Doc# oneM2M-Template-Input-Contribution.doc

	Input Contribution

	Meeting ID*
	ARC #25

	Title:*
	DDS backgrounds

	Source:*
	Jessie, Huawei, lijing80@huawei.com
Sarah, Huawei, changhongna@huawei.com
JunKwon Jung, KETI, jkjung@imtl.skku.ac.kr

	Uploaded Date:*
	2016/10/9

	Document(s)

Impacted*
	WI-0047 TR-0027 v0.0.1

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	It is proposed to agree the content in this contribution as the background of DDS in TR-0027.

	Template Version:23 February 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

-----------------------start of change 1---
5.1
Backgrounds

The Data Distribution Service (DDS) is a middleware protocol and API standard for data-centric connectivity specified by Object Management Group (OMG). DDS provides low-latency data connectivity, high reliability, and a scalable architecture that business and mission-critical Internet of Things (IoT) applications need. DDS standards can be found on the OMG DDS website, where several features of DDS are illustrated, e.g. data centricity, global data space, quality of service, dynamic discovery and scalable architecture.
The core standards of DDS are the Data-Centric Publish-Subscribe (DCPS) [i.5] and the Real-time Publish-Subscribe Protocol (RTPS) [i.6]. The DCPS builds on the concept of a "global data space" that is accessible to all interested applications. Applications that want to contribute information to this data space declare their intent to become "Publishers". Similarly, applications that want to access portions of this data space declare their intent to become "Subscribers". This standard also specifies how Publishers and Subscribers refer to portions of this space. However, the DCPS does not address the protocol used by the implementation to exchange messages over transports such as TCP/UDP/IP, so different implementations of DCPS will not interoperate with each other unless vendor-specific "bridges" are provided. So the RTPS was specifically developed to be a standard publish/subscribe wire-protocol. The RTPS defines the message formats, interpretation, and usage scenarios that underlie all messages exchanged by applications.
OMG DDS Standards include the following series:
· Core
· DDS [i.5] v1.4 – the DDS specification describes a DCPS model for distributed application communication and integration.
· DDS-DLRL [i.7] v1.4 – describes a high-level Data Local Reconstruction Layer (DLRL) interface to DDS that allows a simple integration of the DDS Service into the application layer. The content of this specification is original part of the DCPS specification before v1.4, and was separated to construct a new specification in v1.4.

· DDSI-RTPS [i.6] v2.2 – defines the RTPS DDS Interoperability Wire Protocol.

· Extensions

· DDS-XTypes [i.8] v1.1 – defines Extensible and DynamicTopic Types for DDS

· DDS-Security [i.9] v1.0 Beta 1 – defines the Security Model and Service Plugin Interface (SPI) architecture for compliant DDS implementations.

· DDS-RPC [i.10] v1.0 Beta 1 – Defines a distributed services framework providing language-independent service defintion and service/remote procedure invokation using DDS. Supports automatic discovery, synchronous and asynchronous invocations, and QoS.

· Services

· DDS-Web [i.11] v1.0 Beta 1 – defines a platform-independent Abstract Interaction Model of how web clients should access a DDS System and a set of mappings to specific web platforms that realize the Platform Independent Model (PIM) in terms of standard web technologies and protocols.

· API

· ISO/IEC C++ 2003 Language PSM for DDS [i.12] – defines a C++ API only for the Data-Centric Publish-Subscribe (DCPS) portion of the DDS specification

· Java 5 Language PSM for DDS [i.13] – defines a Java API for the Data-Centric Publish-Subscribe (DCPS) portion of the DDS specification.

· Other language APIs for C, Java, Traditional C++, and other Languages are derived from the DDS API in IDL using the respective IDL to language Mappings

· Work in Progress

· TCP/IP DDSI-RTPS PSM
5.2
Status

The work of the present document is based on the DDS released or in process specifications from OMG. The latest version and the correspongding time of the specifications are listed in table 5.2-1.

	SPECIFICATION
	acronym
	version
	Document state/date

	Data Distribution Service
	DDS
	1.4
	Released/2015-04

	DDS Data Local Reconstruction Layer
	DDS-DLRL
	1.4
	Released/2015-04

	Real-time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol
	DDSI-RTPS
	2.2
	Released/2014-09

	Extensible and Dynamic Topic Types for DDS
	DDS-XTypes
	1.1
	Released/2014-11

	DDS-SECURITY
	DDS-SECURITY
	1.0 - Beta 2
	In Process/2016-06

	Remote Procedure Calls over DDS
	DDS-RPC
	1.0 - Beta 2
	In Process/2016-06

	Web-Enabled DDS
	DDS-WEB
	1.0 - Beta 2
	In Process/2015-12

	ISO/IEC C++ 2003 Language DDS PSM
	DDS-PSM-Cxx
	1.0
	Released/2013-11

	Java 5 Language PSM for DDS
	DDS-Java
	1.0
	Released/2013-11

5.3
Architecture and protocol stack

5.3.1
Data-Centric Publish-Subscribe (DCPS)
DCPS is specific to a "Data Centric" style of distributed communications, which leverages a publish/subscribe communications model to connect anonymous information producers with information consumers. The overall distributed application is composed of processes called "participants", each running in a separate global data space, possibly on different computers. Applications that want to contribute information to this data space declare their intent to become "Publishers". Similarly, applications that want to access portions of this data space declare their intent to become "Subscribers". Each time a publisher posts new data into this "global data space", the RTPS propagates the information to all interested subscribers.
The unit of information exchanged between publishers and subscribers is constructed following certain data model, which is identified by a topic and a type. The topic provides an identifier that uniquely identifies some data items within the global data space. The type provides structural information needed to tell the DCPS how to manipulate the data.
The "datawriter" is an logic function module, which is usually called "object" in DDS specifications, the application must use to communicate to a publisher. The publication is defined as the association of a datawriter to a publisher. To access the received data, the application must use a typed "datareader" attached to the subscriber. A subscriber may receive and dispatch data of different specified types to different datareader. Thus, a subscription is defined as the association of a datareader with a subscriber. When an application wishes to publish data of a given type, it must create a publisher (or reuse an already created one) and a datawriter with all the characteristics of the desired publication. Similarly, when an application wishes to receive data, it must create a subscriber (or reuse an already created one) and a datareader to define the subscription.
The overall DCPS entities is shown in Figure 5.3.1-1. All these DCPS entities are attached to a participant. A participant represents the local membership of the application in a domain. A domain is a distributed concept that links all the applications able to communicate with each other. It represents a communication plane: only the publishers and the subscribers attached to the same domain may interact.

[image: image1.emf]Subscriber Publisher Subscriber Publisher

Data

Reader

Data

Writer

Data

Writer

Data

Reader

Data

Writer

Topic Topic

Topic

Data

Reader

Participant

Participant

Participant

Global Data Space

Figure 5.3.1-1 DCPS Entities
5.3.2
Real Time Publish subscribe (RTPS)
Real-time Publish-Subscribe Protocol (RTPS) allows Data Distribution Service (DDS) implementations from multiple vendors to interoperate. The RTPS protocol is designed to be able to run over multicast and connectionless best-effort transports such as UDP/IP.
The main features of the RTPS protocol include:
• Performance and quality-of-service properties to enable best-effort and reliable publish-subscribe communications for real-time applications over standard IP networks.
• Fault tolerance to allow the creation of networks without single points of failure.
• Extensibility to allow the protocol to be extended and enhanced with new services without breaking backwards compatibility and interoperability.
• Plug-and-play connectivity so that new applications and services are automatically discovered and applications can join and leave the network at any time without the need for reconfiguration.
• Configurability to allow balancing the requirements for reliability and timeliness for each data delivery.
• Modularity to allow simple devices to implement a subset of the protocol and still participate in the network.
• Scalability to enable systems to potentially scale to very large networks.
• Type-safety to prevent application programming errors from compromising the operation of remote nodes.
5.3.3
Common Object Request Broker Architecture (CORBA)
In some DDS open source realizations, the DCPS is implemented running over the CORBA, instead of RTPS. CORBA is a standard defined by OMG and is an architecture for data distribution using a broker. CORBA also defines a broker similar with MQTT. But when it is used in DDS, CORBA has a different running mechanism campared with MQTT. In DDS, there is a repository to discover other entity in the same service area. It seems like the server in CORBA. A repository has information of all participants in a domain such as a network address, identification, topic name and so on. As a client of CORBA, each participant can accesses and modifies data in a repository corresponding to each one.

[image: image2]
5.4
Key features

5.4.1 Quality of Service (QoS) Policy

DDS provides a rich set of Quality of Service (QoS) policies to allows applications to control/optimize network & computing resources. These QoS policies can be used individually or together to affect a variety aspects of communications, including reliability, performance, persistence of data, and amount of system resources used. These QoS policies makes DDS different from other communication middleware solutions.
The qualities of service (QoS) can be classified into six categories, such as data availability, data delivery, data timeliness, lifecycle, configuration and resources. The table below shows the full list of QoS policies available.
Table 5.4.1-1 DDS QoS Policies
	QosPolicy
	Meaning
	Concerns
	RxO
	Changeable
	Categories

	USER DATA
	Attaches arbitrary application data (a buffer of bytes) to discovery meta-data.
	DP,DR,DW
	NO
	YES
	Configuration

	TOPIC DATA
	Attaches arbitrary application data (a buffer of bytes) to discovery meta-data.
	T
	NO
	YES
	

	GROUP DATA
	Attaches arbitrary application data (a buffer of bytes) to discovery meta-data.
	P,S
	NO
	YES
	

	LIVELINESS
	Determine whether an Entity is "active" (alive).
	T,DR,DW
	YES
	NO
	

	ENTITY FACTORY
	Controls Entity behavior as a factory for other entities (i.e., if child entities are created enabled)
	DP, P, S
	NO
	YES
	

	DEADLINE
	Maximum duration within which an instance is expected to be updated.
	T,DR,DW
	 YES
	YES
	Data
Timeliness

	LATENCY BUDGET
	Specifies the maximum acceptable delay from the time the data is written until the data is inserted in the receiver's applicationcache and the receiving application is notified of the fact.
	T,DR,DW
	 YES
	YES
	

	TRANSPORT PRIORITY
	This policy is a hint to the infrastructure as to how to set the priority of the underlying transport used to send the data.
	T,DW
	N/A
	YES
	

	READER_DATA_LIFECYCLE
	Specifies the behavior of the DataReader with regards to the lifecycle of the datainstances it manages.
	DR
	N/A
	YES
	Lifecycle

	WRITER_DATA_LIFECYCLE
	Specifies the behavior of the DataWriter with regards to the lifecycle of the datainstances it manages.
	DW
	N/A
	YES
	

	LIFESPAN
	Specifies the maximum duration of validity of the data written by the DataWriter
	T,DW
	N/A
	YES
	Data
Availability

	DURABILITY
	Specifies if Connext will store and deliver previously published data to new/late-joining Readers.
	T,DR,DW
	YES
	NO
	

	DURABILITY_SERVICE
	Configures external Persistence Service for Writers with PERSISTENT or TRANSIENT Durability.
	T,DW
	NO
	NO
	

	HISTORY
	Controls how much data to store and how stored data is managed for the DataWriter/Reader within specified resource limits.
	T,DR,DW
	NO
	NO
	

	TIME_BASED_FILTER
	Sets minimum time period before new data for an instance is provided to a DataReader.
	DR
	N/A
	YES
	Resources

	RESOURCE_LIMITS
	Limits amount of data cached by the middleware.
	T,DR,DW
	NO
	NO
	

	RELIABILITY
	Indicates the level of reliability offered/requested by the Service.
	T,DR,DW
	 YES
	NO
	Data
Delivery

	DESTINATION_ORDER
	Controls the criteria used to determine the logical order among changes made by Publisher entities to the same instance of data.
	T,DR
	NO
	NO
	

	PRESENTATION
	Controls how Connext presents data received by an application to DataReaders
	P,S
	YES
	NO
	

	OWNERSHIP
	Specifies whether it is allowed for multiple DataWriters to write the same instance of the data and if so, how these modifications should be arbitrated.
	T,DR,DW
	YES
	NO
	

	OWNERSHIP_STRENGTH
	Specifies strength used to arbitrate among multiple DataWriters of same instance.
	DW
	N/A
	YES
	

	PARTITION
	Set of strings that introduces a logical partition among the topics visible by the Publisher and Subscriber.
	P,S
	NO
	YES
	

	RxO = Request/Offered Semantics, T = Topic, DP = DomainParticipan,
DR = DataReader, DW = DataWriter, P = Publisher, S = Subscriber

	

5.4.2
Dynamic Discovery

DDS provides a dynamic discovery service. Based on the discovery service, entities can discover and possibly keep track of the presence of remote entities. This discovery information is made available to the application through DDS built-in topics. Built-in Topics are a special kind of topics that are used by applications to discover each other. These Topics are handled automatically by the DDS middleware.
The dynamic discovery makes the DDS applications extensible. The application does not need to know or preconfigure the information of other entities for communication, e.g. IP address, because these information can be automatically discovered by dynamic discovery mechanism.
The dynamic discovery takes place using "built-in" DDS DataReaders and DataWriters with pre-defined Topics and QoS. There are four pre-defined built-in Topics: "DCPSParticipant", "DCPSSubscription", "DCPSPublication", and "DCPSTopic". For each of the built-in Topics, there exists a corresponding DDS built-in DataWriter and DDS built-in DataReader. The built-in DataWriters are used to announce the presence and QoS of the local DDS Participant and the DDS entities it contains (DataReaders, DataWriters and Topics) to the rest of the network. Likewise, the built-in DataReaders collect this information from remote Participants, which is then used by the DDS implementation to identify matching remote entities. The built-in DataReaders act as regular DDS DataReaders and can also be accessed by the user through the DDS API.
The RTPS Simple Participant Discovery Protocol (SPDP) detects and announces the presence of Participants in a domain. For each participant, the SPDP creates two RTPS built-in Endpoints: the SPDPbuiltinParticipantWriter and the SPDPbuiltinParticipantReader. The SPDPbuiltinParticipantWriter periodically sends SPDPdiscoveredParticipantData to a pre-configured list of locators to announce the participant’s presence on the network. The pre-configured list of locators may include both unicast and multicast locators. These locators simply represent possible remote Participants in the network, no Participant need actually be present. By sending the SPDPdiscoveredParticipantData periodically, participants can join the network in any order.
5.4.3
Discovery in CORBA

In case CORBA is used to transport, the DDS system uses the repository to discover the other entities. New publisher or subscriber creates a message which includes the built in topic by DCPS and the message is delivered to the repository. A repository collects information of all entities in a same domain and do the topic matching. Once a matching is established, a repository distributes matching information to publishers such as each entities' address , id and so on. When a publisher received these information, a publisher sends an association message to a subscriber. a subscriber checks received message. If this message is correct, the association is established and all data from a publisher will deliver to the subscriber directly.

[image: image3]
Figure 5.4.3-1 CORBA discovery scenario
5.5
Security

The security specification defines five Service Plugin Interfaces (SPIs) that when combined together provide Information Assurance to DDS systems:

• Authentication Service Plugin. Provides the means to verify the identity of the application and/or user that invokes operations on DDS. Includes facilities to perform mutual authentication between participants and establish a shared secret.

• AccessControl Service Plugin. Provides the means to enforce policy decisions on what DDS related operations an authenticated user can perform. For example, which domains it can join, which Topics it can publish or subscribe to, etc.

• Cryptographic Service Plugin. Implements (or interfaces with libraries that implement) all cryptographic operations including encryption, decryption, hashing, digital signatures, etc. This includes the means to derive keys from a shared secret.

• Logging Service Plugin. Supports auditing of all DDS security-relevant events

• Data Tagging Service Plugin. Provides a way to add tags to data samples.
5.6
Benefits of introducing DDS to oneM2M

It is considered that oneM2M can utilize the advantages of DDS in the following three different ways to adapt various scenarios.
· The DDS binding makes use of DDS to provide reliable communications between two parties (AEs and CSEs). Similar to MQTT binding, the pub-sub relationship is established according to the topic names. Moreover, in DDS protocol binding, the pub-sub relationship is also established based on the dynamic discovery mechanism. Parties broadcast the information of topics which they want to publish or subscribe and receive the information of topics broadcasted by other parties. Once a topic which will be published by a party matches a topic which will be subscribed to by other parties, the pub-sub relationship is established. The establishment of a pub-sub relationship between Parties totally depends on the matching of topic names. However, this DDS binding solution may lead to some problem. If the setting of topic name is restricted to the format of "/<originator>/<receiver>" and the and the communication of parties depends on the registration relationship, the advantages of DDS protocol can not be fully utilized. On the other hand, if there is no restriction on the format of the topic name and the establishment of communication entirely depends on the dynamic discovery mechanism, the communication mechanism in oneM2M system will not depend on the registration relationship anymore and the central control capability of the oneM2M platform will be weakened. For example, two ADNs can communicate with each other directly through the dynamic discovery. This straight forward DDS protocol binding solution will be studied in clause 6.
· For the above-mentioned problem, an optimized dynamic discovery solution is introduced in clause 7 for DDS based direct change of data between oneM2M parties. The optimized dynamic discovery mechanism is used to establish pub-sub relationship between parties using DDS repository which is the logic function module. The DDS repository is similar to the broker of MQTT. But there are two differences. Firstly, the DDS repository is only used to establish the pub-sub relationship, and doesn't forward the data from one party to another. Secondly, the DDS repository establishes the pub-sub relationship not only rely on topic name, but also taking the communication rules or policies into account. The communication rules or policies can be pre-configured according to the actual deployment scenario requirement, e.g. whether or not allowing two nodes without registration relation establish pub-sub relationship. The DDS repository can be implemented by different oneM2M nodes and can be deployed either distributed or in a central mode. In addition of enabling the oneM2M system to achieve low latency and high reliability adavantage of DDS protocol, this solution maintains the central control capability of the platform to the whole oneM2M system.
· The DDS interworking solution will be studied in clause 8. It enables the oneM2M application to access the data of an existing DDS system. It enhances the interoperability of the oneM2M system, and thus oneM2M system can be used in more high demand scenarios, such as medical, smart energy, industry and so on. More real time systems and devices can be integrated into the oneM2M system.
-----------------------End of change 1---
-----------------------Start of Changes to References Section -------------

2.2
Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
oneM2M Drafting Rules (http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf)
[i.2]
oneM2M TS-0001: "Functional Architecture".

[i.3]
oneM2M TS-0004: "Service Layer Core Protocol Specification".
[i.4]
oneM2M TS-0003: "Security Solutions".
[i.5]
Data Distribution Service (DDS)
NOTE:
Available at http://www.omg.org/spec/DDS/.
[i.6] Real-time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol
NOTE:
Available at http://www.omg.org/spec/DDSI-RTPS/.
[i.7] DDS Data Local Reconstruction Layer (DDS-DLRL)
NOTE:
Available at http://www.omg.org/spec/DDS-DLRL/.
[i.8] Extensible and Dynamic Topic Types for DDS
NOTE:
Available at http://www.omg.org/spec/DDS-XTypes/.
[i.9] DDS Security
NOTE:
Available at http://www.omg.org/spec/DDS-SECURITY/.
[i.10] Remote Procedure Calls over DDS
NOTE:
Available at http://www.omg.org/spec/DDS-RPC/.
[i.11] Web-Enabled DDS
NOTE:
Available at http://www.omg.org/spec/DDS-WEB/.
[i.12] ISO/IEC C++ 2003 Language DDS PSM
NOTE:
Available at http://www.omg.org/spec/DDS-PSM-Cxx/.
[i.13] Java 5 Language PSM for DDS
NOTE:
Available at http://www.omg.org/spec/DDS-Java/.
-----------------------End of Changes to References -------------
-Start of Changes changes to Definitions, Symbols, Abbreviations, Acronyms-
3.3
Abbreviations and Acronyms

For the purposes of the present document, the abbreviations given in oneM2M TS-0001 [i.2] and the following apply:

DDS
Data Distribution Service
IoT
Internet of Things
DCPS
Data-Centric Publish-Subscribe
RTPS
Real-time Publish-Subscribe
DLRL
Data Local Reconstruction Layer
QoS
Quality of Service
---End of changes to Definitions, Symbols, Abbreviations, Acronyms ---

© 2015 oneM2M Partners

Page 1 (of 2)

[image: image4.png]@ association order Repository

@ Topic matching

@ association request

Publisher (® association establish Subscriber

® data delivery

[image: image5.png]Publisher Data access
Or and modification Repository

Subscriber
(client)

(server)

ORB(Object Request Broker)

_1537526670.vsd
Subscriber

Publisher

Subscriber

Publisher

Data
Reader

Data
Writer

Data
Reader

Data
Writer

Data
Writer

Topic

Topic

Topic

Data
Reader

Participant

Participant

Participant

Global Data Space

