ARC-2017-0123R01-CR-TR-0020-Group_Fanout_of_Transactions

	CHANGE REQUEST

	Meeting ID:*
	ARC 28

	Source:*
	Dale Seed, Convida Wireless, Seed.Dale@ConvidaWireless.com

	Date:*
	2017-03-19

	
	

	Reason for Change/s:*
	Insert support for group fanout of transactions

	CR against: Release*
	Release 3

	CR against: WI*
	 FORMCHECKBOX
 Active (WI-0034)
 FORMCHECKBOX
 MNT maintenance / < Work Item number(optional)>
Is this a companion CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

Companion CR number: (Note to Rapporteur - use latest agreed revision)Is this a mirror CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

Mirror CR number: (Note to Rapporteur - use latest agreed revision)

 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TR-0020 Version 0.6.0

	Clauses *
	8.1.3

	Type of change: *
	 FORMCHECKBOX
 Editorial change

 FORMCHECKBOX
 Bug Fix or Correction

 FORMCHECKBOX
 Change to existing feature or functionality

 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	N/A

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction

This contribution adds support to allow a Group Hosting CSE to receive a transaction request targeting a specific group and fanout the transaction to the corresponding group members. In addition to performing the fanout of the transaction, the contribution also adds support to allow a Group Hosting CSE to manage the atomic processing of the fanned out transaction on behalf of the transaction Originator. This effectively offloads the burden and overhead of processing the transaction from the Originator.

----------------------- Start of change 1 -----------------------
8.1
Transaction

8.1.1
Solution #1

8.1.1.1 <transaction> resource

An <transaction> resource could be child resouce of any resource. It indicates that the parent resource is apart of a transaction. According to the information in the <transaction> resource, the parent resource is changed.
The <transaction> resource shall contain the child resources specified in table 8.1.1.1-1.

Table 8.1.1.1-1: Child resources of <transaction> resource

	Child Resources of <transaction>
	Child Resource Type
	Multiplicity
	Description

	[variable]
	<subscription>
	0..n
	See clause 9.6.8 [i.2].

The <transaction> resource shall contain the attributes specified in table 8.1.1.1-1.

Table 8.1.1.1-1: Attributes of <transaction> resource

	Attributes of
<transaction>
	Multiplicity
	RW/

RO/

WO
	Description

	resourceType
	1
	RO
	See clause 9.6.1.3[i.2].

	resourceID
	1
	RO
	See clause 9.6.1.3[i.2].

	resourceName
	1
	WO
	See clause 9.6.1.3[i.2].

	parentID
	1
	RO
	See clause 9.6.1.3[i.2].

	expirationTime
	1
	RW
	See clause 9.6.1.3[i.2].

	accessControlPolicyIDs
	0..1 (L)
	RW
	See clause 9.6.1.3[i.2].

	creationTime
	1
	RO
	See clause 9.6.1.3[i.2].

	lastModifiedTime
	1
	RO
	See clause 9.6.1.3[i.2].

	labels
	0..1 (L)
	RW
	See clause 9.6.1.3[i.2].

	state
	1
	RO
	The current state of the transaction. It could be

Initial state: if the Hosting CSE hasn’t determined that the transaction can be executed or not.

Reserved state: if the Hosting CSE has finished the checking and guaranteed the transaction can be executed at the given execution time.

Final state: if the Hosting CSE has successful executed the transaction.

	executionTime
	1
	RW
	The intended execution time of the transaction. The Hosting CSE executes the primitive contained in the <request> child resource at the time specified by the attribute.

	primitive
	1
	WO
	The attribute is a complex data type that carries the primitive that is operated on the parent resource of the <transaction> resource. The primitive attribute includes information about the operation, originator, primitiveContent.

8.1.1.2 Transaction handling

The following diagram show the flow how a transaction is commited in using <transaction> resource in oneM2M. In a transaction, one AE and multiple CSEs are involved. The AE need to coordinate transaction among multiple CSEs. An AE need to send operation to resource hosted on multiple CSEs. The AE requires the multiple CSEs either excute the operation successfully or none of them execute the operation.

[image: image1.emf]AE CSE CSE CSE

…

Create <transaction>

Create <transaction>

Create <transaction>

Check if the transaction can be successfully executed

OK

OK

OK

Execute the primitive at the specified time

AE CSE CSE CSE

…

Create <transaction>

Create <transaction>

Create <transaction>

Check if the transaction can be successfully executed

OK

OK

Fail

Successful case

Failure case

Delete <transaction>

Delete <transaction>

Figure 8.1.1.2-1: Transaction procedure

Step 1: AE creats <transaction> resource as child resource to multiple resources according to the requirement of the service. The <transaction> resource contains the execution time of the transaction as well as the primitive to be executed. The execution time of different CSEs is the same to guarantee the commit of transaction is cooridinated. The primitive further contains the originator’s identity, the operation and the content of the primitive to be executed. The <transaction> resources to be created on different CSEs could be different.
Step 2: At each CSE that has received the <transaction> creation request, the CSE checks if the <transaction> can be successfully executed. The content of the checking may include the access right, the format of the primitive is correct, the execution can be performed at the specified time and other necessary criterias that are critical to the success of the primitive.

Step 3 (Success): If the checking is successful, the CSE responds created to the AE and make the parent resource of <transaction> resource into reserved state. In the reserved state, the resource will refuse any other request that will potentially break the affect the success of execution of the primitive at the specified execution time.

Step 4 (Success): At the specified execution time, the CSEs will individually execute their corresponding primitive.

Step 3 (Failure): If the checking at any one of the CSE has failed, the CSE responds a failed response to the AE. On receiving the failed response, the AE determines that the transaction cannot be commited any more, thus send delete <transaction> to those CSEs which have successfully created the <transaction> resource to cancel the transaction.

Step 4 (Failure): The CSE which has successfully created the <transaction> deletes the transaction.

Optional additional steps:

Step 3 (Failure): On receiving the failed response, the AE may decide if the <transaction> could be created again at the failed CSE according to the service. The re-creation of <transaction> should be within the time of the given execution time.

8.1.1.3
<transaction> Resource Procedures

8.1.1.3.1
Create <transaction>
Table 8.1.1.3.1-1: <transaction> CREATE

	<transaction> CREATE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	All parameters defined in table 8.1.2-3[i.2] apply with the specific details for:

Content: The representation of the <transaction> resource described in clause 8.1.1.1

	Processing at Originator before sending Request
	According to clause 10.1.1.1[i.2]

The Originator is the AE that coordinates the transaction according to the requirement of from the services.

	Processing at Receiver
	According to clause 10.1.1.1[i.2]

The Receiver checks if the primitive in the <transaction> resource could be successfule executed at the given executionTime in the <transaction> resource. On successful check, the receiver responds OK to the originator. Otherwise, the request is rejected.

	Information in Response message
	All parameters defined in table 8.1.3-1[i.2] apply with the specific details for:

· Content: Address of the created <transaction> resource, according to clause 10.1.1.1[i.2]

	Processing at Originator after receiving Response
	According to clause 10.1.1.1[i.2]

	Exceptions
	According to clause 10.1.1.1[i.2]

8.1.1.3.2
Update <transaction>

Table 8.1.1.3.2-1: <transaction> UPDATE

	<transaction> UPDATE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message

	All parameters defined in table 8.1.2-3[i.2] apply with the specific details for:

Content: attributes of the <transaction> resource as defined in clause 8.1.1.1 which need be updated

	Processing at Originator before sending Request
	According to clause 10.1.3[i.2]

	Processing at Receiver
	According to clause 10.1.3[i.2]

	Information in Response message
	According to clause 10.1.3[i.2]

	Processing at Originator after receiving Response
	According to clause 10.1.3[i.2]

	Exceptions
	According to clause 10.1.3[i.2]

8.1.1.3.3
Retrieve <transaction>

Table 8.1.1.3.3-1: <transaction> RETRIEVE

	<transaction> RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	According to clause 10.1.2.[i.2]

	Processing at Originator before sending Request
	According to clause 10.1.2. [i.2]

	Processing at Receiver
	According to clause 10.1.2. [i.2]

	Information in Response

message
	According to clause 10.1.2. [i.2]

	Processing at Originator after receiving Response
	According to clause 10.1.2. [i.2]

	Exceptions
	According to clause 10.1.2. [i.2]

8.1.1.3.4
Delete <transaction>

Table 8.1.1.3.4-1: <transaction> DELETE

	<transaction> DELETE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	All parameters defined in table 8.1.2-3[i.2] apply.

	Processing at Originator before sending Request
	According to clause 10.1.4.[i.2]

	Processing at Receiver
	According to clause 10.1.4. [i.2]

	Information in Response message
	According to clause 10.1.4. [i.2]

	Processing at Originator after receiving Response
	According to clause 10.1.4. [i.2]

	Exceptions
	According to clause 10.1.4. [i.2]

----------------------- End of change 1 -----------------------
----------------------- Start of change 2 -----------------------
8.1.2
Solution #2

8.1.2.1 transactionFanOutPoint

[image: image2.emf]<group>

<transactionFanOutPoint>

0..1

...

Figure 8.1.2.1-1: <transactionFanOutPoint> resource
Table 8.1.2.1-1: Child resources of <group> resource

	Child Resources of <group>
	Child Resource Type
	Multiplicity
	Description
	<groupAnnc> Child Resource Types

	tfopt
	<transactionFanOutPoint>
	0..1
	See clause 9.6.XX [i.2]
	none

The <transactionFanOutPoint> resource is a virtual resource because it does not have a representation. It is the child resource of a <group> resource. Whenever a oneM2M request primitive is sent to the <transactionFanOutPoint> resource, the group Hosting CSE processes the request by fanning out a corresponding <transaction> CREATE request to each of the members specified by the memberIDs attribute of the parent <group> resource. For each <transaction> CREATE request it fans out to a member, the group Hosting CSE will configure the primitive attribute with the original request primitive it received from the Originator, the state attribute with a value of “Initial” and the executionTime attribute with a value less than the Result Expiration Time parameter, if specified by Originator, or a local policy configured at the group Hosting CSE. Thereafter, the group Hosting CSE will coordinate the handling of the fanned out <transaction> requests such that they are all processed in an atomic manner with respect to one another (i.e. all the fanned out transactions either complete successfully or all are aborted).
For <transaction> CREATE requests that are fanned out to member Hosting CSEs, these CSEs will check whether they can perform the specified primitive on the member resource at the specified executionTime. If the check is successful, a member Hosting CSE will respond back to the group Hosting CSE that they successfully created the <transaction>. If not successful, a member Hosting CSE will respond back with a failure. A timer should be maintained by the Group Hosting CSE for the processing of the transaction. The transaction is allowed to proceed and execute if successful <transaction> create responses are received from each member Hosting CSE before the timer expires. Otherwise, the group Hosting CSE will abort the transaction by sending <transaction> DELETE requests to any member Hosting CSE indicating they successfully created a <transaction>. If the transaction is allowed to execute, the individual responses from each request primitive executed on a member will be returned to the group Hosting CSE. The group Hosting CSE will then aggregate the responses and return the results to the Originator. A timer should also be maintained by the Group Hosting CSE for the aggregation of the responses. The responses are aggregated if all the responses have been received or when the timer expires. The responses received after the time expires should be discarded.
The following diagram shows the flow for how a group Hosting CSE handles the atomic processing of a request that targets a <transactionFanOutPoint> resource.

[image: image4.emf]Failure case

5. Delete <transaction>

AE

Group

Hosting CSE

Member

Hosting CSE

Member

Hosting CSE

…

1. Create <contentInstance>

2. Create <transaction>

2. Create <transaction>

3. Check if the transaction CREATE can be successfully executed

4. Response (Fail)

4. Response (Created)

6. Response (Fail)

AE

Group

Hosting CSE

Member

Hosting CSE

Member

Hosting CSE

…

1. Create <contentInstance>

2. Create <transaction>

2. Create <transaction>

3. Check if the transaction CREATE can be successfully executed

4. Response (Created)

4. Response (Created)

5. Execute contentInstance CREATE primitive at the specified time

Successful case

6. Create <contentInstance> Response

6. Create <contentInstance> Response

6. Aggregated Create

<contentInstance> Responses

Figure 8.1.2.1-2: transactionFanOutPoint procedure

Step 1: AE sends a oneM2M primitive (e.g. CREATE <contentInstance>) to a group Hosting CSE that targets a <transactionFanOutPoint> resource. The request may contain a Result Expiration Time parameter.

Step 2: The group Hosting CSE processes the request by fanning out a corresponding <transaction> CREATE request to each of the member resources specified by the memberIDs attribute of the targeted parent <group> resource. For each <transaction> CREATE request it fans out, the group Hosting CSE will configure the primitive attribute with the original request primitive it received (e.g. CREATE <contentInstance>), the state attribute with a value of “Initial” and the executionTime attribute with value that is less than the Result Expiration Time parameter, if specified by Originator, or a value based on a local policy configured at the group Hosting CSE. The executionTime of all the fanned out <transaction> requests will be the same to guarantee the commit of the transaction is cooridinated across member Hosting CSEs. The group Hosting CSE will then wait for responses from each of the member Hosting CSEs indicating whether or not they received the <transaction> CREATE request and if it’s primitive can be successfully executed or not. A timeout will be supported by the group Hosting CSE in case responses from one or more member Hosting CSEs are not received. If the Result Expiration Time parameter is received from the Originator, the timeout should be set to enforce this parameter, otherwise, the timeout will be configured based on a local policy configured at the group Hosting CSE.

Step 3: For each member Hosting CSE that receives a <transaction> CREATE request, it checks if the primitive contained in the primitive attribute of the <transaction> can be successfully executed on the targeted member resource. This checking may include checking the access rights of the Originator, validating that the format of the primitive is correct, checking that the execution of the primitive can be performed at the specified time and any other necessary criteria that are critical to the success of executing the primitive.

Step 4 (Success): If the checking is successful, a member Hosting CSE responds back to the group Hosting CSE that it is able to create the transaction (as a child resource of the member resource). It also puts the targeted member resource into a reserved state. In the reserved state, the group Hosting CSE will refuse any other request that may interfere with the successful execution of the primitive on the targeted member resource.

Step 5: (Success): At the specified execution time, the member Hosting CSEs will individually execute their corresponding request primitive.
Step 6 (Success): The response from the execution of the request primitive will be returned to the group Hosting CSE. The group Hosting CSE will aggregate the responses from the individual members and return the results to the Originator.
Step 4 (Failure): If the checking at any member Hosting CSE fails, it responds back to the group Hosting CSE that it is unable to create the <transaction>. On receiving the failed response, the group Hosting CSE determines that the transaction cannot be committed, and thus sends a DELETE <transaction> request to each of the member Hosting CSE(s) which responded that they created the transaction. This DELETE <transaction> request will cancel the transaction. This DELETE <transaction> request will be sent before the scheduled execution time to ensure the cancellation takes place before the member Hosting CSE(s) execute the transaction.

Step 5 (Failure): The member Hosting CSE(s) which successfully created the <transaction> delete it.

Step 6 (Failure): The group Hosting CSE returns a response to the Originator informing it that the request failed indicating that it was not performed on any of the group member resources.
Optional additional steps:

Step 4 (Failure): On receiving a failed response from one or more member Hosting CSEs, the group Hosting CSE may decide if the <transaction> can be retried by sending another <transaction> CREATE request to the failed member Hosting CSE(s). This retry will be performed before the Result Expiration Time (if specified by the Originator), or before a transaction timeout based on the local policy configured at the group Hosting CSE.
----------------------- End of change 2 -----------------------
© 2017 oneM2M Partners

Page 1 (of 2)

Failure case

5. Delete <transaction>

AE

Group Hosting CSE

Member Hosting CSE

Member Hosting CSE

…

1. Create <contentInstance>

2. Create <transaction>

2. Create <transaction>

3. Check if the transaction CREATE can be successfully executed

4. Response (Fail)

4. Response (Created)

6. Response (Fail)

AE

Group Hosting CSE

Member Hosting CSE

Member Hosting CSE

…

1. Create <contentInstance>

2. Create <transaction>

2. Create <transaction>

3. Check if the transaction CREATE can be successfully executed

4. Response (Created)

4. Response (Created)

5. Execute contentInstance CREATE primitive at the specified time

Successful case

6. Create <contentInstance> Response

6. Create <contentInstance> Response

6. Aggregated Create

<contentInstance> Responses

AE

CSE

CSE

CSE

…

Create <transaction>

Create <transaction>

Create <transaction>

Check if the transaction can be successfully executed

OK

OK

OK

Execute the primitive at the specified time

AE

CSE

CSE

CSE

…

Create <transaction>

Create <transaction>

Create <transaction>

Check if the transaction can be successfully executed

OK

OK

Fail

Successful case

Failure case

Delete <transaction>

Delete <transaction>

_1550502459.vsd

