Doc# ARC-2017-0023-Possible_Solutions_to_Address_OPC-UA_Interworking.doc

	Input Contribution

	Meeting ID*
	ARC#26.3

	Title:*
	Possible Solutions to Address OPC-UA Interworking

	Source:*
	Miao Jiang, Hitachi, miaojiang@hitachi.cn
Chengsui Lu, Hitachi, cslu@hitachi.cn

	Uploaded Date:*
	2017-1-12

	Document(s)

Impacted*
	WI-0059 OPC-UA Interworking

TR-0018 Industrial Domain Enablement

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	To agree on the new content in TR-0018 (Industrial Domain Enablement) to include oneM2M and OPC-UA interworking solutions.

	Template Version:23 February 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

10.3
Possible Solutions to Address Interworking
This clause studies the possible solutions to realize oneM2M interworking with OPC-UA. The architecture of interworking will be proposed with the usage of IPE (Interworking Proxy). Solutions of resource mapping and procedure mapping based on OPC-UA information model will be studied.
10.3.1 Introduction

This clause describes solutions for oneM2M and OPC UA interworking and provides,
· Functional architecture for interworking
· Resource model mapping
· Procedure mapping
Firstly functional architecture with main entities is described. Then describes possible resource model mappings are discussed. Next, procedure mapping is described, i.e. interaction between main entities e.g. discovery or registration, subscription and notification etc. This functional architecture and possible interworking solutions can address the defined interworking scenarios between oneM2M and OPC UA in clause 10.2.
10.3.2 Functional Architecture for Interworking
The OPC UA interworking scheme is based on IPE (Interworking Proxy Application Entity) which is a specialized AE for interworking. As depicted in Figure 10.3.2-1, the IPE is characterized by the support of a non-oneM2M reference point (OPC UA interface) and by the mapping the non-oneM2M (OPC UA) data models to oneM2M resources exposed via the Mca reference point.

[image: image1]
Figure 10.3.2-1 Functional Architecture with IPE

The main entities and their characteristics are as below.
· IPE: a specialized AE, characterized by the support of a non-oneM2M reference point, and by the capability of mapping the OPC UA data model to the oneM2M resources exposed via the oneM2M Mca reference point

· IWK (Interworking) Function: a function of IPE which translates the OPC UA entities into oneM2M resources e.g. OPC UA specific AE, container etc.

· OPC UA Device: NoDN (Non-oneM2M Device Node) which plays either OPC UA Client or OPC UA Server roles or both. The OPC UA Server hosts OPC UA resources. OPC UA Client accesses the OPC UA Server to read or write OPC UA attributes, e.g. for monitoring and controlling industrial devices where OPC UA is installed.
Figure 10.3.2-2 demonstrates a possible deployment model which describes the main entities of OPC UA and oneM2M interworking via reference points. The deployment shows an example of deploying IPE in a MN, but it is also possible that the deployment of IPE locates in an IN. The uniform interworking functions provided by the IPE (no matter locates in MN or IN) could address the defined interworking scenarios between oneM2M and OPC UA in clause 10.2.

[image: image2]
Figure 10.3.2-2 Deployment Model based on Functional Architecture
10.3.3
Resource Model Mapping
10.3.3.1.
Introduction
As introduced in clause 10.1.4, the resource structure of OPC UA Server is hierarchical and organized by its “Address Space”. (see Figure 10.1.4-1). The Address Space is modelled as a set of Nodes which represent real objects and their components and are accessible by OPC UA Clients using OPC UA Services.
Therefore the possible mapping between oneM2M and OPC UA entities is considered based on several levels of the standard Address Space structure of OPC UA Servers. Then the mapping solution are analyzed and recommendations are proposed.
10.3.3.2.
Generic Entities Mapping
OPC UA defines the entities by using the concept of “object”, but the objects located in the OPC UA servers are only accessible through “Address Space” where objects are represented by a set of Nodes as depicted in Figure 10.3.3.2-1. Several Node Types (Classes) are defined by OPC UA as introduced in clause 10.1.4. And “Object” Node Type is to abstract the real objects (e.g. an industrial device and its components) and to related one node to others through defined “References” in this Object Node to include semantic information (e.g. construction of a device, device characteristics and capabilities etc.).
OPC UA Clients communicate with OPC UA Servers to acquire industrial data. All the data on a OPC UA Server is organized in the Server’s Address Space (as Figure 10.3.3.2-1) and could be browsed and further accessed by OPC UA Clients. The most essential node in the Address Space is the Object Node and its subtypes such as “Variables”, “Methods” and “References”. The content of real objects including current and historic records could be accessed through “Read/Write” commands, and could be subscribed based on defined policies (e.g. events, or selected monitored list) through invoking the supported “Methods”.

[image: image3]
Figure 10.3.3.2-1 OPC UA Node Model

Standardized nodes as entry points into Address Space are shown in the dashed rectangle in Figure 10.3.3.2-2. They are the top levels standardized for all Servers, and are summarized as below.
· Root: the browse entry point for the Address Space.
· Views: the browse entry point for Views, will use references to display only a specific subset of the data which Clients have interests (the entire Address Space is the default View). As in Figure 10.3.3.2-2, “BoilerView” defines a dedicated subset of boiler related objects and attributes.
· Objects: the browse entry point for Object Nodes, the “Objects” node can also reference View Nodes using Organizes References (one type of references). As in Figure 10.3.3.2-2, several objects representing physical areas are defined, e.g. “Area 1” means a geographical area, and “BoilerArea” means a dedicated logical area or group containing all boilers. A boiler named “Boiler1” is located in both “Area 1” and “BoilerArea”, and it could be browsed by interested OPC UA Client application through defined “BoilerView”.
· Types, ObjectType, VariableType, ReferenceType and DataType: the browse entry point for Node Types. As introduced in clause 10.1.4, there are 4 Node Types defined in OPC-UA. And in Figure 10.3.3.2-2, the boiler “Boiler1” references a “BoilerType” Object Type which could include semantic information of this device type.
· And Server to show the server type of the OPC UA Server.

In figure 10.3.3.2-2, arrows represent References between OPC-UA entities.

Based on the OPC UA structured Address Space, the following levels of abstraction are modelled i.e. “Root” standard Object, standard Objects beneath Root and other resources including methods, attributes and references etc.
The possible mapping for these different levels of model is:

· OPC UA “Root” standard Object

 -- oneM2M <AE> resource

· OPC UA standard objects beneath Root

 -- oneM2M <container>/ <flexContainer> resource

· Other resources (e.g. methods, attributes, references) -- oneM2M <flexContainer> / <contentInstance> resource
Then the generic mapping OPC UA entities to oneM2M resources are shown in Figure 10.3.3.2-3. Further analysis will be presented in the next clause.

[image: image4]
Figure 10.3.3.2-2 Standard Address Space Structure of an OPC UA Server

[image: image5]
Figure 10.3.3.2-3 Generic entities mapping
10.3.3.3.
Analysis and Recommendations
Based on the utilization of OPC UA in the industrial domain, the main scenario of OPC UA and oneM2M interworking would be industrial data exchanging between OPC UA Servers and oneM2M system or data exchanging between OPC UA Servers through oneM2M system. All of these OPC UA Server are structured by the Address Space, therefore the top level standardized object “Root” as the entry point of any OPC UA Server’s Address Space is mapped to <AE>, which would need creation of an <AE> resource by the hosting CSE (located in the interworking node such as a MN) after necessary authentication and proper access rights definition for the <AE> resource.
Then to further browse the OPC UA Server’s Address Space, several standard objects beneath Root (e.g. Views, Objects, Types) are defined as the subtypes of Root Object to act as the standardized entries for main OPC UA functionalities, such as variables browsing and subscription. Therefore these standard objects beneath Root are suggested to be defined as the child resources of <AE> resource, which could be <container> or <flexContainer> resource.
Next, any other OPC UA resources e.g. attributes, methods, references are represented as a Content Sharing Resource in oneM2M. But these resources may require different access control privileges on their attributes. For example, “Variable” Node Type has several attribute definitions, and the “UserAccessLevel” attribute is defined to limit the access of the attributes taking user access rights into account. Similarly, “Method” Node Type also has several attribute definitions, and the “UserExecutable” attribute is defined to limit the access of the methods taking user access rights into account. But “Reference” Node Type usually does not need specific access rights for different users. Flexible mapping of these OPC UA resources are suggested depending on the necessity of user dependent access rights. Additionally, “Method” Node Type in OPC UA has “InputArguments” and “OutputArguments” attributes defining the arguments used when calling the Method. These contents have one option to be adopted directly as the child resources of <flexContainer>, while another option is to be mapped as attributes of oneM2M <flexContainer> resource, which is more efficient having them as (Similarly with Alljoyn interworking, defining “input” and “output” parameters of [allJoynMethodCall] resource by using the [customAttribute] attribute of oneM2M <flexContainer> resource type.). Content Sharing Resource in the oneM2M such as <flexContainer> or <contentInstance> shall be selected for mapping based on the possibility of defining <accessControlPolicyIDs> as their child resources or other considerations such as better usability of oneM2M resources.
The existing resource type definition in oneM2M is preferred to be used for mapping OPC UA data models to oneM2M resources. And below options are considered for the possible mapping.
Table 10.3.3.3-1. Analysis of Resource Mapping

	Options
	PROs
	CONs

	Mapping OPC UA standard objects beneath Root
	Option1:

Map standard objects beneath Root to <container> resource
	Simple mapping.
	Some of the mandatory attributes of <container> resource could not have corresponding attributes from OPC UA, needs to be filled by e.g. creator of the resource.

	
	Option2:

Map standard objects beneath Root to <flexContainer> resource
	Less mandatory attributes; customizable attributes could directly indicate associated content of the OPC UA standard objects.
	Need detailed definition of <flexContainer> resource in further interworking specifications.

	Mapping other resources (e.g. methods, attributes, references)
	Option3:

Map all other resources (e.g. methods, attributes, references) to <flexContainer> resource
	Simple mapping.
	Some of the OPC UA resources e.g. Reference Node Type does not need dedicated <accessControlPolicyIDs>, and creation of <contentInstance> resources could be sufficient.

	
	Option4:
Map part of other resources to <flexContainer> resource, and part of other resources to <contentInstance> resource
	Flexible resource mapping and possible less memory occupation on IPE.
	Complex mapping: need to define which specific OPC UA resource types shall be mapped to which oneM2M resource types.

Recommendations:

For the level of OPC UA standard objects beneath Root mapping, both option 1 and 2 are feasible mapping solutions on IPEs.
For the level of other OPC UA resources mapping, option 4 is suggested for more flexibility of resource mapping due to the variety of remaining OPC UA resources types.
Additionally, below considerations are suggested when mapping resources.

· When mapping the OPC UA Root Object to oneM2M <AE> resource, some Mandatory AE attributes don’t have corresponding attributes from OPC UA, and these attributes could be mandatory to be supported in oneM2M. Thus it is recommended that these attributes be provided by the creator of such a resource e.g. CSE or filled by the platform.
10.3.4
Procedure Mapping
To be proposed after agreement of “Resource Model Mapping” section.
OPC UA Application

IPE

oneM2M CSE(s)

oneM2M Application

Mca

Mca

Non oneM2M interface

ADN

IN

IN-CSE

MN

MN-CSE

IPE

OPC-UA Client APP

OPC-UA device

OPC-UA Server APP

Mcc

ASN

ASN-AE

ASN-CSE

AE

Mca

Mca

IWK function

OPC-UA interface

Mcc

Mca

Mca

Mca

IN-AE

OPC UA Server

OPC UA Address Space

Object Node

Attributes

Methods

()

()

Attributes

Variables

References

Other Nodes

Invoke

Read/Write

Root

Views

Objects

BoilerView

Types

Server

Area1

BoilerArea

Boiler1

ObjectTypes

BoilerType

VariableTypes

ReferenceTypes

DataTypes

Standardized nodes as entry points into Address Space

< flexContainer >

ObjectType resource1

DataTypes

ReferenceTypes

VariableTypes

ObjectTypes

Object resource3

Object resource2

Object resource1

Server

Types

View resource

Objects

Views

Root

<Containercontainer>

<AE>

<Containercontainer>

<Containercontainer>

<Containercontainer>

<Containercontainer>

<Containercontainer>

<Containercontainer>

<Containercontainer>

< flexContainer >

<ContentInstancecontentInstance>

<flexContainer>

© 2017 oneM2M Partners

Page 6 (of 7)

