be performed.

5.1.3
Identity Management

The Identity Management function provides oneM2M identities/identifiers to the requesting entity in case those identities are stored within the secure environment. oneM2M identifiers as defined in the oneM2M Architecture [1] may also be treated as sensitive data that are accessible to AEs or CSEs and used independently of Authentication or Authorization functions.
-----------------------End of change 1---

-----------------------Start of change 2---

7
Authorization

7.1
Access Control Mechanism

7.1.1
General Description

The M2M authorization procedure controls access to resources and services hosted by CSEs and AEs. The authorization procedure requires that the originator of the resource access request message has been identified to the Authentication Function, and originator and receiver are mutually authenticated with each other.
The resource addressed in a request message has an associated accessControlPolicyIDs attribute (either included explicitly as an attribute of the resource addressed in the request message, implied from the parent of the resource, or set fixed by the system, see clause 9.6.1 of oneM2M TS-0001 [1]). The accessControlPolicyIDs attribute contains a list of identifiers of <accessControlPolicy> resources applicable to the resource addressed in the request message.

The overall structure of <accessControlPolicy> resources is described in clause 9.6.2 "Resource Type accessControlPolicy" of oneM2M TS-0001 [1]).
Each of these <accessControlPolicy> resources include privileges and selfPrivileges attributes, which comprise the information, denoted as access control rules in the present document, that is evaluated against the parameters associated with the request message to obtain the access decision.

Figure 7.1.1-1 illustrates the relation between <accessControlPolicy> resource instances (ACP) and the instances of the protected resources, denoted Resource_1 to Resource_N.

 SHAPE * MERGEFORMAT

 SHAPE * MERGEFORMAT

Figure 7.1.1-1: Relation between Resource Instances and Access Control Policies
Access requests to ACP's itself are evaluated against the selfPrivileges attribute of that ACP. Access requests to instances of all other resource types, are evaluated against the privileges attributes of the ACP set associated with the targeted resource.

For requests to <accessControlPolicy> resource type, authorization is granted if the request is evaluated to "Permit" for at least one selfPrivileges attribute. For other resource types, authorization is granted if the request is evaluated to "Permit" for at least one privileges attribute.

The privileges and selfPrivileges defined in the accessControlPolicy resource determine which request originator is allowed to access the resource containing this attribute, for which specific operation (i.e. Create, Retrieve, Update, Delete, etc.) and for which specific context constraints (i.e. constraints regarding access time, originator's IP address and originator's location).

The access control approach specified here conforms to the concept of Attribute Based Access Control (ABAC) as defined in [i.12].

The policies defined in the <accessControlPolicy> resources are enforced by an access control mechanism which employs the authorization logical architecture outlined in clause 6.2.2.

The access control mechanism assembles the information needed to render the access decision which consists of:

j) information included in the resource access request message as defined in clause 7.1.2 (table 7.1.2‑1);
k) contextual information as defined in clause 7.1.2 (table 7.1.2-2);
l) the policies governing the access as defined in clause 7.1.3.

7.1.2
Parameters of the Request message

This clause specifies the parameters of a request message which are evaluated by the access control mechanism.
The data types applicable to these parameters are defined in clause 6.4 of oneM2M TS-0004 [4].

The parameters are listed in table 7.1.2-1.

Table 7.1.2-1: Parameters indicated in the request message

	Parameter
	Description
	Mandatory/ Optional
	Usage in access control mechanism

	to
	URI of target resource
	M
	Selection of accessControlPolicy associated with the target resource

	fr
	Identifier representing the originator of the request
	M
	Evaluated against accessControlOriginators in privileges and selfPrivileges attributes

	
	
	
	

	op
	Requested operation
	M
	Evaluated against accessControlOperations in privileges and selfPrivileges attributes

	fc
	filterUsage condition tag in Filter criteria
	O
	Differentiation between Retrieve and Discovery operations

	

Editor's Note: Access Control Rule shall be corrected on TS-0004 accordingly.
Table 7.1.2-2 lists the context parameters associated with a request message which are evaluated by the access control mechanism. These parameters are not explicitly included in a request message but can be obtained at the receiver and validated against the context policy parameters as given in table 7.1.2-2.

Table 7.1.2-2: Context parameters associated with a request message

	Parameter
	Description
	Mandatory/ Optional
	Usage in access control mechanism

	rq_time
	Time stamp when the request message was received at the hosting CSE. Obtained by the hosting CSE's system time clock.
	O
	Validated against accessControlTimeWindow parameter in an access control rule, cf. clause 7.3

	rq_loc
	Location information about the originator of the request. Obtained over the Mcn reference point.
	O
	Validated against accessControlLocationRegion parameter in an access control rule, cf. clause 7.3

	rq_ip
	IP source address associated with the IP packets that carry the request message. Obtained over the Mcn reference point.
	O
	Validated against accessControlIpAddress parameter in an access control rule, cf. clause 7.3

	rq_appID
	App-ID obtained from the <AE> resource of the Originator.
	O
	Validated against accessControllAppIds parameter in the an access control rule, cf. clause 7.3.

7.1.3
Format of privileges and selfprivileges Attributes
The privileges and selfPrivileges attributes exhibit the same data type format which is specified as follows.
Each privileges or selfPrivileges attribute comprises a set of access control rules. We denote in the following the set of access control rules as acrs and an individual access control rule in this set as acr. The access control rules in acrs are indexed with the letter k. The number of access control rules in the set is denoted with the letter K:

acrs = { acr(1), acr(2), ..., acr(k), ..., acr(K) }

Each access control rule acr(k) is comprised of three type of components, denoted accessControlOriginators, accessControlOperations and accessControlContexts. The accessControlContext component is an optional parameter.

Hence, an access control rule acr(k) is either represented as a pair:

acr(k) = {acr(k)_accessControlOriginators, acr(k)_accessControlOperations}

or as a 3-tuple:

acr(k) = {acr(k)_accessControlOriginators, acr(k)_accessControlOperations, acr(k)_accessControlContexts}
We use the generic term "access-control-rule-tuple" when referring to a rule acr(k).

A set acrs of access control rules may consist of a mix of pairs and 3-tuples. For pairs, any context parameters associated with a request message are admissible.

The three component parameters of an access-control-rule-tuple supported in the present document are shown in table 7.3.1-1.

Table 7.1.3-1: Parameters of an access-control-rule-tuple
	Parameter
	Usage Description
	Mandatory/ Optional
	Format

	accessControlOriginators
	Set of Originators that can be authorized
	M
	List of CSE-IDs and/or AE-IDs, or keyword "all" to grant access to all originators

	accessControlOperations
	Set of Operations that can be authorized
	M
	Enumerated list of operations Create Retrieve, Update, Delete, Discover, Notify

	accessControlContexts
	See table 7.3.1-2
	O
	See table 7.3.1-2

The accessControlOriginators parameter comprises a list of CSE-IDs and/or AE-IDs of any format defined in oneM2M TS‑0001 [1]. It is allowed to include the wildcard characters, e.g. "*", into the URI string of CSE-ID and AE‑ID at any level. Examples include the following: *.mym2msp.org/mycseID, /mycseID/*, mym2msp.org/mycseID, /mycseID/myAE*. If access for all originators should be allowed, the reserved keyword ‘all' can be included into the value space of accessControlOriginators. Granting access to all CSE originators of the same M2M SP domain could be represented as /*, all AE-IDs of all CSEs in the same domain as /*/*.

The data type applicable to accessControlOriginators is defined in oneM2M TS-0004 [4].

The accessControlOperations parameter comprises a list of admissible operations which can be any subset of the following elements: Create, Request, Update, Delete, Discover, Notify. While Create, Request, Update, Delete, and Notify operation are explicitly indicated in the op parameter of a request message, the Discovery operation is indicated by op = retrieve in combination with the provisioning of fc and Disrestype parameters in the request message.

The data type applicable to accessControlOperations is defined in oneM2M TS-0004 [4].

The accessControlContexts parameters are listed in table 7.1.3-2.

Table 7.1.3-2: Parameters of accessControlContexts
	Parameter
	Usage Description
	Mandatory/ Optional
	Formats

	accessControlTimeWindow
	Set of Time Windows that can be authorized
	O
	List of time intervals where access can be granted in extended crontab format

	accessControlLocationRegion
	Set of Location Regions that can be authorized
	O
	1)
Latitude/longitude coordinates, and a radius defining a circular region around the coordinates

2)
Country code

	accessControlIpAddress
	Set of IPv4 and IPv6 addresses that can be authorized
	O
	IPv4: dotted-decimal notation with CIDR suffix

IPv6: colon separated groups of hexadecimal digits with CIDR suffix

	accessControlAppID
	Set of Application IDs which can be authorized
	O
	List of valid Application-ID.

The accessControlTimeWindow parameter represents a list of elements that comply to the extended crontab syntax as defined in clause 7.3.8 of oneM2M TS-0004 [4]. It allows definition of periodically recurring time intervals at which access shall be granted, when the rq_time parameter associated with the access request message falls into such interval.
For the elements of accessControlLocationRegion there are two representation choices. These can be represented by a 2-character country code or a circle with radius R centred at a point defined in terms of longitude and latitude parameters. Refer to Annex F for detailed information. Each element of accessControlLocationRegion defines an admissible location region, which is compared with the rq_loc parameter associated with the access request message.
The data types applicable to accessControlLocationRegion and rq_loc are defined in oneM2M TS-0004 [4].

The accessControlIpAddress parameter represents a list of IPv4 and IPv6 addresses in dotted-decimal notation with CIDR suffix or colon separated groups of hexadecimal digits with CIDR suffix, respectively. If the rq_loc parameter associated with the access request message matches one of these addresses, access max be granted with regard to this criterion.

The data types applicable toaccessControlIpAddress and rq_ip are defined in oneM2M TS-0004 [4].

7.1.4
Access Control Decision

The access decision is derived by comparing the parameters associated with a resource access request message as described in clause 7.1.2 with the access control rules included in the privileges or selfPrivileges attributes of all ACP sets assigned to the protected resource by means of the accessControlPolicyIDs, see figure 7.1.1-1.
The result of the access control algorithm, i.e. the access decision, is the overall result of evaluating the applicable set of access control rules, acrs, against the parameters associated with the access request message. This access decision can be represented by a value of binary data type. The overall result of the access decision algorithm is denoted here with the variable name res_acrs:

[image: image3.wmf]î

í

ì

=

else

0

or

FALSE

rules

control

access

 the

matches

request

 the

if

1

or

TRUE

res_acrs

The access control algorithm is specified in clause 7.1.5.

If the access control algorithm yields the result res_acrs = TRUE, the access decision for the requested resource is "Permit".

If the result is res_acrs = FALSE, or the access control algorithm is not capable to derive a final result (e.g. due to indeterminate parameters), the access decision for the requested resource is "Deny".

Access decisions that result in indeterminate access control rules should be logged for diagnostics purposes.

7.1.5
Description of the Access Decision Algorithm

The access control algorithm specified in this clause combines partial access control results obtained for each of the individual access control rules contained in a privileges or selfPrivileges attribute. Further, if multiple ACP instances are assigned to the protected resource, the access control algorithm combines the partial access control results obtained for the individual ACPs of an ACP set.

The algorithm specified in this clause adopts a "Permit-overrides" combining algorithm with respect to access control rules and ACPs as defined in XACML [i.5]. This algorithm has the following behaviour:

If a decision is "Permit" for only a single access control rule included in the privileges (or selfPrivileges) attribute of a single ACP, the result is "Permit".
Otherwise, the result is "Deny".

The logic for evaluating a request against a privilege can be described mathematically as follows. A privileges or selfPrivileges attribute included in an <accessControlPolicy> resource represents a set of access control rules, acrs, which is built as in figure 7.1.5-1.

[image: image7.png]
[image: image4]
Figure 7.1.5-1 Logic to evaluate privileges
The parameters associated with a request, which are evaluated against the parameters contained in the access control rules are specified in clause 7.1.3.

The access decision res_acrs defined in clause 7.1.4 is derived by evaluating whether or not the parameters associated with the request message listed in tables 7.1.2-1 and 7.1.2-2 match any of the access control rules contained in the access control rule set defined in clause 7.1.3 as follows:

res_acrs = res_acr(1) OR res_acr(2) ... OR res_acr(k) … OR res_acr(K),

where res_acr(k) represents the logical evaluation result (i.e. TRUE/FALSE or 1/0) of the request parameters against the kth access control rule in the set acrs, which can be expressed as follows:

res_acr(k) = res_origs(k) AND res_ops(k) AND res_ctxts(k), k = 1…K.

The 3 partial logical result variables on the right side of above equation can be defined by using the following set function:

[image: image5.wmf]î

í

ì

Î

=

else

0

or

FALSE

setX

if

1

or

TRUE

setX)

,

ismember(

x

x

With this definition:

res_origs(k) = ismember(rq_orig, acr(k)_accessControlOriginators)

res_ops(k) = ismember(rq_op, acr(k)_ accessControlOperations)

The third partial logical result res_ctxts(k) is derived as follows

res_ctxts(k) = res_context(k, 1) ... OR res_context(k, m) ... OR res_context (k, M_k),

where:

res_context(k, m) = res_time(k, m) AND res_ip(k, m) AND res_loc (k, m) AND res_appid(k, m),
 k = 1…K, m = 1…M_k
and

res_time(k, m) = ismember(rq_time, acr(k)_accessControlTimeWindow(m))

res_ip(k, m) = ismember(rq_ip, acr(k)_accessControlIpAddress(m))

res_loc (k, m) = ismember(rq_loc, acr(k)_accessControlLocationRegion(m))

res_appid(k, m) = inmember(rq_appid, acr(k)_accessControlAppId(m))
Thanks to the "Permit-overrides" combining approach, if the access control decision for one access control rule results in res_acr = TRUE, the access control algorithm can stop without evaluating any other applicable access control rules of the current ACP or any other ACPs in the ACP set, and the final access decision is "Permit".

7.2
AE Impersonation Prevention

Since several AEs can behave maliciously and pretend to be another AE with their ID changed, the Hosting CSE needs prevention mechanism for AE impersonation. This mechanism works at Registrar CSE since Registrar CSE is an entry point of M2M system.
When the Registrar CSE receives a request,the Registrar CSE shall perform the following procedure.

[image: image6.emf]RegistrarCSE AE

1. Request

3. Response (Impersonation Error)

2. Is Fromparameter the

same as requester ID

associated in security

association?

YES

4. Normal Resource Processing

0. Security Association Establishment

NO

Figure 7.2-1: AE impersonation checking procedure
 0.
Security association establishment is performed.

1.
The AE sends a request to Hosting CSE via ist Registrar CSE (Hosting CSE is not represented on this figure and can either be the Registrar CSE or another CSE).

2.
The Registrar CSE checks if the value in the From parameter is the same as the ID associated in security association.

3.
If the value is not the same, the Registrar CSE sends a response with an impersonation error response code.

4.
The Registrar CSE performs procedures specified in clause 8.2 of oneM2M TS-0001 [1]. Depending on the number of Transit CSEs, the Registrar CSE either processes the request or forwards it to the Hosting CSE or to another Transit CSE.
-----------------------End of change 2---

CHECK LIST

· Does this change request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Have any mirror crs been posted?
· Does this change request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable?
· Does this change request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
Resource_2

...

ACP_1

ACP_2

ACP_3

ACP_4

Instances of

accessControlPolicy

resources (ACP)

Example:

ACP set = (ACP_1, ACP_2)

assigned to Resource_1

Each ACP includes one privileges and one selfPrivileges attribute.

privileges and selfPrivileges attributes include a set of access control rules (defined in Section 7.3)

List of IDs in accessControlPolicyIDs

attribute of Resource_1

Resource_1

Resource_3

Resource_N

Set of context constraints consisting of the 3 elements:

{accessControlTimeWindow(k, m), accessControlLocationRegion(k,m), accessControlIpAddress(k, m),

accessControlAppId(k, m)}

 acrs = { acr(1), acr(2), ..., acr(k), ..., acr(K) }

acr(k) = {acr(k)_accessControlOriginators, acr(k)_accessControlOperations, acr(k)_accessControlContexts}

Set of originator parameters. Examples:

{CSE-ID1, AE-ID1, AE-ID2}

{all}

Set of allowed operations. Examples:

{Create, Retrieve, Update, Delete, Discover, Notify}

{Retrieve, Discover, Notify}

Set of time windows defined by start and end time

Example:

{daily 04:30 – 06:00, 11:30 – 12:30, 22:15 – 00:30}

Set of location regions defined by list of objects representing geographical regions

Example:

{geoRegion1, geoRegion2, geoRegion3}

Set of IP addresses or address blocks

Example (IPv4):

{212.75.201.105, 88.77.0.0/16, 116.27.123.0/24}

Set (list) of M_k context constraints (number of elements M_k can be different for each acr(k)):

{acr(k)_accessControlContext(k, 1), …

 …, acr(k)_accessControlContext(k, m), …

 …, acr(k)_accessControlContext(k, M_k)}

© 2016 oneM2M Partners
 Page 1 (of 1)

