	Doc# ARC-2016-0369R01-TS-0001_corrections_security_procedures.doc
Change Request
	[image: image16.png]

	
	

	CHANGE REQUEST

	Meeting:*
	ARC#24

	Source:*
	Qualcomm Inc. (TIA)

	Date:*
	2016-07-18

	Contact:*
	Wolfgang Granzow, Qualcomm, wgranzow@qti.qualcomm.com

	Reason for Change/s:*
	Corrections on security procedures and related information elements

	 CR against: Release*
	R2

	CR against: WI*
	 FORMCHECKBOX
 Active <Work Item number>

 FORMCHECKBOX
 MNT maintenace / <Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0001 V2.9.1

	Clauses/Sub Clauses*
	8.2.1, 8.2.2, 11

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 FORMCHECKBOX
 Change to existing feature or functionality
 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR is a mirror CR? YES FORMCHECKBOX
 if YES, please indicate the document number of the original CR: NO FORMCHECKBOX

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
This CR was originally intended to address an Editorial Note included in clause 11.4.3 such that it can be removed.
However, after reviewing clause 11 as a whole, it was discovered that text related to the Security Info associated with Notify request and response messages require a major revision for alignment with TS-0003 and TS-0004: At TP#23 it was agreed to define a securityInfo object which is included into the Content primitive parameter of Notify request and response messages. This obsoletes the Security info primitive parameter. It needs to be removed from TS-0004.
Figures 11.5.2-1 and 11.5.3-1 need to be updated. However, the securityInfoType element of securityInfo defined in TS-0004 does not allow differentiation between Direct and Indirect Dynamic Authorization. Datatype definition may need to be changed in TS-0004 if such differentiation is required.
R01 changes:

- Update of Figures 11.5.2-1 and 11.5.3-1

- Update of two Notes to avoid use of normative terms (i.e. “shall”)
.

It was also agreed that the securityInfoType element of the securityInfo Object shall be revised to enable differentiation between direct and indirect dynamic authorization CR to TS-0004.
R02 changes:

· changing back to original text of the notes, but converting to normative text, ie. Removing ‘Note X:’

-----------------------Start of change 1---

11
Trust Enabling Architecture

11.0
Overview

The Trust Enabling Architecture serves the purpose of establishing security and trust between all parties involved in the M2M ecosystem. It comprises the following infrastructure functions which may be external to the CSEs:

· M2M Enrolment functions (MEF), which manage the enrolment and configuration of M2M Nodes and M2M applications for access to M2M Services provided by an M2M Service Provider, prior to service operation (see clause 11.2). The credentials provisioned by a MEF can be used for Security Association Establishment Framework, End-to-End Security of Primitives or End-to-End Security of Data.
· M2M Authentication functions (MAF), which may facilitate identification and authentication of CSEs and AEs (see clause 11.3), End-to-End Security of Primitives (see clause 11.4.2) and End-to-End Security of Data (see clause 11.4.1) during M2M service operation. A single MAF may support all of the above security services or only a selection of them.

· Dynamic Authorization Systems and Role Authorities, which manage authorization privileges to access resources that may be assigned during operation (see clauses 11.3.4 and 11.5).
· Privacy Policy Managers that assist in the management of privacy preferences expressed by data subject with respect to service requirements and applicable regulations.
The above functionalities are assumed to be operated by trusted parties (generally M2M Service Providers but possibly other trusted third parties). These functions are all detailed in oneM2M TS-0003 [2].

11.1
Enrolling M2M Nodes and M2M Applications for oneM2M Services

Though M2M Nodes in the field domain are assumed to communicate without human involvement, individuals or organizations remain responsible for setting the access control policies used to authorize their M2M Nodes to access M2M services. In the following text, M2M Nodes refers to M2M field nodes.

In particular, individuals or organizations acquiring M2M Nodes can subscribe to a contract with an M2M Service provider (M2M Service Subscription) under which they enrol their M2M Nodes (e.g. using identifiers pre-provisioned on the nodes, such as Node-ID). This in turn may require an M2M Service provisioning step (including Security provisioning) that takes place on the target M2M Nodes themselves, for which interoperable procedures are specified by oneM2M (see clause 11.2.1). Following M2M service provisioning, the nodes can be identified and authenticated for association with an M2M Service Subscription, whose properties reflect the contractual agreement established between their owner and the M2M Service Provider.

Similarly, it may be possible for an M2M Service Provider to mandate that an M2M Application accessing M2M services be associated with a security credentials used to authorize specific operations to instance of that M2M Application, i.e. AEs (see clause 11.2.2). This step facilitates the deployment and management of M2M Applications that are instantiated in great numbers, as it enables all instances of an M2M Application to be managed through common security policies that are set once for all. It also enables keeping control over M2M Applications issued by untrusted sources.

The above steps may be delegated to an M2M trust enabler, when this role is not assumed by the M2M Service Provider.

11.2
M2M Initial Provisioning Procedures

11.2.1
M2M Node Enrolment and Service Provisioning

M2M service provisioning is the process by which M2M Nodes are loaded with the specific information needed to seamlessly access the M2M Services offered by an M2M Service Provider. This is an initial step performed only when an M2M Node is enrolled for using the M2M services of an M2M Service Provider. Though this process can be performed during device manufacturing, there is a need to enable this process to take place during field deployment in an interoperable way. M2M service provisioning assumes the existence of an M2M service subscription contracted with the target M2M Service Provider for the target M2M Node. Remote provisioning scenarios require the M2M Node to be mutually authenticated using pre-existing credentials (e.g. Node-ID and associated credential) with an M2M enrolment function, to securely exchange the provisioning information with the contracted M2M Service Provider. The M2M Service Provisioning takes place between an M2M Node (without provisioned CSE) and an M2M Service Provider via an M2M enrolment function. As a result of provisioning, M2M Nodes are provided with necessary credentials and possibly other M2M service related parameters (e.g. CSE-ID, M2M-Sub-ID).

The first step of M2M service provisioning is the security provisioning procedure, by which M2M service provider specific credentials are either shared between two M2M Nodes, or shared between the M2M Node in the field domain and an M2M authentication function in the infrastructure. Authenticated M2M Nodes can then be associated with an M2M Service Subscription used to determine their specific authorizations.

The following security provisioning scenarios are supported by the oneM2M architecture:

· Pre-provisioning:

Pre-provisioning includes all forms of out-of-band provisioning, e.g. provisioning M2M Nodes with M2M subscription information during the manufacturing stage.

· Remote provisioning:

Remote provisioning relies on pre-existing credentials in M2M Nodes (e.g. digital certificates or network access credentials) to provision subscription related parameters through a secure session with an M2M Enrolment Function. This form of provisioning enables M2M Nodes already in the field (e.g. operational M2M Nodes) to be provisioned with M2M Service subscription.

When supported, remote provisioning procedure shall be implemented as described in the oneM2M TS‑0003 [2].

Following M2M service provisioning, the provisioned entity securely stores credentials used for authentication , with an associated lifetime (e.g. corresponding to the duration of the contractual agreement embodied by the M2M service subscription).

11.2.2
M2M Application Enrolment

This procedure is an optional step that enables the M2M SP and/or M2M Application provider to control which M2M Applications are allowed to use the M2M services. It assumes that the M2M Application is associated of a credential used for controlling authorization to M2M services The security credential associated with the App-ID or AE-ID may be used to grant specific authorization to M2M Application instances to access an approved list of M2M services, or revoke access to all instances of undesirable M2M Applications. Such authorization shall take place between registrar CSE and AE as specified in the present document and the oneM2M TS-0003 [2].

11.3
M2M Operational Security Procedures

11.3.0
Overview

This clause introduces the high level procedures, following M2M Enrolment, that shall be performed before any other procedure on Mcc and Mca can take place. These procedures shall be implemented as specified in the oneM2M TS‑0003 [2].

NOTE:
The detailed specifications of the security procedures in oneM2M TS-0003 [2] uses different labels for the steps shown in figures 11.3.1 and 11.3.2:

· Step1: Provisioning maps to Credential Configuration;

· Step 2: Identification maps to Association Configuration;

· Step 3: Authentication maps to Association Handshake in oneM2M TS-0003 [2].

[image: image1.emf]Secure Session established

No Security Association between

 Registree CSE or AE and Registrar CSE

Registree

CSE or AE

Registrar CSE

2. Identification: Registrar

CSE-ID, (in some cases) other

non-secret security parameters

2. Identification: (in some cases) other

non-secret security parameters

3. Authentication: using credential(s) from Step 1 and

(in some cases) non-secret security parameters from Step 2.

1. Provisioning: Pre-

provisioning or remote security

provisioning of credential to

Registree CSE

1. Provisioning: Pre-provisioning or

remote security provisioning of

credential to Registrar CSE

Secure session associated w/

Registrar CSE-ID from step 1.

Security session associated w/

m2mServiceSubscriptionProfile and (if

provided to Registrar CSE) previously

assigned Registree CSE-ID or AE-ID

4. Any procedure applicable on Mcc or Mca including Authorization

Figure 11.3.0-1: High Level Procedures on Mcc or Mca without MAF

[image: image2.emf]Secure Session established

Registree

CSE or AE

MAF

Registrar

CSE/AE

2. Identification: Registrar

CSE-ID, (in some cases) other

non-secret security parameters

3. Authentication: May be facilitated by MAF, using credential(s) from Step 1 and

(in some cases) non-secret security parameters from Step 2

2. Identification: Authorize

authenticating Registree CSE or

AE on behalf of Registrar CSE

1. Provisioning: Pre-

provisioning or remote security

provisioning of credential to

Registree CSE

1. Provisioning: Pre-

provisioning or remote security

provisioning of credential to

MAF

Secure session associated w/

Registrar CSE-ID from step 1.

Security session associated w/

m2mServiceSubscriptionProfile

and (if provided

to Registrar CSE) previously assigned Registree

CSE-ID or AE-ID

4. Any procedure applicable on Mcc or Mca including Authorization

Figure 11.3.0-2: MAF assisted High Level Procedures on Mcc or Mca
11.3.1
Identification of CSE and AE
Once a CSE or AE is provisioned with its security credentials, there is no need to configure long-term secret information to the CSE or AE. However, additional non-secret information may need to be configured using the same security procedures.

Prior to a CSE or AE initiating security association establishment, the Registree CSE or AE is configured with the Registrar CSE-ID so that the Registree knows who to establish the security association with. This process is called "Association Configuration" in oneM2M TS-0003 [2].

11.3.2
Authentication and Security Association of CSE and AE

The association security handshake (see oneM2M TS-0003 [2]) provides

a) mutual authentication of CSE and AE; and

· session key derivation.

Prior to granting access to M2M services, the credentials resulting from the M2M Node and M2M application enrolment procedures shall be used, together with the information supplied in the identification step (clause 11.1), to perform mutual authentication of the Registree CSE or AE with the Registrar CSE. Upon mutual authentication:

· Registree CSE or AE associates, with the Registrar CSE, the CSE-ID supplied in the identification step (clause 11.1).

· If the Registree CSE or AE has previously registered successfully with the Registrar CSE and the Registrar CSE has retained the applicable M2M service subscription and CSE-ID or AE-ID, then the Registrar CSE can use this information.

· In other cases, the Registrar CSE determines the applicable M2M service subscription and CSE-ID or AE-ID as described in clause 10.1.1.2 in the present document.

The Registree receives authorization to access the M2M services defined in the <m2mServiceSubscription> resources by checking privileges defined in <accessControlPolicy>, <token> or <role> resources.
NOTE:
The authorization procedure to access the M2M services is further described in clause 11.3.4 and specified in detail in clause 7 of oneM2M TS-0003 [2].
Session keys are then derived for providing desired security services to the communicating entities, such as confidentiality and/or integrity of information exchange (these security services may be provided through establishment of a secure channel between the communicating entities or through object based security where only relevant information is encrypted prior to being shared). The lifetime of a security association shall be shorter than the lifetime of the credential used for authentication from which it is derived: It may be valid for the duration of a communication session, or be determined according to the validity period of the protected data. In case of a security association between two AEs, the lifetime of the security association can result from a contractual agreement between the subscribers of the communicating AEs.

11.3.3
Void

11.3.4
M2M Authorization Procedure

The M2M authorization procedure controls access to resources and services by CSEs and AEs. This procedure requires that the Originator has been identified to an M2M Authentication Function and mutually authenticated and associated with an M2M Service Subscription. Authorization depends on:

· The privileges set by the M2M Service Subscription associated with the Originator (e.g. service/role assigned to the Originator).

· These privileges are set-up based on the access control policies associated with the accessed resource or service. They condition the allowed operations (e.g. CREATE) based on the Originator's privileges and other access control attributes (e.g. contextual attributes such as time or geographic location).
· Role-IDs which have been associated with the Originator.

The authorization/access grant involves an Access Decision step to determine what the authenticated CSE or AE can actually access, by evaluating applicable access control policies based on the CSE or AE privileges. Access Decision is described in oneM2M TS-0003 [2].

The following set of access control policy attributes shall be available for an Access Decision.

· Access control attributes of Originator and Originator's Role (e.g. Role-IDs, CSE_IDs, AE-IDs, etc.).

· Access control attributes of Environment/Context (e.g. time, day, IP address, etc.).

· Access control attributes of Operations (e.g. Create, Execute, etc.).

The M2M Service Provider/administrator and owner of resources are responsible to establish access control policies that determine by whom, in what context and what operations may be performed upon those resources. If the request satisfies the owner's access control policy, then the access to the resource is granted.
Dynamic Authorization: Dynamic Authorization encompasses:

b) authorizing the creation of a limited-lifetime access control policy authorizing the Originator to perform specific operations on the requested resource; and

c) issuing limited-lifetime Tokens associating the Originator with Role-IDs and/or access control policies for identified resources.

Two forms of Dynamic Authorization are supported: Direct Dynamic Authorization and Indirect Dynamic Authorization.

In the event that the request does not satisfy any of the owner's access control policies, then Dynamic Authorization may be requested from Dynamic Authorization System (DAS) Servers; this is called Direct Dynamic Authorization, and relevant details are provided clause 11.5.2. The request is then re-evaluated to determine if the owner's access control policy is now satisfied and access is granted.

If access is still denied, then the Originator is provided with Token Request Information used to request the issuance of Tokens by a Dynamic Authorization System. A Token identifies Role-IDs and/or access control policies (for identified resources) which have been temporarily associated with the Originator. The Originator then resends the request from the Originator, this time adding any Token or Token-IDs received from the Dynamic Authorization System. This is called Indirect Dynamic Authorization, and relevant details are provided clause 11.5.3.

NOTE:
A DAS Server can be triggered, by Dynamic Authorization, to update the access control policy configuration using oneM2M request primitives.

In the event that the requesting entity does not satisfy the owner's access control policy, a Hosting CSE shall check to see if the resource (or one of its parents) has a dynamicAuthorizationConsultationIDs which links to a valid <dynamicAuthorizationConsultation> resource. If there is no valid <dynamicAuthorizationConsultation> resource or if the dynamicAuthorizationEnabled attribute is set to "false", then then the Hosting CSE shall not attempt to perform direct dynamic authorization on behalf of the requesting entity. However, if there is a valid <dynamicAuthorizationConsultation> resource available and if the dynamicAuthorizationEnabled attribute is set to "true", then the Hosting CSE shall initiate a direct dynamic authorization request to the specified dynamicAuthorizationPoA. If direct dynamic authorization results in sufficient privilges being granted to the requesting entity, the Hosting CSE shall grant it access. In addition the Hosting CSE may also dynamically create a new access control policy and configure it with the granted privileges along with any specified lifetime associated with the privileges based on a resource creation process initiated by the dynamic authorization system.
This function shall fetch the subscription related information in order to check if a Role-ID used in a request is allowed by the M2M service subscription.The authorization procedure shall be implemented as specified in the oneM2M TS‑0003 [2].
11.4
Functional Architecture Specifications for End-to-End Security Procedures
11.4.1
Functional Architecture Specifications for End-to-End Security of Data (ESData)

End-to-End Security for Data (ESData) provides an interoperable framework for protecting data that ends up transported using oneM2M reference points, in order that so transited CSEs do not need to be trusted with that data. The data shall comprise either:

· All or part of the value of a single attribute (e.g. content attribute value of a <contentInstance> resource or customAttribute of a <flexContainer> resource) or a single addressable element within the attribute.

· All or part of a single primitive parameter value (e.g. a signed, self-contained access token communicated in a request primitive to obtain dynamic authorization).

11.4.2
Functional Architecture Specifications for End-to-End Security of Primitives (ESPrim)

End-to-End Security for Primitives (ESPrim) provides an interoperable framework for securing oneM2M primitives so CSEs do not need to be trusted with the confidentiality and integrity of the primitive. ESPrim provides mutual authentication, confidentiality, integrity protection and a freshness guarantee (bounding the age of secured primitives).

The credential management aspects and data protection aspects for ESPrim are specified in oneM2M TS-0003 [2]. The present clause specifies the transport of secured primitives.

The primitive to be secured is called the inner primitive, and the primitive which is used to transport a secured inner primitive is called the outer primitive. The inner primitive is protected using an encryption and integrity protection, which takes a symmetric key sessionESPrimKey as input. The sessionESPrimKey is derived from a pairwiseESPrimKey, established between the Originator and Receiver, and a receiverESPrimRandObject and originatorESPrimRandObject. The receiverESPrimRandObject and originatorESPrimRandObject are specified in oneM2M TS-0003 [2].

The transport details for the ESPrim Procedure are shown in figures 11.4.2-1 and 11.4.2-2, and described in the following text.

NOTE 1:
The outer primitive is not acting on resources because the outer primitive is only used to transport the ESPrim object securing the inner primitive. This is the reason that the NOTIFY procedure is used for the outer primitive.

[image: image4.emf]Originator Receiver How often?

Once only, or

more often if

desired

CSE2 registered with Receiver

A. Establishing pairwiseESPrimKey

(pre-gen option) B.1b Create procedure:

To = Receiver <remoteCSE> or <AE> on CSE2

Content = <remoteCSE> assigning

sharedReceiverESPrimRandObject (in

e2ESecInfo) to fresh receiverESPrimRandObject

B.2a Retrieve request.

To = Receiver’s <remoteCSE> or <AE> on CSE2

Content = identifies e2ESecInfo for retrieval

Periodically.

Typically multiple

times per

pairwiseESPrimKey.

Typically less often

than per exchange

of inner request and

response primitives

B.2e. Generate receiverESPrimRandObject

B.2g. Generate originatorESPrimRandObject

B.2h. Generate sessionESPrimKey from pairwiseESPrimKey, originatorESPrimRandObject and

sharedReceiverESPrimRandObject. Cache sessionESPrimKey

Per exchange of

inner request and

response primitives

B. Establishing

sessionESPrimKey

C. Securing Primitive Exchange

Shown in separate figure

B.2b Retrieve response.

Content = e2ESecInfo

B.2d. Notify request. To = resource-ID of Receiver’s <CSEBase> or <AE> resource,

Content includes securityInfo with receiverESPrimRandObject Request

B.2f. Notify response

Content includes securityInfo object with receiverESPrimRandObject Response

B.2c if e2ESecInfo contains sharedReceiverESPrimRandObject then set receiverESPrimRand to

sharedReceiverESPrimRand and jump to step B.2g. Otherwise extract esprimRandPoA from

e2eSecInfo

(pre-gen option) B.1a. Generate receiverESPrimRandObject

Figure 11.4.2-1: The transport details for establishing pairwiseESPrimKey and
establishing sessionESPrimKey in the End-to-End Security of Primitives (ESPrim) Procedure.
This message flow shows the sequence of events for Blocking Mode

A. Establishing pairwiseESPrimKey: The pairwiseESPrimKey shall be established as specified in clause 8.4.2 "End-to-End Security of Primitives (ESPrim) Architecture" in TS-0003 [2].

B. Establishing sessionESPrimKey: The Receiver shall select to either (a) pre-generate a receiverESPrimRandObject which is distributed for used by multiple Originators for establishing sessionESPrimKey, or (b) generate a unique receiverESPrimRand Object upon request (in which case no action is required prior to receiving such a request).

B.1. (Optional) Receiver pre-generates and distributes receiverESPrimRandObject. If the Receiver selected to pre-generate and distribute a receiverESPrimRandObject, the Receiver performs the following steps every time the Receiver wishes to provide a new shared receiverESPrimRandObject:
B.1a The Receiver shall generate a receiverESPrimRandObject as described in TS-0003 [2].

B.1b The Receiver shall update the Receiver’s <remoteCSE> or <AE> resource on all CSEs to which the Receiver is registered, with the sharedReceiverESPrimRand Object parameter of the e2eSecInfo attribute containing the generated receiverESPrimRandObject.

In the latter case, the Receiver shall ensure that the sharedReceiverESPrimRandObject parameter is not present in the e2eSecInfo attribute in the Receiver's <remoteCSE> or <AE> resource on all CSEs to which the Receiver is registered. The absence of the sharedReceiverESPrimRand Object parameter indicates that the Receiver will provide a unique receiverESPrimRand Object upon request.

B.2. Originator obtains receiverESPrimRandObject
B.2a The Originator shall perform a Retrieve on the e2eSecInfo attribute in the Receiver's <remoteCSE> or <AE> resource on a CSE, here denoted CSE2, with which the Receiver is registered.
B.2b If the e2eSecInfo attribute is present in the Receiver’s <remoteCSE> or <AE> resource on CSE2, then CSE2 shall returns the e2eSecInfo attribute. Otherwise CSE2 shall return an appropriate error message.
B.2c (This step is also described in TS-0003 [2]. Where there is a conflict, TS-0003 [2] is to be treated as the authoritative description). The Originator determines if the Receiver supports ESPrim, which requires that the e2eSecInfo attribute is present and the e2eSecInfo attribute indicates support for ESPrim.

B.2c.1 If the Receiver does not support ESPrim, then the Originator aborts the procedure.
B.2c.2 If the Receiver supports ESPrim, and the e2eSecInfo attribute includes a sharedReceiverESPrimRandObject parameter, then the Originator shall examine the ESPrimRandExpiry in this parameter to determine if the sharedReceiverESPrimRandObject has expired. If the sharedReceiverESPrimRandObject has not expired, then the Originator sets receiverESPrimRandObject to the value of receiverESPrimRandObject and proceeds to step B.2g. If the sharedReceiverESPrimRandObject has expired, then the Originator sets receiverESPrimRandObject to the value of receiverESPrimRandObject and proceeds to step B.2d.

B.2c.3 If the Receiver supports ESPrim, and the e2eSecInfo attribute does not include a sharedReceiverESPrimRandObject parameter, then the Originator proceeds to step B.2d.

B.2d The Originator shall send a NOTIFY request to the Receiver with the To parameter set to the address of the Receiver’s <CSEBase> or <AE> resource, and the securityInfoType element of the securityInfo object in the Content indicating that this NOTIFY request is a "receiverESPrimRandObject request".
NOTE 2: When the Receiver is a CSE, the Originator can use the Receiver’s CSE-ID followed by “/.” as the address of the Receiver’s <CSEBase>.
B.2e The Receiver, upon receiving such a NOTIFY request, shall generate a receiverESPrimRandOject as described in TS-0003 [2].

B.2f The Receiver shall send a NOTIFY response to the Originator with the securityInfoType element of the securityInfo object in the Content indicating that this is a “receiverESPrimRandObject request” and containing the receiverESPrimRandObject.

B.2g The Originator shall generate an originatorESPrimRandObject as described in clause 8.4.2 of TS-0003 [2].

B.2h The Originator shall generate the sessionESPrimKey from the pairwiseESPrimKey, originatorESPrimRandTuple and receiverESPrimRandObject as described in clause 8.4.2 of TS-0003 [2].

[image: image6.emf]Originator Receiver How often?

Once only, or

more often if

desired

CSE2 registered with Receiver

A. Establishing pairwiseESPrimKey

Periodically.

Typically multiple

times per

pairwiseESPrimKey.

Typically less often

than per exchange

of inner request and

response primitives

Per exchange of

inner request and

response primitives

C.1. Select object security technology

C.3. Apply object security technology to serialization of inner request primitive

using sessionESPrimKey, resulting in a ESPrim object with headers including

pairwiseESPrimKeyId, originatorE2ERand(Id) andreceiverE2ERandId.

C.4. Send outer request primitive (see Table 11.4.2-1), including

To =Receiver’s CSE-ID or AE-ID, Operation =Notify (N),

securityInfoType =ESPrim Object indication, securityInfo includes ESPrim object.

C.5. Extract Content: = ESPrim object from outer request primitive

C.7. Process inner request primitive, resulting in the serialization of the

corresponding inner response primitive

C.10. Extract Content: = ESPrim object from outer response primitive

C.12. Process inner response primitive

B. Establishing sessionESPrimKey

Shown in a separate figure

C. Securing Primitive Exchange

C.6. Process ESPrim object using object security technology , resulting in

authenticated serialization of inner request primitive

C.2. Form serialization of inner request primitive

C.8. Apply object security technology to serialization of inner response

primitive using sessionESPrimKey, resulting in a ESPrim object with headers

including pairwiseESPrimKeyId, originatorE2ERand(Id) andreceiverE2ERandId.

C.11. Process ESPrim object using object security technology , resulting in

authenticated serialization of inner response primitive

C.9. Send outer request primitive (see Table 11.4.2-2), including Operation =Notify (N),

securityInfoType =ESPrim Object indication, securityInfo includes ESPrim object.

Figure 11.4.2-2: The transport details for Securing a Primitive Exchange
in the End-to-End Security of Primitives (ESPrim) Procedure
This message flow shows the sequence of events for Blocking Mode

C. Securing a Primitive Exchange

C.1. The Originator selects the object security technology as described in clause 8.4.2 of TS-0003 [2].
C.2. The Originator shall form the serialization of the inner request primitive.
C.3. The Originator shall produce a ESPrim Object from the serialization of the inner request primitive by applying the selected object security technology using the established parameters, as described in clause 8.4.2 of TS-0003 [2].
C.4. The Originator shall send the ESPrim Object to the Receiver in the securityInfo object in the Content of an outer request primitive, and including the indication that securityInfo contains an ESPrim Object. The outer request primitive shall be a NOTIFY request primitive with To set to the address of the Receiver’s <CSEBase> or <AE> resource. See Note 2. The parameters of the outer request primitive shall be assigned as described in Table 11.4.2-1.

C.5. The Receiver shall process the outer request primitive as for normal NOTIFY request primitives. The Receiver shall extract securityInfo, process the indication that it contains an ESPrim Object, and extract the ESPrim Object containing the secured inner request primitive.

C.6. The Receiver shall process the ESPrim Object according to the indicated object security technology resulting in the verified serialization of the inner request primitive. This processing is described in 8.4.2 of TS-0003 [2].

C.6a If this processing is unsuccessful, then the Receiver shall generate an error message,

C.6a.1 If the Receiver knows a currently valid sessionESPrimKey previously established with the Originator, then the receiver shall secure the error message using ESPrim as described in clause 8.4.2 of TS-0003 [2]. In this case the message flow skips to step C.9.

C.6a.2 If Receiver does not knows a currently valid sessionESPrimKey previously established with the Originator, then the Receiver shall send a NOTIFY response with the (unsecured) error message in the Content parameter. The Originator processes the response as for a normal error case.

C.7. The Receiver shall process the inner request primitive, resulting in a serialization of the corresponding inner response primitive.

NOTE: Steps C.3 to C.7 are mirrored closely by C.10 to C.16, with the Originator and Receiver swapping their participation in the exchange, and the request primitives replaced by response primitives.

C.8. The Receiver shall produce a ESPrim Object from the serialization of the inner response primitive by applying the selected object security technology using the established parameters, as described in clause 8.4.2 of TS-0003 [2].

C.9. The Receiver shall send the ESPrim Object to the Originator in the securityInfo object of an outer response primitive, including the indication that securityInfo contains an ESPrim Object. The outer response primitive shall be a NOTIFY response primitive. The parameters of the outer request primitive shall be assigned as described in Table 11.4.2-2.

C.10. The Originator shall process the outer response primitive as for normal NOTIFY response primitives. The Originator shall extract the securityInfo object, process the indication in securityInfoType that securityInfo contains an ESPrim Object, and extract the ESPrim Object containing the secured inner response primitive.

C.11. The Originator shall process the ESPrim Object according to the indicated object security technology resulting in the verified serialization of the inner response primitive or an error message. This processing is described in clause 8.4.2 of TS-0003 [2].

C.12. The Originator shall process the inner response primitive or error message.

Table 11.4.2-1: NOTIFY Request Message Parameters when using ESPrim

	Request message parameter
	Mandatory/ Optional for ESPrim
	Details

	Mandatory
	Operation - operation to be executed
	M
	NOTIFY

	
	To - the address of the target resource on the target CSE
	M
	 Address of the Receiver’s <CSEBase> or <AE> resource

	
	From - the identifier of the message Originator
	M
	

	
	Request Identifier - uniquely identifies a Request message
	M
	May be independent of the Request Identifier of the inner request primitive

	Operation dependent
	Content - to be transferred
	NP
	

	
	Resource Type - of resource to be created
	N/A
	N/A

	 Optional
	Originating Timestamp - when the message was built
	O
	Time when the outer request primitive was build

	
	Request Expiration Timestamp - when the request message expires
	O
	Copied from the corresponding parameter in the inner request primitive.

	
	Result Expiration Timestamp - when the result message expires
	O
	Copied from the corresponding parameter in the inner request primitive.

	
	Operational Execution Time - the time when the specified operation is to be executed by the target CSE
	N/A
	The operation execution here is the cryptographic operations performed by the Receiver, which shall be executed immediately.

	
	Response Type - type of response that shall be sent to the Originator
	O
	Any mode may be applied.

	
	Result Persistence - the duration for which the reference containing the responses is to persist
	N/A
	N/A for NOTIFY

	
	Result Content - the expected components of the result
	N/A
	The result content here is the Result Content of the outer primitive, which is always ESPrim Object

	
	Event Category - indicates how and when the system should deliver the message
	O
	Copied from the corresponding parameter in the inner request primitive.

	
	Delivery Aggregation - aggregation of requests to the same target CSE is to be used
	O
	Copied from the corresponding parameter in the inner request primitive.

	
	Group Request Identifier - Identifier added to the group request that is to be fanned out to each member of the group
	N/A
	This parameter may be present in the inner request primitive, but shall not be present in the outer primitive.

	
	Filter Criteria - conditions for filtered retrieve operation
	N/A
	N/A for NOTIFY

	
	Discovery Result Type - format of information returned for Discovery operation
	N/A
	N/A for NOTIFY

	
	
	
	

Table 11.4.2-2: NOTIFY Response Message Parameters when using ESPrim

	Response message parameter/success or not
	Mandatory/ Optional for ESPrim
	Details

	Request Identifier - uniquely identifies a Request message
	M
	Matches corresponding parameter in outer request primitive

	Content - to be transferred
	NP
	ESPrim Object

	To - the identifier of the Originator or the Transit CSE that sent the corresponding non-blocking request
	O
	As for NOTIFY

	From - the identifier of the Receiver
	O
	As for NOTIFY

	Originating Timestamp - when the message was built
	O
	Time when the outer request primitive was build

	Result Expiration Timestamp - when the message expires
	O
	Copied from the corresponding parameter in the inner request primitive.

	Event Category - what event category shall be used for the response message
	O
	Copied from the corresponding parameter in the inner request primitive.

	Content Status
	N/A
	N/A for NOTIFY

	Content Offset
	N/A
	N/A for NOTIFY

	
	
	

11.4.3
Functional Architecture Specifications for Direct End-to-End Security Certificate-based Key Establishment (ESCertKE)

The ESCertKE procedure comprises the exchange of TLS handshake protocol parameters in four ESCertKE Messages, specified in oneM2M TS-0003 [2]. The AE or CSE initiating the procedure is the Initiating End-Point and the Terminating End‑Point is the AE or CSE with which the ESCertKE Initiating End-Point intends to establish the pairwiseE2EKey.

If an AE or CSE supportsESCertKE, then an indication shall be present in the e2eSecInfo attribute in an AE's <AE> resource, or a CSE's <CSEBase> resource or a CSE's <remoteCSE> resource.

The ESCertKE messages and associated processing for ESCertKE are specified in clause 8.7 "End-to-End Certificate-based Key Establishment (ESCertKE)" in oneM2M TS-0003 [2]. The transport details for the ESCertKE Procedure are shown in Figure 11.4.3-1, and described in the following text.

NOTE:
The outer primitive is not acting on resources because the outer primitive is only used to transport the ESCertKE messages. This is the reason that the NOTIFY procedure is used for the outer primitive.

[image: image8.emf]ESCertKE Initiating

End-Point

ESCertKE Terminating

End-Point

Generate

ESCertKE Msg 1

Record From. Process

ESCertKE Msg 1, &

generate ESCertKE MSg

2

Process ESCertKE

Msg 2, & generate

ESCertKE Msg 3

9. Using From,

correlate ESCertKE Msg

3 to ESCertKE Msg 1

&2. Process ESCertKE

Msg 3, generate

ESCertKE Msg 4

C.2. Export pairwiseESCertKE & associate it with

Terminating End-Point’s identity from step B

A. Provision Initiating End-Point’s

private key and certificate

A. Provision Terminating End-

Point’s private key and certificate

B. Configure Terminating End-

Point’s Certificate Info & identity

B. Configure Initiating End-Point’s

Certificate Info & (opt) identity

C.1.a. Notify Request with securityInfo object in Content

SecurityInfoTypeindicates ESCertKE message, securityInfo object includes

ESCertKE Message 1

C.1.b. Notify Response with securityInfo object in Content

SecurityInfoTypeindicates ESCertKE message, securityInfo object includes

ESCertKE Message 2

C.1.c. Notify Request, with securityInfo object in Content

SecurityInfoTypeindicates ESCertKE message, CsecurityInfo object includes

ESCertKE Message 3

C.1.d. Notify Response with securityInfo object in Content

SecurityInfoTypeindicates ESCertKE message, securityInfo object includes

ESCertKE Message4

C.2. Export pairwiseESCertKE & associate it with

Initiating End-Point’s identity (from certificate or step

B)

Process ESCertKE

Message 4

Figure 11.4.3-1: The transport details for the ESCertKE Procedure

A. Provisioning Certificates: Each End-Points shall be provisioned with their own private keys and corresponding certificate and optional certificate chain.

B. Triggering: The Initiating End-Points is decides to initiate the ESCertKE procedure with an identified Terminating End-Point.
C. Establishing pairwiseE2EKey

C.1. The Initiating End-Point and Terminating End-Point exchange the sequence of four ESCertKE Messages specified in clause 8.7 "End-to-End Certificate-based Key Establishment" in TS-0003 [2]. The ESCertKE Messages are exchange in two sequential NOTIFY procedures:
C.1.a ESCertKE Message 1 is sent in a first NOTIFY request from the Initiating End-Point to the End-Point. The Terminating End-Point records the identity of the Initiating End-Point in the From primitive parameter.

C.1.b ESCertKE Message 2 is sent in the resulting NOTIFY response from the Terminating End-Point to the Initiating End-Point.

C.1.c ESCertKE Message 3 is sent in a second NOTIFY request from the Initiating End-Point to the End-Point. The Terminating End-Point shall correlate this ESCertKE message with the corresponding ESCertKE Message 1 using the identity of the Initiating End-Point in the From primitive parameter.

C.1.d ESCertKE Message 4 is sent in the resulting NOTIFY response from the Terminating End-Point to the Initiating End-Point.

The parameters of the NOTIFY primitives shall be assigned as per normal, with the following details specific toESCertKE:

· securityInfoType: indicating that the Content contains an ESCertKE Message.

· Content: an ESCertKE Message.

C.2. If the TLS handshake protocol is successful, then the Initiating and Terminating End-Points shall generate and cache a pairwiseE2EKey as described 8.7 "End-to-End Certificate-based Key Establishment" in TS-0003 [2].
11.5
Functional Architecture Specifications for Dynamic Authorization
11.5.1
Dynamic Authorization Reference Model

The Dynamic Authorization reference model is shown in figure 11.5.1-1

[image: image9.emf]Originator

(AE/CSE)

Hosting CSE

DAS Server

Details not specified in oneM2M)

AE

Figure 11.5.1-1: Dynamic Authorization reference model
The Dynamic Authorization reference model introduces the following systems and entities:

· Dynamic Authorization System (DAS): A system supporting dynamically authorization on behalf of resources owners. The present document does not describe the processing and exchange of messages within the Dynamic Authorization System. This system may reside either internally or externally within the service provider network.

· Dynamic Authorization System (DAS) Server: A server configured with policies for dynamic authorization, and provided with credentials for issuing Tokens. The DAS Server may include an AE for interaction with the oneM2M system.

The following Dynamic Authorization procedures are specified:

· Direct Dynamic Authorization, summarized in figure 11.5.1-2. In this procedure, Hosting CSE interacts with the DAS Server to obtain Dynamic Authorization.

[image: image10.emf]Originator

(AE/CSE)

Hosting CSE

1: Original

request

2: Request to DAS Server:

original request parameters, (opt) Role-IDs

4: Make access control decision

DAS Server

AE

3:Response from DAS Server:

(opt) dynamicACPInfo, (opt) Token(s)

5: Response

Figure 11.5.1-2: Direct Dynamic Authorization

· Indirect Dynamic Authorization, summarized in figure 11.5.1-3:

Steps 1-2: The Hosting CSE may provide the Originator with Token Request Information in the unsuccessful response.

Steps 3: The Originator interacts with the DAS Server with the intention that the DAS Server issue Tokens authorizing the Originator, and the Originator is provided with the Token or a Token-ID. The interaction is not described in the present specification.

Steps 4-7: The Originator provides the Hosting CSE with a Token, Token-ID to indicate that the Token is to be considered in the access decision. In the case of a token-ID, the Hosting CSE retrieves the corresponding Token via an AE of the DAS Server. These are then used in the access decision. The Hosting CSE may provide the Originator with a Local-Token-ID may be used to identify the Token.

[image: image11.emf]Originator

(AE/CSE)

Hosting CSE

4: Repeat

request, adding

Token(s) or

Token-ID(s)

(If Token-ID provided)

5:Request Token using Token-ID

6: Make access control decision

DAS Server

3: Obtain Token(s) or Token-ID(s)

(details not specified in oneM2M)

AE

2: Access

denied,

Token

Request

Info

1: Original

Request,

Step 1 and 2 are optional

7: Response

(opt) Hosting

CSE-assigned

Local-Token-IDs

Figure 11.5.1-3: Indirect Dynamic Authorization

11.5.2
Direct Dynamic Authorization
The parameters exchanged for Direct Dynamic Authorization, and the corresponding processing, are specified in clause 7.3.2.2, oneM2M TS-0003 [2]. The present clause specifies the transportation of parameters when oneM2M primitives are used. The step numbers are aligned with the procedure in clause 7.3.2.2, oneM2M TS-0003 [2]. Further details for each step in the present clause can be obtained by examining the corresponding steps in clause 7.3.2.2, oneM2M TS‑0003 [2].

The message flow for Direct Dynamic Authorization is shown in figure 11.5.2-1, and described in the following text. This call flow assumes that the Hosting CSE has already received the resource access request from the Originator

[image: image13.emf]Hosting CSE DAS Server

2.1. Performs access decision unable to grant access for original request

2.2. Obtain DAS Server dynamicAuthoriztionPoA and collect Role-Ids (if any).

2.3. NOTIFY Request to DAS Server dynamicAuthoriztionPoA ,

securityInfoType= Direct Dynamic Authorization

securityInfo object in Content includes original request

parameters, (optional) Role-IDs

3.2. NOTIFY Response

securityInfoType= Direct Dynamic Authorization

securityInfo object in Content includes (opt)

dynamicACPInfo (opt) Token(s),

4.1. Process (opt) dynamicACPInfo, (opt) Token(s)

4.2. Repeat access decision

4.3. If access is granted, requested operation is performed

Steps 3.1: Dynamic Authorization can include

issue Token(s) &/or generate dynamicACPInfo

AE

AE

Originator

1. Original request

Response

Figure 11.5.2-1: Message flow showing transport details for Direct Dynamic Authorization

· The Originator sends request (called the request from the Originator for this message flow) to the Hosting CSE. This request may include Tokens, Token IDs or LocalToken IDs; see the clause 11.5.3 "Indirect Dynamic Authorization".

· Initial Hosting CSE processing:

2.1
If the request from the Originator includes Token, Token IDs s or Local Token IDs then these are processed as described in clause 11.5.3 "Indirect Dynamic Authorization". The Hosting CSE evaluates the access decision algorithm, but is unable to grant access for the request from the Originator based on configured access control policies.

2.2
The Hosting CSE examines the <accessControlPolicy> resources and <dynamicAuthorizationConsultation> resources to obtain the DAS Server dynamicAuthorizationPoA with which it may perform Direct Dynamic Authorization. The Hosting CSE selects a DAS Server and forms the set of applicable Role-IDs (if any) to send to the corresponding DAS Server.

2.3
The Hosting CSE shall send a Notify request primitive to the DAS Server AE, with the following details specific to Direct Dynamic Authorization

· The securityInfoType element shall indicate that the Notify request primitive is for Direct Dynamic Authorization.

· The Content parameter shall contain information that the DAS Server can use in deciding what Dynamic Authorizations should be applied. This information includes primitive parameters from the request from the Originator and the set of applicable Role-IDs (if any). Clauses 7.3.2.2, oneM2M TS-0003 [2] lists the primitive parameters to be included.

· DAS Server processing:

3.1
The DAS Server shall extract and parse the Content parameter of the received message. The DAS Server may issue Token(s) and/or generate dynamicACPInfo which will be used by the Hosting CSE to create a dynamic <accesscontrolPolicy> resource.

3.2
The DAS Server shall send a Notify response primitive via the DAS Server AE to the Hosting CSE, with the following details specific to Direct Dynamic Authorization:

· The securityInfoType element shall indicate that the Notify response primitive is for Direct Dynamic Authorization.

· If Step 3.1 resulted in a Token(s) and/or dynamicACPInfo parameter, then these parameters shall be included in the Content parameter, otherwise the Content parameter shall not be present.

· Hosting CSE Processing:

4.1
The Hosting CSE shall process the Content parameter (if present) of the NOTIFY Response from the DAS Server:

· The Hosting CSE shall verify and cache the Token(s) in the list (if present).

· The Hosting CSE shall create a dynamic <accessControlPolicy> resource from dynamicACPInfo (if present).

4.2
The Hosting CSE repeats the access decision mechanism.

4.3
If access is granted, then the Hosting CSE performs the operation requested in the request from the Originator.

11.5.3
Indirect Dynamic Authorization
The parameters exchanged for Indirect Dynamic Authorization, and the corresponding processing, are specified in clause 7.3.2.3, oneM2M TS-0003 [2]. The present clause specifies the transportation of parameters when oneM2M primitives are used. Further details for each step in the present clause can be obtained by examining the corresponding steps in clause 7.3.2.3, oneM2M TS-0003 [2].

The message flow for the Indirect Dynamic Authorization Procedure is shown in figure 11.5.3-1, and described in the following text.

[image: image15.emf]Hosting CSE DAS Server

(opt) 2.1. Performs access decision. Unable to grant access for original request

(opt) 2.2. Form Token Request Infofrom identified DAS Server andRole-IDs (if any).

5.1 NOTIFY Request to DAS Server

dynamicAuthorizationPoA,

securityInfoType= Indirect Dynamic Authorization

securityInfo object in Content includes Token-ID(s)

5.2. NOTIFY Response

securityInfoType= Indirect Dynamic Authorization

securityInfo object in Content includes ESData-

protected Token(s)

AE

AE

Originator

(opt) 1. Original request

7. Response

(opt) Assigned Token Identifiers

(opt) 2.3 Unsuccessful Response

Token Request Information

(opt) 2.4 Select a DAS Server from

Token Request Information

3. Originator requests DAS Server issue Tokens, optionally using information from Token

Request Information. DAS Server provides Originator with Token-ID(s), and optionally

ESData-protected Token(s) and/or other parameters from Token.

Details of this exchange are not specified in the present specification .

4. Repeat request, adding new

ESData-protected Tokens to Tokens

or Token-ID(s) toToken IDs

6.1 Verify Tokens.

6.2 (optional) Assign Local-Token-IDs to Tokens.

Add (Local-Token-ID, Token-ID) mapping to Assigned Token Identifiers parameter

6.3 Perform access decision. If access is granted, requested operation is performed

Figure 11.5.3-1: Message flow for Indirect Dynamic Authorization

· (Optional) The Originator sends request to the Hosting CSE. This request may include Tokens, Token IDs or Local Token IDs, but this message flow assumes that these do not provide sufficient permissions for accessing the requested resource.

· (Optional) Initial Hosting CSE processing:

2.1
Hosting CSE performs the access decision for the request from the Originator. This call flow assumes that the request from the Originator is denied as a result of the access decision.

2.2
The Hosting CSE forms the Token Request Information primitive parameter.

2.3
The Hosting CSE shall send, to the Originator, an unsuccessful resource access response with the following details specific to the Indirect Dynamic Authorization procedure:

· The Response Status Code shall be set to "UNAUTHORIZED".

· The Token Request Information primitive parameter shall be included.

2.4
The Originator selects a DAS Server identified in Token Request Information primitive parameter.

· The Originator shall interact with the DAS Server to request the issuance of one or more Tokens. The Originator can provide information for the DAS Server provided in the Token Request Information, and parameters from the original resource access request. The DAS Server issues a Token(s) and provides the Token-ID(s) and optionally the ESData‑protected Token(s) to the Originator. The DAS Server can also provide the Originator with other parameters from the Token; for example, the time window in which the Token is valid. This interaction is specific to the Dynamic Authorization System technology being used.

· The Originator shall repeat the original resource access request, with the following changes:

Tokens: add the ESData-protected Token(s) provided by the DAS Sevrer; and

Token IDs: add Token-ID if the ESData-protected Token(s) was not provided by the DAS Server.

· (Optional) If the request includes Token-DI(s), then for each Token-ID the Hosting CSE identifies the corresponding DAS Server AE from which to request the corresponding Token, and the following steps shall be performed. The Hosting CSE may collect the Token-ID(s) corresponding to a single DAS Server and perform the following steps once rather than repeating the steps for each token:

5.1
The Hosting CSE shall send a Notify request primitive to the DAS Server AE, with the following details specific to Indirect Dynamic Authorization:

· The securityInfo object shall indicate that the Notify request primitive is for Indirect Dynamic Authorization.

· The Content parameter shall contain the Token-ID(s) associated with that DAS Server.

5.2
The DAS Server shall send a Notify response primitive via the DAS Server AE to the Hosting CSE, with the following details specific to Direct Dynamic Authorization:

· The securityInfo object shall indicate that the Notify response primitive is for Indirect Dynamic Authorization.

· The Content parameter shall contain the valid ESData-protected Token(s) corresponding to the supplied Token-ID(s). The DAS Server shall provide only those Token(s) which are applicable to the Hosting CSE.

· Hosting CSE Processing:

6.1
The Hosting CSE shall process the ESData-protected Token(s) to extract the authenticated Token(s). Additional checking shall also be applied The Hosting CSE may cache the Token(s).

6.2
The Hosting CSE may assign Local-Token-ID(s) to cached Token(s).

6.3
The Hosting CSE shall perform the access decision, including the Token(s) identified in the request. If access is granted, then the requested operation shall be performed.

· Response:

7.1
The Hosting CSE may send a response to the Originator. For each new Local-Token-ID(s) has been assigned, the Local-Token-ID and corresponding Token-ID shall be included in the Assigned Token Identifiers parameter of the response.

7.2
The Originator shall associate the Local-Token-ID with Token-ID. In subsequent requests, the Originator may use the Local-Token-ID instead of the Token or Token-ID.
-----------------------End of change 1---
-----------------------Start of change 2---
8.2.1
Request

Requests over the Mca and Mcc reference points, from an Originator to a Receiver, shall contain mandatory and may contain optional parameters. Certain parameters may be mandatory or optional depending upon the Requested operation. In this clause, the mandatory parameters are detailed first, followed by those that are operation dependent, and then by those that are optional:

· To: Address of the target resource or target attribute for the operation. The To parameter shall conform to clause 9.3.1.

NOTE 1:
To parameter can be known either by pre-provisioning (clause 11.2) or by discovery (clause 10.2.6 for discovery). Discovery of <CSEBase> resource is not supported in this release of the document. It is assumed knowledge of <CSEBase> resource is by pre-provisioning only.

NOTE 2:
The term target resource refers to the resource which is addressed for the specific operation. For example the To parameter of a Create operation for a resource <example> would be "/m2m.provider.com/exampleBase". The To parameter for the Retrieve operation of the same resource <example> is "/m2m.provider.com/exampleBase/example".

NOTE 3:
For Retrieve operation (clause 10.1.2), the To parameter can be the URI of an attribute to be retrieved.

· From: Identifier representing the Originator.

The From parameter is used by the Receiver to check the Originator identity for access privilege verification.

· Operation: operation to be executed: Create (C), Retrieve (R), Update (U), Delete (D), Notify (N).

The Operation parameter shall indicate the operation to be executed at the Receiver:
· Create (C): To is the address of the target resource where the new resource (parent resource).
· Retrieve (R): an existing To addressable resource is read and provided back to the Originator.

· Update (U): the content of an existing To addressable resource is replaced with the new content as in Content parameter. If some attributes in the Content parameter do not exist at the target resource, such attributes are created with the assigned values. If some attributes in the Content parameter are set to NULL, such attributes are deleted from the addressed resource.

· Delete (D): an existing To addressable resource and all its sub-resources are deleted from the Resource storage.

· Notify (N): information to be sent to the Receiver, processing on the Receiver is not indicated by the Originator.
· Request Identifier: request Identifier (see clause 7.1.7).

Example usage of request identifier includes enabling the correlation between a Request and one of the many received Responses.

Operation dependent Parameters:

· Content: resource content to be transferred.

The Content parameter shall be present in Request for the following operations:

Create (C): Content is the content of the new resource with the resource type ResourceType.
Update (U): Content is the content to be replaced in an existing resource. For attributes to be updated at the resource, Content includes the names of such attributes with their new values. For attributes to be created at the resource, Content includes names of such attributes with their associated values. For attributes to be deleted at the resource, Content includes the names of such attributes with their value set to NULL.

Notify (N): Content is the notification information.

The Content parameter may be present in Request for the following operations:

Retrieve (R): Content is the list of attribute names from the resource that needs to be retrieved. The values associated with the attribute names shall be returned.

· Resource Type: type of resource.

The ResourceType parameter shall be present in Request for the following operations:

Create (C): Resource Type is the type of the resource to be created.

Optional Parameters:

· Role IDs: optional, required when role based access control is applied. A list of Role-IDs that are allowed by the service subscription shall be provided otherwise the request is considered not valid.

The Role IDs parameter shall be used by the Receiver to check the Access Control privileges of the Originator.

· Originating Timestamp: optional originating timestamp of when the message was built.

Example usage of the originating timestamp includes: to measure and enable operation (e.g. message logging, correlation, message prioritization/scheduling, accept performance requests, charging, etc.) and to measure performance (distribution and processing latency, closed loop latency, SLAs, analytics, etc.)

· Request Expiration Timestamp: optional request message expiration timestamp. The Receiver CSE should handle the request before the time expires. If a Receiver CSE receives a request with Request Expiration Timestamp with the value indicating a time in the past, then the request shall be rejected.

Example usage of the request expiration timestamp is to indicate when request messages (including delay‑tolerant) should expire and to inform message scheduling/prioritization. When a request with set expiration timestamp demands an operation on a Hosting CSE different than the current Receiver CSE, then the current CSE shall keep trying to deliver the Request to the Hosting CSE until the request expiration timestamp time, in line with provisioned policies.

· Result Expiration Timestamp: optional result message expiration timestamp. The Receiver CSE should return the result of the request before the time expires.

Example usage of the result expiration timestamp: An Originator indicates when result messages (including delay-tolerant) should expire and informs message scheduling/prioritization. It can be used to set the maximum allowed total request/result message sequence round trip deadline.

· Response Type: optional response message type: Indicates what type of response shall be sent to the issued request and when the response shall be sent to the Originator:

nonBlockingRequestSynch: In case the request is accepted by the Receiver CSE, the Receiver CSE responds, after acceptance, with an Acknowledgement confirming that the Receiver CSE will further process the request. The Receiver CSE includes in the response to an accepted request a reference that can be used to access the status of the request and the result of the requested operation at a later time. Processing of Non-Blocking Requests is defined in clause 8.2.2 and in particular for the synchronous case in clause 8.2.2.2.

nonBlockingRequestAsynch {optional list of notification targets}: In case the request is accepted by the Receiver CSE, the Receiver CSE shall respond, after acceptance, with an Acknowledgement confirming that the Receiver CSE will further process the request. The result of the requested operation needs to be sent as notification(s) to the notification target(s) provided optionally within this parameter as a list of entities or to the Originator when no notification target list is provided. When an empty notification target list is provided by the Originator, no notification with the result of the requested operation shall be sent at all. Processing of Non‑Blocking Requests is defined in clause 8.2.2 and in particular for the asynchronous case in clause 8.2.2.3.

blockingRequest: In case the request is accepted by the Receiver CSE, the Receiver CSE responds with the result of the requested operation after completion of the requested operation. Processing of Blocking Requests is defined in clause 8.2.1. This is the default behaviour when the Response Type parameter is not given the request.
flexBlocking {optional list of notification targets}: When Response Type in the request received by the Receiver CSE is set to flexBlocking, it means that the Originator of the request has the capability to accept the following types of responses: nonBlockingRequestSynch, nonBlockingRequestAsynch and blockingRequest.

The Receiver CSE shall make the decision to respond using blocking or non-blocking based on its own local context (memory, processing capability, etc.) if not defined in the resource handling procedure.

If the Receiver CSE choose to respond using non-blocking mode, based on the presence of notification targets in the request:

· If the notification targets are provided in the request and the Recerver CSE is responding, the Receiver CSE shall notify the result using nonBlockingRequestAsynch.
· If notification targets are not provided, the Receiver CSE shall respond with the address of <request> resource using nonBlockingRequestSynch.

Example usage of the response type set to nonBlockingRequestSynch: An Originator that is optimized to minimize communication time and energy consumption wants to express a Request to the receiver CSE and get an acknowledgement on whether the Request got accepted. After that the Originator may switch into a less power consuming mode and retrieve a Result of the requested Operation at a later time.

Further example usage of response type set to nonBlockingRequestSynch: When the result content is extremely large, or when the result consists of multiple content parts from a target group which are to be aggregated asynchronously over time.

· Result Content: optional result content: Indicates what are the expected components of the result of the requested operation. The Originator of a request may not need to get back a result of an operation at all. This shall be indicated in the Result Content parameter. Settings of Result Content depends on the requested operation specified in Operation. Possible values of Result Content are:

attributes: Representation of the requested resource shall be returned as content, without the address(es) of the child resource(s) or their descendants. For example, if the request is to retrieve a <container> resource, the address(es) of the <contentInstance> child-resource(s) is not provided. This setting shall be only valid for Create, Retrieve, Update, Delete operation. When this is used for Create operation, only assigned/modified attributes shall be included in the content. If the Originator does not set Result Content parameter in the request message, this setting shall be the default value when the Receiver processes the request message.

hierarchical-address: Representation of the address of the created resource. This shall be only valid for a Create operation. The address shall be in hierarchical address scheme.

hierarchical-address+attributes: Representation of the addresss in hierarchical address scheme and assigned/modified attributes of the created resource. This shall be only valid for a Create operation.

-
attributes+child-resources: Representation of the requested resource, along with a nested representation of all of its child resource(s) , and their descendants, in line with any provided filter criteria as given in the Filter Criteria parameter shall be returned as content. If there is no filter criteria parameter in the request message then all children/descendants are returned along with their attributes. For example, if the request is to retrieve a <container> resource that only has <contentInstance> children, the attributes of that <container> resource and a representation of all of its <contentInstance> child-resource(s) , including their attributes, are provided.

The originator may request to limit the maximum number of allowed nesting levels. The orginator may also include an offset that indicates the starting point of the direct child resource. The offset shall start at 1. The hosting CSE shall return all direct child resources and their descendants, or up to the maximum nesting level specififed in a request subject to maximum size limit that may be imposed by the hosting CSE. The offset, maximum number/size and maximum level shall be specified in Filter Criteria as offset, limit, and level condition, respectively, by the Originator.

The hosting CSE shall list parent resources before their children. This means that the originator of the request will not receive a discovered resource without having received its parents. The hosting CSE shall also ensure that proper nesting representation of all the children is incorporated in its listing for parents and children.

Nested processing is applicable at every level in the resource tree. If a direct child resource and all its descendants cannot be included in the returned content due to size limitations imposed by the hosting CSE then the direct child resource shall not be included in the response.

An indication shall be included in the response signalling if the returned content is partial. If the indication is for partial content, the response shall include an offset for the direct child resource where processing can restart for the remaining direct child resources

This shall be only valid for a Retrieve operation.
child-resources: A nested representation of the resource's child resource(s) their descendants and their attributes shall be returned as content. The resources that are returned are subject to any filter criteria that are given in the Filter Criteria parameter (if there are no filter criteria then all children and their descendants are returned). The attributes of the parent resource are not returned, but all the attributes of the children are returned. For example, if the request is to retrieve a <container> resource that only has <contentInstance> children, only a representation of all of its <contentInstance> child-resource(s) is provided.

The offset, maximum number/size and maximum level shall be specified in Filter Criteria as offset, limit, and level condition, respectively, by the Originator. Processing of direct child resources, size limitations, maximum nesting level, and offset for the starting of direct child resource processing of the attributes+child-resources option shall apply to this option as well.

This shall be only valid for a Retrieve operation.
attributes+child-resource-references : Representation of the requested resource, along with the address(es) of the child resource(s), and their descendants shall be returned as content. For example, if the request is to retrieve a <container> resource, the <container> resource and the address(es) of the <contentInstance> child-resource(s) are provided.

The offset, maximum number/size and maximum level shall be specified in Filter Criteria as offset, limit, and level condition, respectively, by the Originator. Processing of child resources, size limitations, maximum nesting level, and offset for the starting of child resource processing of the attributes+child-resources option shall apply to this option as well.

This shall be only valid for a Retrieve operation.

child-resource-references: Address(es) of the child resources and their descendants, without any representation of the actual requested resource shall be returned as content. For example, if the request is to retrieve a <container> resource, only the address(es) of the <contentInstance> child-resource(s) is provided.

The offset, maximum number/size and maximum level shall be specified in Filter Criteria as offset, limit, and level condition, respectively, by the Originator. Processing of child resources, size limitations, maximum nesting level, and offset for the starting of child resource processing of the attributes+child-resources option shall apply to this option as well.

This shall be only valid for a Retrieve operation.

This option can be used within the context of resource discovery mechanisms (see clause 10.2.6).
nothing: Nothing shall be returned as operational result content. This setting shall be valid for a Create/Update/Delete/Notify operation.

EXAMPLE:
If the request is to delete a resource, this setting indicates that the response shall not include any content.

original-resource: Representation of the original resource pointed by the link attribute in the announced resource shall be returned as content, without the address(es) of the child resource(s). This shall be only valid for a Retrieve operation where the To parameter targets the announced resource.

Note that for any of the above options, Discovery access control is applied against discovery related procedures, while Retrieve access control procedures is applied against non-discovery related Retrieve operations.

Note that the fitter criteria usage governs the purpose of a Retrieve operation.

Table 8.1.2-1: Summary of Result Content Values

	Value
	Create
	Retrieve
	Update
	Delete
	Notify

	attributes
	default
	default
	default
	default
	n/a

	hierarchical-address
	valid
	n/a
	n/a
	n/a
	n/a

	hierarchical-address+attributes
	valid
	n/a
	n/a
	n/a
	n/a

	attributes+child-resources
	n/a
	valid
	n/a
	n/a
	n/a

	child-resources
	n/a
	valid
	n/a
	n/a
	n/a

	attributes+child-resource-references
	n/a
	valid
	n/a
	n/a
	n/a

	child-resource-references
	n/a
	valid
	n/a
	n/a
	n/a

	nothing
	valid
	n/a
	valid
	valid
	valid

	original-resource
	n/a
	valid
	n/a
	n/a
	n/a

· Result Persistence: optional result persistence: indicates the time for which the response may persist to. The parameter is used in case of non-blocking request where the result attribute of the <request> resource should be kept at the CSE, for example, with the purpose of sharing, tracking and analytics.

In the case the response of a request is required to be kept in the CSE, for example the procedures of <request> resource, <delivery> resource and <group> resource, the Result Persistence indicates the time duration for which the CSE keeps the response available after receiving it.

Example usage of result persistence includes requesting sufficient persistence for analytics to process the response content aggregated asynchronously over time. If a result expiration time is specified then the result persistence lasts beyond the result expiration time.

· Operation Execution Time: optional operation execution time: indicates the time when the specified operation Operation is to be executed by the target CSE. A target CSE shall execute the specified operation of a Request having its operational execution time indicator set, starting at the operational execution time. If the execution time has already passed or if the indicator is not set, then the specified operation shall be immediately executed, unless the request expiration time, if set, has been reached.

Example usage of operational execution time includes asynchronous distribution of flows, which are to be executed synchronously at the operational execution time.

NOTE 6:
Time-based flows could not supported depending upon time services available at CSEs.

· Event Category: optional event category: Indicates the event category that should be used to handle this request. Event categories are impacting how Requests to access remotely hosted resources are processed in the CMDH CSF. Selection and scheduling of connections via CMDH are driven by policies that can differentiate event categories.

Example usage of "event category" set to specific value X: When the request is demanding an operation to be executed on a Hosting CSE that is different from the current Receiver CSE, the request may be stored in the current Receiver CSE that is currently processing the request on the way to the Hosting CSE until it is allowed by provisioned policies for that event category X to use a communication link to reach the next CSE on a path to the Hosting CSE or until the request expiration timestamp is expired.

The following values for Event Category shall have a specified pre-defined meaning:

Event Category = immediate: Requests of this category shall be sent as soon as possible and shall not be subject to any further CMDH processing, i.e. the request will not be subject to storing in CMDH buffers when communication over an underlying network is possible. In particular, CMDH processing will respect values for Request Expiration Timestamp, Result Expiration Timestamp given in the original request and not fill in any default values if they are missing.

Event Category = bestEffort: Requests of this category can be stored in CMDH buffers at the discretion of the CSE that is processing the request for an arbitrary time and shall be forwarded via Mcc on a best effort basis. The CSE does not assume any responsibility to meet any time limits for delivering the information to the next CSE. Also the maximum amount of buffered requests for this category is at the discretion of the processing CSE.

Event Category = latest:
· If this category is used in a request asking for a CRUD operation on a resource, the following shall apply:
CRUD requests using this category shall undergo normal CMDH processing as outlined further below in the present document and in oneM2M TS-0004 [3] with a maximum buffer size of one pending request for a specific pair of From and To parameters that appear in the request. If a new request message is received by the CSE with a pair of parameters From and To that has already been buffered for a pending request, the newer request will replace the buffered older request.

· If this category is used in a notification request triggered by a subscription, the following shall apply:
Notification requests triggered by a subscription using this category shall undergo normal CMDH processing as outlined further below in the present document and in oneM2M TS-0004 [3] with a maximum buffer size of one pending notification request per subscription reference that appears in a notification request. If a new notification request is received by the CSE with a subscription reference that has already been buffered for a pending notification request, the newer request will replace the buffered older request.

· If no further CMDH policies are provisioned for this event category, the forwarding process shall follow the 'bestEffort' rules defined above.

The M2M Service Provider shall be able to provision CMDH policies describing details for the usage of the specific Underlying Network(s) and the applicable rules as defined in the [cmdhPolicy] resource type for other Event Category values not listed above.

· Delivery Aggregation: optional delivery aggregation on/off: Use CRUD operations of <delivery> resources to express forwarding of one or more original requests to the same target CSE(s). When this parameter is not given in the request, the default behaviour is determined per the provisioned CMDH policy if available. If there is no such CMDH policy, then the default value is "aggregation off".
NOTE 7:
Since Delivery Aggregation is optional, there could be a default value to be used when not present in the Request. This parameter could not be exposed to AEs via Mca.

Example usage of delivery aggregation set on: The CSE processing a request shall use aggregation of requests to the same target CSE by requesting CREATE of a <delivery> resource on the next CSE on the path to the target CSE.

· Group Request Identifier: optional group request identifier: Identifier optionally added to the group request that is to be fanned out to each member of the group in order to detect loops and avoid duplicated handling of operation in case of loops of group and common members between groups that have parent-child relationship.

· Filter Criteria: optional filter criteria: conditions for filtered retrieve operation are described in table 8.1.2-2. This is used for resource discovery (clause 10.2.6) and general retrieve, update, delete requests (clauses 10.1.2, 10.1.3 and 10.1.4).

Example usage of retrieve requests with filter criteria using modifiedSince condition tag: if a target resource is modified since 12:00 then the Hosting CSE will send a resource representation.
· Discovery Result Type: Optional Discovery result format. This parameter applies to discovery related requests (see filterUsage in table 8.1.2-2 and clause 10.2.6) to indicate the preference of the Originator for the format of returned information in the result of the operation. This parameter shall take on one of the following values reflecting the options in clause 9.3.1:

Hierarchical addressing method.

Non-hierarchical addressing method.

For example if Discovery Result Type is set to Non-hierarchical addressing method, then the request Originator indicates that the discovered resources should be in the form of Non-hierarchical address.

The absence of the parameter implies that the result shall be in the form of a Hierarchical address.
·
· Token Request Indicator: Optional parameter used to indicate that the Originator supports the Token Request procedure, and the Originator may attempt the Token Request procedure if the Receiver provides a Token Request Information parameter in the response.
· Tokens: Optional parameter used to transport ESData-protected Tokens applicable to the request for use in Indirect Dynamic Authorization.
· Token IDs: Optional parameter used to transport Token-IDs applicable to the request for use in Indirect Dynamic Authorization.
· Local Token IDs: Optional parameter used to transport Local-Token-IDs applicable to the request for use in Indirect Dynamic Authorization.
Table 8.1.2-2: Filter Criteria conditions

	Condition tag
	Multiplicity
	Matching condition

	createdBefore
	0..1
	The creationTime attribute of the resource is chronologically before the specified value.

	createdAfter
	0..1
	The creationTime attribute of the resource is chronologically after the specified value.

	modifiedSince
	0..1
	The lastModifiedTime attribute of the resource is chronologically after the specified value.

	unmodifiedSince
	0..1
	The lastModifiedTime attribute of the resource is chronologically before the specified value.

	stateTagSmaller
	0..1
	The stateTag attribute of the resource is smaller than the specified value.

	stateTagBigger
	0..1
	The stateTag attribute of the resource is bigger than the specified value.

	expireBefore
	0..1
	The expirationTime attribute of the resource is chronologically before the specified value.

	expireAfter
	0..1
	The expirationTime attribute of the resource is chronologically after the specified value.

	labels
	0..n
	The labels attributes of the resource matches the specified value.

	resourceType
	0..n
	The resourceType attribute of the resource is the same as the specified value. It also allows differentiating between normal and announced resources.

	sizeAbove
	0..1
	The contentSize attribute of the <contentInstance> resource is equal to or greater than the specified value.

	sizeBelow
	0..1
	The contentSize attribute of the <contentInstance> resource is smaller than the specified value.

	contentType
	0..n
	The contentInfo attribute of the <contentInstance> resource matches the specified value.

	limit
	0..1
	 The maximum number of resources to be returned in the response. This may be modified by the Hosting CSE. When it is modified, then the new value shall be smaller than the suggested value by the Originator.

	attribute
	0..n
	This is an attribute of resource types (clause 9.6). Therefore, a real tag name is variable and depends on its usage and the value of the attribute can have wild card *. E.g. creator of container resource type can be used as a filter criteria tag as "creator=Sam" , "creator=Sam*" , "creator=*Sam" .

	filterUsage
	0..1
	Indicates how the filter criteria is used. If provided, possible values are 'discovery' and 'IPEOnDemandDiscovery'.
If this parameter is not provided, the Retrieve operation is a generic retrieve operation and the content of the child resources fitting the filter criteria is returned.
If filterUsage is'discovery', the Retrieve operation is for resource discovery (clause 10.2.6), i.e.only the addresses of the child resources are returned.
If filterUsage is 'IPEOnDemandDiscovery', the other filter conditions are sent to the IPE as well as the discovery Originator ID. When the IPE successfully generates new resources matching with the conditions, then the resource address(es) shall be returned. This value shall only be valid for the Retrieve request targeting an <AE> resource that represents the IPE.

	semanticsFilter
	0..n
	The semantic description contained in one of the <semanticDescriptor> child resources matches the semanticFilter that shall be specified in the SPARQL query language [5]. Examples for matching semantic filters in SPARQL to semantic descriptions can be found in [i.28].

	filterOperation

	0..1
	Indicates the logical operation (AND/OR) to be used for different condition tags. The default value is logical AND.

	contentFilterSyntax
	0..1
	Indicates the Identifier for syntax to be applied for content-based discovery.

	contentFilterQuery
	0..1
	The query string shall be specified when contentFilterSyntax parameter is present.

	level
	0..1
	The maximum level of resource tree that the Hosting CSE shall perform the operation starting from the target resource (i.e. To parameter). This shall only be appiled for Retrieve operation. The level of the target resource itself is zero and the level of the direct children of the target is one.

	offset
	0..1
	The level of the resource tree starting from the target resource.

The rules when multiple conditions are used together shall be as follows:

· Different condition tags shall use the "AND/OR" logical operation based on the filterOperation specified;

e.g. createdBefore = "time1" AND unmodifiedSince = "time2" if filterOperation = "AND" or "NULL", or createdBefore = "time1" OR unmodifiedSince = "time2" if filterOperation = "OR".
· Same condition tags shall use the "OR" logical operation, i.e. filterOperation doesn't apply to same conditions.
No mixed AND/OR filter operation will be supported.

Below is an example usage of filter criteria conditions in a HTTP query: an HTTP GET operation can be requested applying also a filter in the query part of the request itself:

GET/root?label=one&label=two&createdBefore=2014-01-01T00:00:00&limit=128&filterUsage=discovery.
The example discovers a maximum of 128 resources matching the following logical condition: createdBefore < 2014‑01‑01T00:00:00 AND (label = one OR label = two).

Once the Request is delivered, the Receiver shall analyze the Request to determine the target resource.

If the target resource is addressing another M2M Node, the Receiver shall route the request appropriately.

If the target resource is addressing the Receiver, it shall:

· Check the existence of To addressed resource.

· Identify the resource type by Resource Type.

· Check the privileges for From Originator to perform the requested operation.

· Perform the requested operation (using Content content when provided) according to the provided request parameters as described above.

· Depending on the request result content, respond to the Originator with indication of successful or unsuccessful operation results. In some specific cases (e.g. limitation in the binding protocol or based on application indications), the Response could be avoided.

Table 8.1.2-3 summarizes the parameters specified in this clause for the Request message, showing any differences as applied to C, R, U, D or N operations. "M" indicates mandatory, "O" indicates optional, "N/A" indicates "not applicable".

Table 8.1.2-3: Summary of Request Message Parameters

	Request message parameter
	Operation

	
	Create
	Retrieve
	Update
	Delete
	Notify

	Mandatory
	Operation - operation to be executed
	M
	M
	M
	M
	M

	
	To - the address of the target resource on the target CSE
	M
	M
	M
	M
	M

	
	From - the identifier of the message Originator
	O

See note
	M
	M
	M
	M

	
	Request Identifier - uniquely identifies a Request message
	M
	M
	M
	M
	M

	Operation dependent
	Content - to be transferred
	M
	O
	M
	N/A
	M

	
	Resource Type - of resource to be created
	M
	N/A
	N/A
	N/A
	N/A

	Optional
	Originating Timestamp - when the message was built
	O
	O
	O
	O
	O

	
	Request Expiration Timestamp - when the request message expires
	O
	O
	O
	O
	O

	
	Result Expiration Timestamp - when the result message expires
	O
	O
	O
	O
	O

	
	Operational Execution Time - the time when the specified operation is to be executed by the target CSE
	O
	O
	O
	O
	O

	
	Response Type - type of response that shall be sent to the Originator
	O
	O
	O
	O
	O

	
	Result Persistence - the duration for which the reference containing the responses is to persist
	O
	O
	O
	O
	N/A

	
	Result Content - the expected components of the result
	O
	O
	O
	O
	N/A

	
	Event Category - indicates how and when the system should deliver the message
	O
	O
	O
	O
	O

	
	Delivery Aggregation - aggregation of requests to the same target CSE is to be used
	O
	O
	O
	O
	O

	
	Group Request Identifier - Identifier added to the group request that is to be fanned out to each member of the group
	O
	O
	O
	O
	O

	
	Filter Criteria - conditions for filtered retrieve operation
	N/A
	O
	O
	O
	N/A

	
	Discovery Result Type - format of information returned for Discovery operation
	N/A
	O
	N/A
	N/A
	N/A

	
	
	
	
	
	
	

	
	Token Request Indicator - indicating that the Originator may attempt Token Request procedure (for Dynamic Authorization) if initiated by the Receiver
	O
	O
	O
	O
	O

	
	Tokens - for use in dynamic authorization
	O
	O
	O
	O
	O

	
	Token IDs - for use in dynamic authorization
	O
	O
	O
	O
	O

	
	Role IDs - for use in role based access control
	O
	O
	O
	O
	O

	
	Local Token IDs - for use in dynamic authorization
	O
	O
	O
	O
	O

	NOTE:
From parameter is optional in case of an AE CREATE request and mandatory for all other requests.

8.1.3
Response

The Response received by the Originator of a Request accessing resources over the Mca and Mcc reference points shall contain mandatory and may contain optional parameters. Certain parameters may be mandatory or optional depending upon the Requested operation (CRUDN) or the mandatory response code. In this clause, the mandatory parameters are detailed first, followed by those that are conditional, and then by those that are optional:

Mandatory Parameters:

· Response Status Code: response status code: This parameter indicates that a result of the requested operation is successful, unsuccessful, acknowledgement or status of processing such as authorization timeout, etc.:

A successful code indicates to the Originator that the Requested operation has been executed successfully by the Hosting CSE.

An unsuccessful code indicates to the Originator that the Requested operation has not been executed successfully by the Hosting CSE.

An acknowledgement indicates to the Originator that the Request has been received and accepted by the attached CSE, i.e. by the CSE that received the Request from the issuing Originator directly, but the Request operation has not been executed yet. The success or failure of the execution of the Requested operation is to be conveyed later.

Details of successful, unsuccessful and acknowledge codes are provided in clause 6.6 of oneM2M TS‑0004 [3].

· Request Identifier: Request Identifier. The Request Identifier in the Response shall match the Request Identifier in the corresponding Request.

Conditional Parameters:

· Content: resource content:

If Response Status Code is successful then:

The Content parameter may be present in a Response in the following cases:

· Create (C): Content is the address and/or the content of the created resource depending on Result Content value (i.e. attributes, address and address+attributes).

· Update (U): Content is the content replaced in an existing resource. If attributes are created at an existing resource, Content includes the names of the attributes created and their associated values. If attributes are updated at an existing resource, Content includes the names of the attributes updated and their associated values. If attributes are deleted at an existing resource, Content includes the names of the attributes deleted.

· Delete (D): Optionally, Content is all the information that got deleted.

The Content parameter shall be present in a Response in the following cases:

· Retrieve (R): Content is the retrieved resource content or aggregated contents or address list of discovered resources.

If present in the Request, Result Content, indicates which components of the result of the requested operation are to be included in the Response.

If Response Status Code is unsuccessful then the Content parameter may be present in a Response to provide more error information.

If Response Status Code is acknowledgment then the Content parameter:

· Shall contain the address of a <request> resource if the response was an acknowledgement of a non-blocking request and the <request> resource type is supported by the Receiver CSE.

· Is not present otherwise.
· Content Status: This parameter shall be present in the response to a Retrieve operation when the returned content is partial. More specifically, this parameter takes the value of partial depending on the Content parameter.

If Response Code is successful then and the Content parameter is present due to the following case:

· Retrieve (R): Content is the retrieved resource content or aggregated contents of discovered resources and the retrieved content is partial

Then Content Status parameter shall be present in the response for a Retrieve (R) operation

· Content Offset: This parameter includes either a starting point which can be used in a subsequent Retrieve request for direct child resource processing in the resource tree or the actual number of child resources, and descendants returned in Content. Its value depends on the information included in the Content Status parameter

If Content Status parameter is complete then this parameter shall not be included

If Content Status parameter is partial then this shall include the offset where processing can restart for the remaining direct child resources in the resource tree.

Then Content Offset parameter shall be present in the response for a Retrieve (R) operation.
Optional parameters:
· To: ID of the Originator or the Transit CSE.
· From: ID of the Receiver.
The To and From parameters can be used in the response for specific protocol bindings (e.g. MQTT):
· Originating Timestamp: originating timestamp of when the message was built.

· Result Expiration Timestamp: result expiration timestamp. The Receiver shall echo the result expiration timestamp if set in the Request message, or may set the result expiration timestamp itself.

Example usage of the Receiver setting the result expiration timestamp is when the value of the delivery time is dependent upon some changing Receiver context e.g. Result message deadline for aircraft position based upon velocity.

· Event Category: event category: Indicates the event category that should be used to handle this response. The definition of event category is the same as in the case of requests in clause 8.1.2.

Example usage of "event category" set to specific value X: When the response is targeted to an entity that is different from the Transit CSE currently processing the response message and is not an AE registered with the Transit CSE that is currently processing the response message, the response may be stored in the Transit CSE that is currently processing the response on the way to the destination of the response message until it is allowed by provisioned policies for that event category X to use a communication link to reach the next CSE on a path to the destination of the response message or until the result expiration timestamp is expired.
·
· Token Request Information: Optional parameter which may be used for requesting Tokens from Dynamic Authorization Systems.
Table 8.1.3-1 summarizes the parameters specified in this clause for the Response messages, showing any differences as applied to successful C, R, U, D or N operations, and unsuccessful operations. "M" indicates mandatory, "O" indicates optional, "N/A" indicates "not applicable".

Table 8.1.3-1: Summary of Response Message Parameters

	Response message parameter/success or not
	Response Status Code

	
	Ack
	successful: Operation = Create
	successful: Operation = Retrieve
	successful. Operation = Update
	successful. Operation = Delete
	successful Operation = Notify
	unsuccessful

Operation = C,R,U,D
	unsuccessful

Operation = or N

	Response Status Code - successful, unsuccessful, ack
	M
	M
	M
	M
	M
	M
	M
	M

	Request Identifier - uniquely identifies a Request message
	M
	M
	M
	M
	M
	M
	M
	M

	Content - to be transferred
	O
(address of <request> resource if response is ACK of a non-blocking request)
	O

(The address and/or the content of the created resource)
	M

(the retrieved resource content or aggregated contents or an address list)
	O

(The content replaced in an existing resource. The content of the new attributes created. The name of the attributes deleted.)
	O

(The content actually deleted)
	O (see note, end-to-end security protocol message)
	O

(Additional error info)
	O (see note, additional error info secured using ESPrim)

	To - the identifier of the Originator or the Transit CSE that sent the corresponding non-blocking request
	O
	O
	O
	O
	O
	O
	O
	O

	From - the identifier of the Receiver
	O
	O
	O
	O
	O
	O
	O
	O

	Originating Timestamp - when the message was built
	O
	O
	O
	O
	O
	O
	O
	O

	Result Expiration Timestamp - when the message expires
	O
	O
	O
	O
	O
	O (see note)
	O
	O (see note)

	Event Category - what event category shall be used for the response message
	O
	O
	O
	O
	O
	O
	O
	

	Content Status
	N/A
	N/A
	M
	N/A
	N/A
	N/A
	N/A
	

	Content Offset
	N/A
	N/A
	M
	N/A
	N/A
	N/A
	N/A
	

	
	
	
	
	
	
	
	
	

	Token Request Information
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	O
	O

	NOTE:
This parameter is present if the response contains an end-to-end security protocol message. Otherwise this parameter is not applicable.

-----------------------End of change 2---

CHECK LIST

· Does this change request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Have any mirror crs been posted?
· Does this change request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable?
· Does this change request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
© 2016 oneM2M Partners
 Page 38 (of 41)

[image: image16.png]_1525216416.vsd
Originator

Receiver

How often?

Once only, or more often if desired

CSE2 registered with Receiver

A. Establishing pairwiseESPrimKey

(pre-gen option) B.1b Create procedure:  To = Receiver <remoteCSE> or <AE> on CSE2 Content = <remoteCSE> assigning sharedReceiverESPrimRandObject (in e2ESecInfo) to fresh receiverESPrimRandObject

_1530545382.vsd
Originator

Receiver

How often?

Once only, or more often if desired

CSE2 registered with Receiver

A. Establishing pairwiseESPrimKey

C.2. Form serialization of inner request primitive

_1530555052.vsd
AE

_1530555557.vsd
AE

_1530545708.vsd
ESCertKE Initiating
End-Point

ESCertKE Terminating
End-Point

Generate ESCertKE Msg 1

Record From. Process ESCertKE Msg 1, & generate ESCertKE MSg 2

Process ESCertKE Msg 2, & generate ESCertKE Msg 3

9. Using From, correlate ESCertKE Msg 3 to ESCertKE Msg 1 &2. Process ESCertKE Msg 3, generate ESCertKE Msg 4

C.1.d. Notify Response with securityInfo object in Content  SecurityInfoType indicates ESCertKE message, securityInfo object includes ESCertKE Message4

_1526129242.vsd
AE

_1530544658.vsd
Originator

Receiver

How often?

Once only, or more often if desired

CSE2 registered with Receiver

A. Establishing pairwiseESPrimKey

(pre-gen option) B.1b Create procedure:  To = Receiver <remoteCSE> or <AE> on CSE2 Content = <remoteCSE> assigning sharedReceiverESPrimRandObject (in e2ESecInfo) to fresh receiverESPrimRandObject

_1525874162.vsd
AE

_1514952527.vsd
Originator

Receiver

How often?

Once only, or more often if desired

CSE2 registered with Receiver

A. Establishing pairwiseESPrimKey

C.2. Form serialization of inner request primitive

_1524894600.vsd
ESCertKE Initiating
End-Point

ESCertKE Terminating
End-Point

Generate ESCertKE Msg 1

Record From. Process ESCertKE Msg 1, & generate ESCertKE MSg 2

Process ESCertKE Msg 2, & generate ESCertKE Msg 3

9. Using From, correlate ESCertKE Msg 3 to ESCertKE Msg 1 &2. Process ESCertKE Msg 3, generate ESCertKE Msg 4

C.1.d. Notify Response.  Security Info indicates ESCertKE message, Content = ESCertKE Message4

