	Doc# ARC-2016-0011-CR_to_TS-0001_on_introducing_action_resource_-_(was_operation).doc
Change Request
	[image: image4.png]

	CHANGE REQUEST

	Meeting:*
	MAS 20.3
(for discussion)

	Source:*
	NEC, Qualcomm Inc. (TIA) ?, FUJITSU ?, LG Electronics ?, Sierra Wireless ?, Huawei ?, Alcatel-Lucent ?, Gemalto ?

	Date:*
	2015-12-XX

	Contact:*
	Joerg Swetina (NEC) joerg.swetina@neclab.eu
Martin Bauer (NEC) martin.bauer@neclab.eu

	Reason for Change/s:*
	Introducing an <action> Template for communication between two entities, an “acting entity” (an AE) – in particular an IPE – and a “peer entity” (e.g. an AE or a CSE).

	CR against: Release*
	Release-2

	CR against: WI*
	 FORMCHECKBOX
 Active WI-0025 (Generic Interworking)
 FORMCHECKBOX
 MNT Maintenance / < Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>

Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0001-V2.5.0

	Clauses/Sub Clauses*
	9.6

	Type of change: *
	 FORMCHECKBOX
 Editorial change

 FORMCHECKBOX
 Bug Fix or Correction

 Change to existing feature or functionality

 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR is a mirror CR? YES FORMCHECKBOX
 NO FORMCHECKBOX
 if YES, please indicate the document number of the original CR:

	Template Version:23 February 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR

Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.

All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction

This CR is submitted to MAS 20.3 to receive initial comments, but is intended to finally be submitted to ARC.21.
It is considered part of the normative work on Generic Interworking.

At TP#20, the concept of <flexContainer> types has been agreed in ARC-2015-2248R05-Custom_Container.

Based on the approach for <flexContainer> this contribution proposes a resource type <action>, that is similar to <flexContainer> but in contrast to that general type the new type <action> requires functionality by the oneM2M system.
Note that in earlier contributions (e.g. ARC-2015-2184R04-Modelling_operations…) <action> had been called “operation”

A resource of type <action> can be used whenever a communication between two entities, an “acting entity” (an AE) and a “peer entity” (e.g. an AE or a CSE), occurs via a CSE that relays the data of that communication.

It is assumed that resources within the acting entity cannot be accessed through CRUDN operations, however the acting entity uses <action> resources as child resources of its <AE> resource for data exchange.

An <action> contains the data that are received by the acting entity from a peer entity (input data) and/or are sent by the acting entity (output data). As for a <flexContainer>, input- and output data of a <action> are contained as set of [customAttribute]s of the action. The names and data types of input- and output data contained in [customAttribute]s are specific to the acting entity, however, different to <flexContainer>, an <action> additionally contains the standardized attribute: actionState.

For each set of input data a new <action> resource is created by a peer entity. The acting entity gets notified about the creation and then then updates the <action> resource with the result (output data) of the action.
Depending on its capabilities the acting entity may be able to process a single or multiple actions at the same time. It can control the creation of new <action> resources by setting the Response Status Code when it gets notified about the creation of the resource. Depending on that value (“successful” or “unsuccessful”) the Hosting CSE will allow/disallow creation of the new resource.
Depending on behavior of the acting entity, if a new <action> is created which is of the same type (same specialization) as another <action> that is currently processed the acting entity could e.g.

(1) Process both actions in parallel,

(2) Abort the first action (set its actionState to “action failed”)
(3) Queue the second action until the first has finished

(4) …

A resource of type <action> always belongs to its “acting entity” and is therefore modelled a child resource of the resource representing the “acting entity”.
E.g. the <action> specialization [getAvailableTvChannels] would be a child resource of the <AE> resource that represents the TV set application.
-----------------------Start of change 1---
9.6.1.1
Resource Type Summary

Table 9.6.1.1-1 introduces the normal and virtual resource types and their related child or parent resource types. Details of each resource type follow in the remainder of this clause.

Table 9.6.1.1-1 lists each specified <resourceType>. An addition of suffix "Annc" to such <resourceTypes> indicates the associated announced resource type.
Among the resource types listed in Table 9.6.1.1-1, the following are termed “Content Sharing Resources” in oneM2M Specifications for the purpose of referring to any of those resource types:

· container

· contentInstance
· flexContainer

Table 9.6.1.1-1 Resource Types

	Resource Type
	Short Description
	Child Resource Types
	Parent Resource Types
	Clause

	accessControlPolicy
	Stores a representation of privileges. It is associated with resources that shall be accessible to entities external to the Hosting CSE. It controls "who" is allowed to do "what" and the context in which it can be used for accessing resources
	subscription
	AE, AEAnnc, remoteCSE, remoteCSEAnnc, CSEBase
	9.6.2

	AE
	Stores information about the AE. It is created as a result of successful registration of an AE with the Registrar CSE
	subscription, container, group, accessControlPolicy,
schedule, pollingChannel，semanticDescriptor, action
	remoteCSE, remoteCSEAnnc, CSEBase
	9.6.5

	container
	Shares data instances among entities. Used as a mediator that buffers data exchanged between AEs and/or CSEs. The exchange of data between AEs (e.g. an AE on a Node in a field domain and the peer-AE on the infrastructure domain) is abstracted from the need to set up direct connections and allows for scenarios where both entities in the exchange do not have the same reachability schedule
	container,
flexContainer, contentInstance, subscription, latest, oldest，semanticDescriptor
	AE, AEAnnc, container, containerAnnc, remoteCSE, remoteCESAnnc, CSEBase,

flexContainer, flexContainerAnnc
	9.6.6

	contentInstance
	Represents a data instance in the <container> resource
	semanticDescriptor
	Container, containerAnnc
	9.6.7

	flexContainer
	A template which allows to define specialized (customizable) versions of containers with a flexible and lightweight structure
	container,

flexContainer, subscription, semanticDescriptor,
	AE, AEAnnc, container, containerAnnc,

flexContainer, flexContainerAnnc, remoteCSE, remoteCESAnnc, CSEBase, action
	9.6.35

	action
	An action is used for exchange of correlated sets of data (input- and output parameters) of an AE.
An action and its set of input-and output parameters depends on the type of the AE
An action has a actionState.
(NOTE1)
	container, flexContainer, subscription, semanticDescriptor
	AE, AEAnnc, remoteCSE, remoteCESAnnc, CSEBase,
	???

	NOTE 1: The resource type action extends flexContainer with additional, standardized attributes.

	CSEBase
	The structural root for all the resources that are residing on a CSE. Stores information about the CSE itself
	remoteCSE, remoteCSEAnnc, node, AE, container, group, accessControlPolicy, subscription,, mgmtCmd, locationPolicy, statsConfig, statsCollect, request, delivery,

schedule,

notificationTargetPolicy,

flexContainer,
action
	None specified
	9.6.3

	delivery
	Forwards requests from CSE to CSE
	subscription
	CSEBase
	9.6.11

	eventConfig
	Defines events that trigger statistics collection
	subscription
	statsConfig
	9.6.24

	execInstance
	Contains all execution instances of the same Management Command
	subscription
	mgmtCmd
	9.6.17

	fanOutPoint (V)
	Virtual resource containing target for group request

It is used for addressing bulk operations to all the resources that belong to a group
	None specified
	group
	9.6.14

	group
	Stores information about resources of the same type that need to be addressed as a Group. Operations addressed to a Group resource shall be executed in a bulk mode for all members belonging to the Group
	fanOutPoint,

subscription
	AE, AEAnnc, remoteCSE, remoteCSEAnnc, CSEBase
	9.6.13

	latest (V)
	Virtual resource that points to most recently created <contentInstance> child resource within a <container> resource
	None specified
	container
	9.6.27

	locationPolicy
	Includes information to obtain and manage geographical location. It is only referenced within a container, the contentInstances of the container provide location information
	subscription
	CSEBase
	9.6.10

	mgmtCmd
	Management Command resource represents a method to execute management procedures required by existing management protocols
	execInstance,

subscription
	CSEBase
	9.6.16

	mgmtObj
	Management Object resource represents management functions that provides an abstraction to be mapped to external management technology. It represents the node and the software installed in the node (see note)
	subscription, mgmtObj, schedule
	node, mgmtObj, mgmtObjAnnc
	9.6.15

Annex D

	m2mServiceSubscriptionProfile
	Data pertaining to the M2M Service Subscription
	serviceSubscribedNode,

subscription
	CSEBase
	9.6.19

	node
	Represents specific Node information
	mgmtObj,

subscription
	CSEBase, remoteCSE
	9.6.18

	notificationTargetMgtPolicyRefs
	Represents a list of notification targets and the deletion policy
	subscription
	subscription
	9.6.31

	notificationTargetPolicy
	Represents a notification target deletion policy with pre-defined action and deletion rules
	subscription, policyDeletionRules
	CSEBase
	9.6.32

	notificationTargetSelfReference (V)
	Virtual resource used to remove the Notification Target
	None specified
	subscription
	9.6.34

	oldest (V)
	Virtual resource that points to first created <contentInstance> child resource within a <container> resource
	None specified
	container
	9.6.28

	pollingChannel
	Represent a channel that can be used for a request-unreachable entity
	pollingChannelURI
	remoteCSE, AE
	9.6.21

	pollingChannelURI (V)
	Virtual resource used to perform service layer long polling of a resource Hosting CSE by a request-unreachable entity
	None specified
	pollingChannel
	9.6.22

	policyDeletionRules
	Represents a set of rules which is associated with notification target removal policy
	subscription
	notificationTargetPolicy
	9.6.33

	remoteCSE
	Represents a remote CSE for which there has been a registration procedure with the registrar CSE identified by the CSEBase resource
	AE, container, group, accessControlPolicy, subscription, pollingChannel, schedule, node
	CSEBase
	9.6.4

	request
	Expresses/access context of an issued Request
	subscription
	CSEBase
	9.6.12

	schedule
	Contains scheduling information for delivery of messages
	subscription
	subscription, CSEBase, remoteCSE,AE
	9.6.9

	serviceSubscribedNode
	Node information
	subscription
	m2mServiceSubscriptionProfile
	9.6.20

	statsCollect
	Defines triggers for the IN-CSE to collect statistics for applications
	subscription
	CSEBase (in IN-CSE)
	9.6.25

	statsConfig
	Stores configuration of statistics for applications
	eventConfig,

subscription
	CSEBase (in IN-CSE)
	9.6.23

	subscription
	Subscription resource represents the subscription information related to a resource. Such a resource shall be a child resource for the subscribe-to resource
	schedule, notificationTargetSelfReference, notificationTargetMgtPolicyRefs
	accessControlPolicy,accessControlPolicyAnnc, AE, AEAnnc, container, CSEBase, delivery, eventConfig, execInstance, group, groupAcce, locationPolicy, mgmtCmd, mgmtObj, mgmtObjAnnc, m2mServiceSubscriptionProfile, node, nodeAnnc, serviceSubscribedNode, remoteCSE, remoteCSEAnnc, request, schedule, statsCollect, statsConfig,

flexContainer, flexContainerAnnc
	9.6.8

	serviceSubscribedAppRule
	Represents a rule that defines allowed App-ID and AE-ID combinations that are acceptable for registering an AE on a Registrar CSE
	subscription
	CSEBase
	9.6.29

	semanticDescriptor
	Stores semantic description pertaining to a resource and potentially sub-resources.
	subscription
	AE, container, contentInstance
	9.6.30

	NOTE:
See clause 9.6.12 for a summary of specializations of <mgmtObj>.

-----------------------End of change 1---

-----------------------Start of change 2---

9.6.x Resource Type action
A resource of type <action> can be used whenever a communication between two entities, an “acting entity” (an AE) and a “peer entity” (e.g. an AE or a CSE), occurs via a CSE that relays the data of that communication.

It is assumed that resources within the acting entity cannot be accessed through CRUDN operations however the acting entity can be notified when a peer entity creates <action> resources as child resources of the acting entity’s <AE> resource for data exchange.
Note: Resource Type <action> extends the capabilities of a <flexContainer>. For the purpose of simply relaying data of a communication between the acting entity and the peer entity it can be sufficient to use a <container> resource or a <flexContainer> resource.
The <action> resource extends the functionality of a <flexContainer> in providing a standardized attribute actionState which additionally allows the acting entity to provide additional proprietary state information.
A <action> contains the data that are received by the acting entity (input data) and/or are sent by the acting entity (output data). Input- and output data of a <action> are contained as set of [customAttribute]s of the action.
The names and data types of input- and output data contained in [customAttribute]s are specific to the acting entity.

The <action> resource contains the mandatory standardized attribute: actionState
· The actionState attribute is used to describe how the communication between acing entity and other entities (peer entity) has proceeded. Only the actionState “action ended” guarantees the correct correlation of input- and output data.

Note: The resource type <action> can be considered as an extension of the resource type <flexContainer> with the additional standardized attribute actionState.

[image: image1.emf]<subscription>

0..n

<container>

0..n

<action>

0..1

creator

0..1

ontologyRef

<semanticDescriptor>

0..n

1

actionState

1

actionDefinition

<flexContainer>

0..n

0..1

execEnable

0..n

[customAttribute]

Figure 9.6.x-1: Structure of the <action> resource

The <action> resource shall contain the child resource specified in table 9.6.x-1.

Table 9.6.x-1: Child resources of <action> resource

	Child Resources of <action>
	Child Resource Type
	Multiplicity
	Description
	<actionAnnc> Child Resource Type

	semanticDescriptor
	<semanticDescriptor>
	0..n
	See clause 9.6.30
	<semanticDescriptor>, <semanticDescriptorAnnc>

	[variable]
	<subscription>
	0..n
	See clause 9.6.8
	<subscription>

	[variable]
	<container>
	0..n
	See clause 9.6.6
	<container>

<containerAnnc>

	[variable]
	<flexContainer>
	0..n
	See clause 9.6.35
	<flexContainer>

<flexContainerAnnc>

	
	
	
	
	

The <flexContainer> resource shall contain the attributes specified in table 9.6.x-2.

Table 9.6.x-2: Attributes of the <action> resource
	Attributes of
<flexContainer>
	Multiplicity
	RW/

RO/

WO
	Description
	<actionAnnc> Attributes

	resourceType
	1
	RO
	See clause 9.6.1.3
	NA

	resourceID
	1
	RO
	See clause 9.6.1.3
	NA

	resourceName
	1
	WO
	See clause 9.6.1.3
	NA

	parentID
	1
	RO
	See clause 9.6.1.3
	NA

	expirationTime
	0..1 (NOTE1)
	RW
	See clause 9.6.1.3
	MA

	accessControlPolicyIDs
	0..1 (L)
	RW
	See clause 9.6.1.3
	MA

	labels
	0..1 (L)
	RW
	See clause 9.6.1.3
	MA

	creationTime
	0..1
(NOTE 1)
	RO
	See clause 9.6.1.3
	NA

	lastModifiedTime
	0..1
(NOTE 1)
	RO
	See clause 9.6.1.3
	NA

	stateTag
	1
	RO
	See clause 9.6.1.3
	OA

	announceTo
	0..1 (L)
	RW
	See clause 9.6.1.3
	NA

	announcedAttribute
	0..1 (L)
	RW
	See clause 9.6.1.3
	NA

	creator
	0..1
	RO
	The AE-ID or CSE-ID of the entity which created the resource.
	NA

	ontologyRef
	0..1
	RW
	A reference (URI) of the ontology used to represent the information that is stored in the present <action> resource
	OA

	[customAttribute]
	0..n
	RW
	Specialization-specific attribute(s). Name and data type defined in each specialization of <action> resource.
	OA

	actionDefinition
	1
	WO
	This contains a reference (URN) to the definition which shall be used by the CSE to statically validate the syntax of the validate the syntax of the <action> resource. This URN shall refer to one of the following:

· URN within the oneM2M System (http://www.onem2m.org/ontology/) of an ontology that is supported through the generic interworking feature

Other URN may be specified
	MA

	actionState
	1
	RW
	Contains the State of the action. The following values are specified in oneM2M:

· “action ended”
This state indicates that the acting entity has successfully finished the last action and that
(a) the acting entity has created its last output data or
(b) the acting entity has set this state to indicate that it has successfully concluded its task..

· “action failed”
This state indicates that the acting entity has not successfully finished the action and that
(a) the acting entity has optionally indicated an internal error
or (b) after an actionState “action started” or a proprietary value for actionState had not changed for a pre-defined time.

· “action started”
This state indicates that the acting entity has successfully received notification about the new input but has not yet provided output data.

· The acting entity of a action may set additional, proprietary values for actionState.
	MA

	execEnable
	0..1
	RW
	Updating this attribute is used to notify the acting entity (a) in case the <action> contains no [customAttribute]s that are input data or (b) if the <action> contains [customAttribute]s that are input data but these data are unchanged.
	MA

-----------------------End of change 2---

-----------------------Start of change 3---
10.2.x
<action> Resource Procedures

10.2.x.1
Introduction to usage of <action> resource type
A <action> resource can be created by a peer entity or by the acting entity (an AE) as a child resource of the acting entity’s <AE> resource to support communication between the acting entity and a peer entity (e.g. an AE or a CSE).
Once an <action> resource has been created by a peer entity (countaining the input data) it can only be updated by the acting resource with output data.
When the <action> resource is created by a peer entity:

In this case the acting entity is requested by the peer entity to perform some task. The peer entity may provide the <action> resource with values for [customAttribute]s which are input data for this task.
When the acting entity has finished its task the the acting entity may in turn provide the <action> resource with values for [customAttribute]s which are output data.
When the peer entity creates an <action> resource (under the <AE> resource of the acting entity) the hosting CSE shall NOTIFY the acting entity AE about the resource creation.
The Response by the acting entity AE to the Notification Request shall contain the value of the Response Status Code:
· “successful” when the acting entity is ready to perform the task that is specified by the <action>.
· “unsuccessful” when the acting entity cannot perform the task that is specified by the <action>
(e.g. when it is performing a different task and cannot perform the requested task in parallel).
After having finished its task the acting entity shall UPDATE the <action> resource with values for [customAttribute]s which are output data.
If, during this UPDATE, the acting entity sets the actionState attribute of the the <action> to a proprietary value then the acting entity may provide further UPDATEs to the <action> resource (thus overwriting the output data with new values) until it sets the actionState to “action finished”.
A peer entity may subscribe to and get notified about changes of the <action> resource. When the acting entity UPDATEs the <action> with output data the CSE NOTIFYes the peer entity about the changes.

Particular cases:

· input data are different from output data (e.g. input data A and B are sent to the acting entity and output data X, Y and Z are returned).
This is a typical situation when the <action> is used to create the RESTful equivalent to a procedure call, e.g. when the acting entity is an Interworking Proxy Application Entity (IPE) towards a device that offers procedure calls.

· input data are overlapping with output data (e.g. the acting entity receives input data X and also produces output data X)
This typically happens when a <action> is used to query data from the acting entity. In this case the input data are only used to identify the data that should be returned by the acting entity (in this case the acting entity can ignore the value of such input data).

· no input data of the <action> exist, nor does it have output data.
This case typically happens when the peer entity wants to trigger an action in the acting entity and that action that does not require any parameters (e.g. “reboot” for some device or “toggle” for a light switch).
Note: in this case the creation of the <action> (that contains no [customAttribute]) is sufficient to notify the acting entity.
Editor’s Note: Do we need “ExecEnable” (like with <mgmtCmd>)at all ??
· output data may contain proprietary values of the attribute actionState - potentially in addition to values to other [customAttribute]s of the <action> that are output data. A proprietary actionState can be used by the acting entity to indicate that task that is specified by the <action> has not finished.
This case typically happens when the acting entity does not produce output data but wants to indicate that it has not yet finished its task (e.g. “ramp-up” for a dimmer).
Another case where an acting entity should UPDATE the actionState attribute with proprietary values is to indicate that it will produce further output data by UPDATEing the <action>.
The meaning of specific values of the actionState attribute is described in section 9.6.x-2.
The following transitions of the actionState are defined:

[image: image2.emf]started

CSE

(after acting entity

UPDATEdaction output

data but not actionState)

actionState (<action> created by peer entity)

CSE

(after peer entity

successfully CREATEs

action)

acting entity

(UPDATEing action

including proprietary

actionStatevalues)

responsible entity

(condition)

… optional state change

… mandatory state change

Legend:

action

State

action

State

action

State

action

State

responsible entity

(condition)

ended

proprietary

actionState

acting entity

(at last UPDATE of

action output data)

failed

acting entity

(after internal error)

acting entity

(UPDATEing action

including proprietary

actionStatevalues)

acting entity

(at last UPDATE of

action output data)

acting entity

(after internal error)

CSE

(after timeout)

CSE

(after timeout)

actionState transition diagram when the <action> resource is created by a peer entity
When the <action> resource is created by the acting entity:

Typically this is the case when the acting entity reacts on some external event and publishes related output data.

In case a peer entity wants to receive output data of such actions it needs to be subscribed to changes of the <AE> of the acting entity.

The acting entity can CREATE a new <action> resource whenever it provides a new set of output data.

Alternatively, the acting entity can, when CREATEing a new <action> resource, set the actionState attribute of the the <action> to a proprietary value. Then the acting entity may provide further UPDATEs to the same <action> resource until it sets the actionState to “action finished”.
In this case an interested peer entity needs to subscribe also to changes of that <action> resource.
The following transitions of the actionState are defined:

[image: image3.emf]actionState (<action> created by acting entity)

responsible entity

(condition)

… optional state change

… mandatory state change

Legend:

action

State

action

State

action

State

action

State

responsible entity

(condition)

ended

proprietary

actionState

acting entity

(after last UPDATE

of action)

acting entity

(after internal error)

failed

CSE

(after acting entity

CREATEdaction but did

not set actionState)

acting entity

(CREATEingaction

including proprietary

actionStatevalues)

acting entity

(UPDATEing action

including proprietary

actionStatevalues)

CSE

(after timeout)

actionState transition diagram when the <action> resource is created by an acting entity
10.2.x.2
Create <action>
This procedure shall be used for creating a <action> resource.
An <action> shall be CREATEd as child resource of the acting entity’s <AE> resource.
An <action> can be CREATEd by the acting entity or a peer entity.
Table 10.2.x.2-1: <action> CREATE
	<action> CREATE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	According to clause 10.1.1.1

	Processing at Originator before sending Request
	According to clause 10.1.1.1

	Processing at Receiver
	According to clause 10.1.1.1 with the following specific processing:
If the Originator is different to the acting entity’s AE (i.e. the AE of the parent <AE> resource) then the Receiver shall NOTIFY the acting entity’s AE about the creation of the <action>.
Depending on the Response by the acting entity:
· If the Response by the acting entity AE to the Notification Request contains the Response Status Code “unsuccessful” the Receiver shall not create the <action> resource [??? or immediately delete the just created resource ???] and return an error to the Originator
· If the Response by the acting entity AE to the Notification Request contains the Response Status Code “successful” the Receiver shall create the <action> resource and shall set
· the creator attribute to the ID of the Originator
· the actionState attribute of the <action> resource to “action started”

If the Originator is the acting entity’s AE then the Receiver shall create the <action> resource and
· shall set the creator attribute to the ID of the Originator (i.e. the acting entity’s AE)
· If the Originator had not set the actionState attribute of the <action> resource to a proprietary value the Receiver shall set the actionState attribute to “action started”

	Information in Response message
	All parameters defined in table 8.1.3-1 apply with the specific details for:
if successful the Response shall contain the Content: Address of the created <action> resource, according to clause 10.1.1.1

	Processing at Originator after receiving Response
	According to clause 10.1.1.1 with the following specific processing:

The Originator shall subscribe to the action on any event that updates its attributes.

	Exceptions
	According to clause 10.1.1.1

10.2.x.3
Retrieve <action>
This procedure shall be used for retrieving the attributes of a <action> resource.

Table 10.2.x.3-1: <action> RETRIEVE
	<action> RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	All parameters defined in table 8.1.2-2 apply with the specific details for:

Content: void

	Processing at Originator before sending Request
	According to clause 10.1.2

	Processing at Receiver
	According to clause 10.1.2

	Information in Response message
	All parameters defined in table 8.1.3-1 apply with the specific details for:

Content: attributes of the <action> resource as defined in clause 9.6.6

	Processing at Originator after receiving Response
	According to clause 10.1.2

	Exceptions
	According to clause 10.1.2

10.2.x.4
Update <action>
This procedure shall be used for updating the attributes and the actual data of a <action> resource.
An <action> shall only be updated by the acting entity.
Table 10.2.x.4-1: <action> UPDATE
	<action> UPDATE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message

	All parameters defined in table 8.1.2-2 apply with the specific details for:

Content: attributes of the <action> resource as defined in clause 9.6.6 which need be updated

	Processing at Originator before sending Request
	According to clause 10.1.3 with the following specific processing:
When the Originator is the acting entity and if the current actionState is a proprietary actionState the Originator should set the value of the actionState attribute of the Request to

· “action failed” if an error had occurred in the processing of the action
or to
· “action ended” if it is the last UPDATE of a action.

	Processing at Receiver
	According to clause 10.1.3 with the following specific processing:
The Receiver shall reject an UPDATE Request if the Originator is not the acting entity..
Before updating the <action> resource with the attributes contained in the Content of the Request message the Receiver shall check the current actionState.attribute of the <action> resource.
The Receiver shall reject an UPDATE Request if the the value of the actionState attribute is not “action started” or a proprietary actionState value.
· If the Request Content does not contain the attribute actionState with a proprietary actionState value then the Receiver shall set the actionState to “action ended”

· if the Request Content contains the attribute actionState then the Receiver shall set the actionState to the value given by the Request

Note: In a proprietary actionState the acting entity can UPDATE a action, setting (a) a new proprietary value of the actionState or (b) the actionState to “action failed” if an error occurred or (c) the actionState to “action ended” if it is the last UPDATE of an action

	Information in Response message
	According to clause 10.1.3

	Processing at Originator after receiving Response
	According to clause 10.1.3

	Exceptions
	According to clause 10.1.3

10.2.x.5
Delete <action>
This procedure shall be used for deleting a <action> resource.
It is the responsibility of the acting entity AE to delete after some time those <action> resources that are in state “action ended” or “action failed”.
Table 10.2.x.5-1: <action> DELETE
	<action> DELETE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	All parameters defined in table 8.1.2-2 apply

	Processing at Originator before sending Request
	According to clause 10.1.4.1

	Processing at Receiver
	According to clause 10.1.4.1 with the following specific processing:
If the Originator is not the “acting entity” and is different to the content of the creator attribute of the <action> resource then the Receiver shall reject the Request.

	Information in Response message
	According to clause 10.1.4.1

	Processing at Originator after receiving Response
	According to clause 10.1.4.1

	Exceptions
	According to clause 10.1.4.1

-----------------------End of change 3---

© 2016 oneM2M Partners
 Page 1 (of 19)

[image: image4.png]_1513791034.ppt

actionState (<action> created by acting entity)

ended

proprietary

actionState

acting entity

(after last UPDATE of action)

acting entity

(after internal error)

failed

CSE

(after acting entity CREATEd action but did

not set actionState)

acting entity

(CREATEing action including proprietary actionState values)

acting entity

(UPDATEing action including proprietary actionState values)

CSE

(after timeout)

responsible entity

(condition)

… optional state change

… mandatory state change

Legend:

action

State

action

State

action

State

action

State

responsible entity

(condition)

<subscription>
0..n
<container>
0..n
<action>
0..1
creator
0..1
ontologyRef
<semanticDescriptor>
0..n
1
actionState
1
actionDefinition
<flexContainer>
0..n
0..1
execEnable
0..n
[customAttribute]

started

CSE
(after acting entity UPDATEd action output data but not actionState)

actionState (<action> created by peer entity)

CSE
(after peer entity successfully CREATEs action)

acting entity
(UPDATEing action including proprietary actionState values)

responsible entity
(condition)

… optional state change
… mandatory state change

Legend:

action
State

action
State

action
State

action
State

responsible entity
(condition)

ended

proprietary
actionState

acting entity
(at last UPDATE of action output data)

failed

acting entity
(after internal error)

acting entity
(UPDATEing action including proprietary actionState values)

acting entity
(at last UPDATE of action output data)

acting entity
(after internal error)

CSE
(after timeout)

CSE
(after timeout)

actionState [<actions> created by peer entity)

