	Doc# ARC-2017-0194-TR-0020_transaction_solution.doc
Change Request
	[image: image5.png]

	CHANGE REQUEST

	Meeting ID:*

	ARC #29

	Source:*

	Dale Seed, Convida Wireless, Seed.Dale@ConvidaWireless.com

	Date:*

	2017-05-15

		
	Reason for Change/s:*

	This contribution proposes a transaction management solution to TR-0020 which merges and aligns the other three solutions proposed thus far.

	CR against: Release*

	Rel-3

	CR against: WI*
	 FORMCHECKBOX
 Active <WI-0034>

 FORMCHECKBOX
 MNT maintenance / < Work Item number(optional)>
Is this a companion CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

Companion CR number: (Note to Rapporteur - use latest agreed revision)Is this a mirror CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

Mirror CR number: (Note to Rapporteur - use latest agreed revision)

 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*

	TR-0020 v0.7.0

	Clauses *

	Clause 8.1.4

	Type of change: *

	 FORMCHECKBOX
 Editorial change

 FORMCHECKBOX
 Bug Fix or Correction

 Change to existing feature or functionality

 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	<TS/TR number>, <Version Number>, and <Description on which aspect should be reflected in this TS/TR>

	Post Freeze checking:*

	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO

	Template Version: January 2017 (Do not modify)

	

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
This contribution proposes a fourth solution for transaction management to TR-0020. This solution leverages aspects of the other three existing solutions in an attempt to define a single optimized solution for transaction management.
-----------------------Start of change 1---
8.1.4
Solution #4
8.1.4.1
Overview

A CSE supports transaction management capabilities to assist applications with the atomic and consistent processing of oneM2M request primitives on a set of targeted resources. These transaction management capabilities include the scheduling of a transaction, locking and unlocking of resources targeted by a transaction, the atomic execution of a transaction on targeted resources, the committal of successful transaction results, and the abort and rollback of non-successful transactions.
Transaction processing support within a CSE is realized via three resources. These are the <transactionMgmt>, <transactionFanoutPoint> and <transaction> resources.

A <transactionMgmt> resource is used to initiate and manage the atomic and consistent processing of a transaction consisting of multiple oneM2M request primitives.

A <transactionFanOutPoint> is a virtual child resource of a <group> resource. This resource is used to initiate and manage the processing of a transaction consisting of a single oneM2M request primitive that is fanned out to the individual member resources of a group and executed in an atomic and consistent manner.

A <transaction> resource is used to manage the processing of each individual oneM2M request primitive associated with a transaction that is initiated via a <transactionMgmt> or <transactionFanoutPoint> resource.

An Originator may initiate a transaction request by either creating a <transactionMgmt> resource or targeting a oneM2M request primitive towards a <transactionFanoutPoint> resource. When receiving the transaction request, the <transactionMgmt> or <transactionFanoutPoint> Hosting CSE processes it by creating a <transaction> child resource under each resource targeted by the transaction. Each <transaction> Hosting CSE, in coordination with <transactionMgmt> or <transactionFanoutPoint> Hosting CSE, processes the oneM2M primitive associated with its <transaction> resource. During this processing, a <transaction> Hosting CSE keeps the <transactionMgmt> or <transactionFanoutPoint> Hosting CSE updated of any changes in the state of the transaction. Likewise the <transactionMgmt> or <transactionFanoutPoint> Hosting CSE controls each of the <transaction> Hosting CSEs to ensure that all the oneM2M request primitives associated with the transaction are processed in an atomic and consistent manner (i.e. either all are successfully executed or none of them are executed). The <transactionMgmt> or <transactionFanoutPoint> Hosting CSE also interacts with the Originator of the transaction to provide it with the results of the transaction.
8.1.4.2
<transactionMgmt> resource

A <transactionMgmt> resource defines a transaction consisting of oneM2M request primitives targeting multiple resources that require excution in an atomic and consistent manner. The targeted resources may be hosted by one or more CSEs. When an Originator creates a <transactionMgmt> resource, the <trasactionMgmt> Hosting CSE will create corresponding child <transaction> resources for each of the oneM2M request primitives under their respective targeted resources.

The transactionState attribute is used by the <transactionMgmt> Hosting CSE to reflect the current state of the transaction.

The transactionControl attribute is used by the <transactionMgmt> resource creator or Hosting CSE to manage the atomic execution of transaction via controlling the state of the transaction.

The transactionExecutionTime attribute is used by the <transactionMgmt> Hosting CSE to schedule the execution of the transaction. The <transactionMgmt> Hosting CSE uses this time value to schedule when it creates the corresponding <transcation> resources.

The transactionExpirationTime attribute is used by the <transactionMgmt> Hosting CSE to manage the expiration of the transcation. If the transcation is not successfully committed before this time, the Hosting CSE will abort the transcation.

The transactionMode attribute is used by the <transactionMgmt> Hosting CSE to determine whether it is responsible for managing the state of the transactionContol attribute and in turn the atomic execution of the transaction on behalf of the creator or whether the creator wishes to manage the state of the transactionContol attribute itself. When transactionMode is set to " CREATOR_CONTROLLED " then the creator is responsible for controlling the state of transactionContol. When transactionMode is set to " CSE_CONTROLLED " then the <transactionMgmt> Hosting CSE is responsible for controlling the state of transactionContol.

When the transactionControl attribute of the <transactionMgmt> resource is updated, the <transactionMgmt> Hosting CSE will make corresponding updates to the transactionControl attributes of all the <transaction> resources affiliated with the transaction. These updates will trigger the <transaction> Hosting CSE(s) to take corresponding action to lock the targeted resource, execute the specified primitive on the locked resource, commit the executed results or abort the transaction. As a result, the atomic execution of the transaction can be explicitly controlled. The decision to update the transactionControl attribute of the <transactionMgmt> resource will be based on the collective transactionState of the individual <transaction> resources. When consistent state is detected (E.g. all <transasction> resources indicate their transactionState is "LOCKED"), then a decision can be made to update the transaction state (e.g. update <transactionMgmt> transactionControl to "EXECUTE"). When inconsistent state is detected (e.g. one <transaction> resource indicates a transactionState of "ERROR"), then a decision can be made to abort the transaction (e.g. update the <transactionMgmt> transactionControl to "ABORT"). To facilitate the gathering of this collective transactionState, each <transaction> Hosting CSE will share transactionState information with the <transactionMgmt> Hosting CSE. This transactionState will be shared in the <transaction> create and update responses that a <transaction> Hosting CSE returns to the <transactionMgmt> Hosting CSE. The <transactionMgmt> Hosting CSE will in turn update the transactionState attribute of the <transactionMgmt> resource to reflect the collective state of the <transction> resources. The creator of <transactionMgmt> resource may subscribe to the transactionState attribute of the <transactionMgmt> resource to receive notifications for any state changes.
Table 8.1.4.2-1 defines the valid transactionControl values permitted in an update request to a <transaction> resource based on the current value of the <transcation> resources’s transactionState. A <transaction> Hosting CSE will only allow an update to transcationControl to complete successfully for the combinations listed.
Table 8.1.4.2-1: Valid <transactionMgmt> transactionControl update values

	Current transactionState
	Valid transactionControl update values

	INITIAL
	LOCK

	LOCKED
	EXECUTE, ABORT

	EXECUTED
	COMMIT, ABORT

	ERROR
	ABORT

	COMMITTED
	LOCK

	ABORTED
	LOCK

The <transactionMgmt> Hosting CSE supports transaction expiration functionality to detect when the processing of transactions by one or more <transaction> Hosting CSEs exceeds the transactionExpirationTime. If this occurs, the <transactionMgmt> Hosting CSE will abort the transaction by updating the transactionState attribute of each <transaction> resource to “ABORT”.

The <transactionMgmt> resource supports the child resources specified in table 8.1.4.2-2.

Table 8.1.4.2-2: Child resources of <transactionMgmt> resource

	Child Resources of <transactionMgmt>
	Child Resource Type
	Multiplicity
	Description

	[variable]
	<subscription>
	0..n
	See clause 9.6.x [i.2]

The <transactionMgmt> resource supports the attributes specified in table 8.1.4.2-3.

Table 8.1.4.2-3: Attributes of <transactionMgmt> resource

	Attributes of
<transactionMgmt>
	Multiplicity
	RW/

RO/

WO
	Description

	resourceType
	1
	RO
	See clause 9.6.1.3[i.2]

	resourceID
	1
	RO
	See clause 9.6.1.3[i.2].

	resourceName
	1
	WO
	See clause 9.6.1.3[i.2]

	expirationTime
	1
	WO
	See clause 9.6.1.3[i.2]

	parentID
	1
	RO
	See clause 9.6.1.3[i.2]

	creationTime
	1
	RO
	See clause 9.6.1.3[i.2]

	lastModifiedTime
	1
	RO
	See clause 9.6.1.3[i.2]

	accessControlPolicyIDs
	0..1 (L)
	RW
	See clause 9.6.1.3[i.2]

	labels
	0..1 (L)
	RW
	See clause 9.6.1.3[i.2]

	creator
	1
	RO
	This attribute is configured with the identifier of the entity that originated the request to create this <transactionMgmt> resource.

	transactionExecutionTime
	0..1
	WO
	This attribute contains a timestamp of when the <transactionMgmt> Hosting CSE will execute the transaction. When this time elapses, the <transactionMgmt> Hosting CSE will generate <transaction> create requests for each of the specified requestPrimitives. If this attribute is not set, the transaction will be executed immediately.

	transactionExpirationTime
	0..1
	WO
	This attribute contains a timestamp of when the execution of the transaction is set to expire. The <transactionMgmt> Hosting CSE uses this value to configure the expirationTime attribute of the <transaction> resources it creates. If a transaction fails to complete before this time elapses, the <transactionMgmt> Hosting CSE will abort the transaction.

	transactionMode
	0..1
	WO
	This attribute is used by the Hosting CSE to determine whether it is responsible for controlling the execution of the transaction (via the transcationControl attribute) or whether the creator is responsible for controlling it.
The allowed values are:

· CSE_CONTROLLED (Default)

· CREATOR_CONTROLLED

	transactionControl
	0..1
	RW
	This attribute is used to control the state of the transaction.

The allowed values are:

· INITIAL (default)
· LOCK

· EXECUTE

· COMMIT

· ABORT

If the transactionMode is set to “CSE_CONTROLLED”, then only the <transactionMgmt> Hosting CSE is allowed to update this attribute.

If the transactionMode is set to “CREATOR_CONTROLLED”, then only the creator is allowed to update this attribute.

This attribute must either not be present in a <transactionMgmt> create request or have a value of “INITIAL”.

	transactionState
	1
	RO
	This attribute contains the current state of the transaction. Only the <transactionMgmt> Hosting CSE is allowed to update this attribute. It calculates the value of this attribute based on collective transactionState of the individual <transaction> resources associated with this <transactionMgmt> resource.

The allowed values are:

· INITIAL

· LOCKED

· EXECUTED

· COMMITTED

· ERROR

· ABORTED

To update this attribute to a new state all of the transactionState attributes of the individual <transaction> resources must be consistent and reflect the value of the new state. The exception is updating this attribute to “ERROR”. If any of the transactionState attributes of the individual <transaction> resources have a value of “ERROR”, then the <transactionMgmt> Hosting CSE updates transactionState of this <transactionMgmt> resource to “ERROR”. Before doing so however, the <transactionMgmt> Hosting CSE checks if the transactonMaxRetries attribute is configured with a non-zero value and if so whether the retry limit has been exhausted. If not exhausted, the <transactionMgmt> Hosting CSE attempts to retry the transaction. If the transactonMaxRetries attribute is configured with zero value or the retry limit is exhausted, then this attribute is set to “ERROR”.

A creator may subscribe to this attribute to receive notifications of changes to transactionState.

	transactionMaxRetries
	0..1
	RW
	If set, this attribute is used by the <transactionMgmt> Hosting CSE to determine the max number of times it may attempt to retry a transaction when detecting an “ERROR” transactionState from one or more <transaction> Hosting CSEs.

If not set or if the max number of retries is exhausted, and the <transactionMgmt> Hosting CSE detects an “ERROR” transactionState from one or more <transaction> Hosting CSEs, then the transactionState of the <transactionMgmt> resource is updated to “ERROR”.

	transactionMgmtHandling
	0..1
	RW
	This attribute is used by the <transactionMgmt> Hosting CSE to determine whether to persist or delete the <transactionManagement> resource after its completion (i.e. transactionState is set to “COMMITTED” or “ABORTED”).

The allowed values are:

· DELETE (default)

· PERSIST

If set to “PERSIST” the <transactionMgmt> resource will be deleted when the expirationTime elapses.

	requestPrimitives
	1(L)
	WO
	This attribute contains an aggregated list of oneM2M request primitives associated with this transaction. When processing this transaction, the <transactionMgmt> Hosting CSE creates a corresponding <transaction> resource for each oneM2M request primitive in this list. Each <transaction> resource is created as a child resource under the resource targeted by its respective request primitive.

	responsePrimitives
	1(L)
	RO
	This attribute contains an aggregated list of oneM2M response primitives associated with this transaction. This attribute is updated by the <transactionMgmt> Hosting CSE and includes the individual responsePrimitive attributes received from the <transaction> Hosting CSE(s).
The creator may subscribe to this attribute to receive notifications each time this attribute is updated with new response primitive(s).

[image: image1.emf]AE CSE CSE CSE ...

Create <transactionMgmt>

[requestPrimitives]

Create <transaction>

[transactionControl = LOCK, requestPrimitive]

transactioState = LOCKED

Create <transaction>

[transactionControl = LOCK, requestPrimitive]

transactioState = LOCKED

OK

Update <transaction>

[transactionControl = EXECUTE]

transactioState = EXECUTED

Update <transaction>

[transactionControl = EXECUTE]

transactioState = EXECUTED

Update <transaction>

[transactionControl = COMMIT]

transactioState = COMMITTED

Update <transaction>

[transactionControl = COMMITED]

transactioState = COMMITTED,

responsePrimitive

Notify

[transactionState = COMMITTED,

reponsePrimitives]

OK

Figure 8.1.4.2-1: <transactionMgmt> - Successful Case

[image: image2.emf]AE CSE CSE CSE ...

Create <transactionMgmt>

[requestPrimitives]

Create <transaction>

[transactionControl = LOCK, requestPrimitive]

transactioState = LOCKED

Create <transaction>

[transactionControl = LOCK, requestPrimitive]

transactioState = LOCKED

OK

Update <transaction>

[transactionControl = EXECUTE]

transactioState = EXECUTED

Update <transaction>

[transactionControl = EXECUTE]

transactioState = ERROR

Update <transaction>

[transactionControl = ABORT]

transactioState = ABORTED

Update <transaction>

[transactionControl = ABORT]

transactioState = ABORTED.

responsePrimitive

Notify

[transactionState = ABORTED,

reponsePrimitives]

OK

Figure 8.1.4.2-2: <transactionMgmt> - Failure Case
8.1.4.3
<transactionFanOutPoint> resource
The <transactionFanOutPoint> resource is a virtual resource hence it does not have a representation. It is the child resource of a <group> resource. Whenever a oneM2M request primitive is sent to the <transactionFanOutPoint> resource, the group Hosting CSE processes the request by fanning out a corresponding <transaction> create request to each of the members specified by the memberIDs attribute of the parent <group> resource. For each <transaction> create request it fans out to a member, the group Hosting CSE will configure the requestPrimitive attribute with the original request primitive received from the Originator. The group Hosting CSE will also configure the transactionState attribute of each <transaction> resource to “LOCK” to request that the member Hosting CSEs attempt to lock the targeted resource.

If all the member Hosting CSEs are able to successfully lock the targeted resources, the group Hosting CSE will continue updating the transactionControl attribute of each <transaction> resource in a consistent manner to ensure the atomic and consistent execution of the fanned out requests (i.e. all the fanned out transactions either complete successfully or all are aborted). The updates to transactionControl will trigger the member Hosting CSEs to take corresponding action to execute the specified primitive on the locked resource, commit the executed results or abort the transaction.

The group Hosting CSE’s decision to update the transactionControl attribute of each <transaction> resource is based on the collective transactionState of the individual <transaction> resources. When consistent state is detected (E.g. all member’s <transasction> resources indicate their transactionState is "LOCKED"), then a decision can be made to update the transaction state (e.g. update transactionControl to "EXECUTE" for all members). When inconsistent state is detected (e.g. one member’s <transaction> resource indicates a transactionState of "ERROR"), then a decision can be made to retry or abort the transaction (e.g. update the transactionControl to "ABORT" for all members). To facilitate the gathering of this collective transactionState, each member Hosting CSE will share transactionState information with the group Hosting CSE. This transactionState will be shared in the <transaction> create and update responses that a member Hosting CSE returns to the group Hosting CSE. The individual responses from each request primitive executed on a member will also be returned to the group Hosting CSE. The group Hosting CSE will then aggregate the responses and return the results to the Originator.

The group Hosting CSE supports transaction expiration functionality to detect when the processing of transactions by one or more member Hosting CSEs exceeds a configured time limit. If this occurs, the group Hosting CSE will abort the transaction by updating the transactionState attribute of each <transaction> resource to “ABORT”.

The following diagram shows the flow for how a group Hosting CSE handles the atomic processing of a request that targets a <transactionFanOutPoint> resource.

[image: image3.emf]AE

Group

Hosting

CSE

Member

Hosting

CSE

Member

Hosting

CSE

...

Create <contentInstance>

To: <transactionFanOutPoint>

Create <transaction>

[transactionControl = LOCK, requestPrimitive]

transactioState = LOCKED

Create <transaction>

[transactionControl = LOCK, requestPrimitive]

transactioState = LOCKED

OK

Update <transaction>

[transactionControl = EXECUTE]

transactioState = EXECUTED

Update <transaction>

[transactionControl = EXECUTE]

transactioState = EXECUTED

Update <transaction>

[transactionControl = COMMIT]

transactioState = COMMITTED

Update <transaction>

[transactionControl = COMMIT]

transactioState = COMMITTED,

responsePrimitive

Notify

[transactionState = COMMITTED,

reponsePrimitives]

OK

Figure 8.1.4.3-1: <transactionFanOutPoint> - Successful Case

[image: image4.emf]AE

Group

Hosting

CSE

Member

Hosting

CSE

Member

Hosting

CSE

...

Create <contentInstance>

To: <transactionFanOutPoint>

Create <transaction>

[transactionControl = LOCK, requestPrimitive]

transactioState = LOCKED

Create <transaction>

[transactionControl = LOCK, requestPrimitive]

transactioState = LOCKED

OK

Update <transaction>

[transactionControl = EXECUTE]

transactioState = EXECUTED

Update <transaction>

[transactionControl = EXECUTE]

transactioState = ERROR

Update <transaction>

[transactionControl = ABORT]

transactioState = ABORTED

Update <transaction>

[transactionControl = ABORT]

transactioState = ABORTED,

responsePrimitive

Notify

[transactionState = ABORTED,

reponsePrimitives]

OK

Figure 8.1.4.3-2: <transactionFanOutPoint> - Failure Case

8.1.4.4
<transaction> resource

With the exception of virtual resources (e.g. latest, oldest, etc) a <transaction> resource may be created as a child resource of any resource targeted by a transaction. A <transaction> create request will only be originated by a CSE that hosts an associated <transactionMgmt> or <transactionFanOutPoint> resource. An AE is not allowed to create a <transaction> resource.

When a CSE receives a request to create a new <transaction> resource, the CSE will first check if the targeted resource is already locked. To perform this check, the CSE will check whether any other <transaction> resources exist for the targeted resource. If yes, the CSE will check the transactionState of these other <transaction> resource(s). If no other <transcation> resources exist or the transactionState of the existing <transaction> resources is “COMMITTED” or “ABORTED”, the CSE will consider the targeted resource unlocked, otherwise it will consider it locked. If the targeted resource is locked, the CSE may return an error to the Originator of the <transaction> create request. Alternatively, the CSE may buffer requests that target the resource until the resource is unlocked. Note, the details of how a CSE manages this buffering are currently outside the scope of the specification. If a CSE does support buffering for locked resources, then the CSE should also support a timeout mechanism to detect the case where a lock is not released in a timely manner.

Once the <transaction> Hosting CSE obtains a lock for the targeted resource or determines that a lock cannot be obtained, it responds to the Originator of the <transaction> create request. In this response, the transactionState is included. If the lock is obtained, then the transactionState will have a value of “LOCKED”. If the lock cannot be obtained, then the transactionState will have a value of “ERROR”.

When a <transaction> Hosting CSE receives a request to update the transactionControl attribute of an existing <transaction> resource, the CSE will first compare the current value of the transactionState and transactionControl attributes to ensure they are consistent (e.g. if transactionControl has a value of “LOCK” then transactionState should have a value of “LOCKED”). This check ensures that the <transaction> Hosting CSE is not already in the process of changing the state of the transaction. In addition, the <transaction> Hosting CSE will also compare the value of transactionControl specified in the <transaction> update request with the current value of transactionControl in the <transaction> resource to ensure the value specified in the update request is a legal next state (e.g. if transactionState has a value of “LOCKED” then valid transactionControl values are “EXECUTE or “ABORT”). If any of these checks fail, the <transaction> Hosting CSE will return an error. If these checks pass, the <transaction> Hosting CSE will perform the update to transactionControl and in turn perform the corresponding actions associated with transitioning the transaction into this new state.

Table 8.1.4.4-1: Valid <transaction> transactionContol values
	Current transactionState
	Valid transactionControl update values

	LOCKED
	EXECUTE, ABORT

	EXECUTED
	COMMIT, ABORT

	ERROR
	ABORT

	COMMITTED
	LOCK

	ABORTED
	LOCK

If transactionControl is updated to “EXECUTE”, then the <transaction> Hosting CSE will perform the request specified in the requestPrimitive attribute and update the responsePrimitive attribute with the results. If the execution of the primitive is successful the <transaction> Hosting CSE will update the transactionState attribute to “EXECUTED”. Otherwise, if the execution of the primitive is not successful the <transaction> Hosting CSE will update the transactionState attribute to “ERROR”.

If transactionControl is updated to “COMMIT”, then the <transaction> Hosting CSE will make the results of the requestPrimitive persistent and visible by updating and the transactionState attribute to “COMMITTED” which effectively releases the lock on the targeted resource.

If transactionControl is updated to “ABORT”, the <transaction> Hosting CSE will roll back the transaction by returning the state of the targeted resource to the same state the resource was in before the processing of this transaction began. It will also update the transactionState attribute to “ABORTED” which effectively releases the lock on the targeted resource.

Once the <transaction> Hosting CSE completes processing any actions associated with updating the transactionControl attribute and changing the state of transaction, it will return a response back to the Originator of the <transaction> update request. In this response, the attributes of the <transaction> resource will be included to allow the Originator to check the transactionState and aggregate the responsePrimitive.

If a <transcation> delete request is received, the <transaction> Hosting CSE will check the transactionState. If the <transaction> resource has a transactionState of “INITIAL”, “LOCKED”, “EXECUTED” or “ERROR”, the <transaction> Hosting CSE will roll back the transaction by returning the state of the targeted resource to the same state the resource was in before the processing of this transaction began. It will also set the transactionState attribute to “ABORTED” in the <transaction> delete response.

If a <transcation> resource is deleted by a delete request that targets the parent or ancestor of the <transaction> resource, the <transaction> Hosting CSE will check the transactionState. If the <transaction> resource has a transactionState of “INITIAL”, “LOCKED”, “EXECUTED” or “ERROR”, the <transaction> Hosting CSE will roll back the transaction by returning the state of the targeted resource to the same state the resource was in before the processing of this transaction began.

The <transaction> resource supports the child resources specified in table 8.1.4.4-2.

Table 8.1.4.4-2: Child resources of <transaction> resource

	Child Resources of <transaction>
	Child Resource Type
	Multiplicity
	Description

	[variable]
	<subscription>
	0..n
	See clause 9.6.8[i.2]

The <transaction> resource supports the attributes specified in table 8.1.4.4-2.

Table 8.1.4.4-2: Attributes of <transaction> resource

	Attributes of
<delivery>
	Multiplicity
	RW/

RO/

WO
	Description

	resourceType
	1
	RO
	See clause 9.6.1.3[i.2]

	resourceID
	1
	RO
	See clause 9.6.1.3[i.2].

	resourceName
	1
	WO
	See clause 9.6.1.3[i.2]

	expirationTime
	1
	WO
	See clause 9.6.1.3[i.2]

The value of the expirationTime serves as the expiration time of the transaction.

	parentID
	1
	RO
	See clause 9.6.1.3[i.2]

	creationTime
	1
	RO
	See clause 9.6.1.3[i.2]

	lastModifiedTime
	1
	RO
	See clause 9.6.1.3[i.2]

	accessControlPolicyIDs
	0..1 (L)
	RO
	See clause 9.6.1.3[i.2]

	labels
	0..1 (L)
	RO
	See clause 9.6.1.3[i.2]

	creator
	1
	RO
	This attribute is configured with the CSE-ID of the <transactionMgmt> or <transactionFanOutPoint> Hosting CSE that created this <transaction> resource.

	transactionID
	1
	WO
	This attribute is configured with the identifier of the transaction.

When the <transaction> resource is created by a <transactionMgmt> Hosting CSE, this attribute is configured with the resource identifier of the <transactionMgmt> resource.

When the <transaction> resource is created by a <transactionFanOutPoint> Hosting CSE, this attribute is configured with a unique identifier generated by the <transactionFanOutPoint> Hosting CSE.

	transactionControl
	1
	RW
	This attribute is used to configure or change the state of the transaction.

The allowed values are:

· LOCK

· EXECUTE

· COMMIT

· ABORT

Only the creator of this <transaction> resource is allowed to update this attribute.

	transactionState
	1
	RO
	This attribute contains the current state of the transaction. Only the Hosting CSE of this <transaction> resource is allowed to update this attribute.

The allowed values are:

· LOCKED

· EXECUTED

· COMMITTED
· ERROR
· ABORTED

	requestPrimitive
	1
	WO
	This attribute contains the request primitive to be excuted on the parent of this <transaction> resource.

	responsePrimitive
	1
	RO
	This attribute contains the oneM2M response primitive associated with this transaction. This attribute is updated by the <transaction> Hosting CSE after it executes the requestPrimitive on the parent resource.

e AE, in order e monitoring ger relevant.n time associated with ther regisratoion.hop around for another credi -----------------------End of change 1 --
CHECK LIST

· Does this change request include an informative introduction containing the problem(s) being solved, and a summary list of proposals?
· Does this CR contain changes related to only one particular issue/problem?
· Have any mirror crs been posted?
· Does this change request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable?
· Does this change request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause?
© 2017 oneM2M Partners
 Page 6 (of 16)

[image: image5.png]AE
CSE
CSE
CSE
...
Create <transactionMgmt>
[requestPrimitives]
Create <transaction>
[transactionControl = LOCK, requestPrimitive]
transactioState = LOCKED
Create <transaction>
[transactionControl = LOCK, requestPrimitive]
transactioState = LOCKED
OK
Update <transaction>
[transactionControl = EXECUTE]
transactioState = EXECUTED
Update <transaction>
[transactionControl = EXECUTE]
transactioState = ERROR
Update <transaction>
[transactionControl = ABORT]
transactioState = ABORTED
Update <transaction>
[transactionControl = ABORT]
transactioState = ABORTED. responsePrimitive
Notify
[transactionState = ABORTED, reponsePrimitives]
OK

AE
Group Hosting CSE
Member Hosting CSE
Member Hosting CSE
...
Create <contentInstance>
To: <transactionFanOutPoint>
Create <transaction>
[transactionControl = LOCK, requestPrimitive]
transactioState = LOCKED
Create <transaction>
[transactionControl = LOCK, requestPrimitive]
transactioState = LOCKED
OK
Update <transaction>
[transactionControl = EXECUTE]
transactioState = EXECUTED
Update <transaction>
[transactionControl = EXECUTE]
transactioState = EXECUTED
Update <transaction>
[transactionControl = COMMIT]
transactioState = COMMITTED
Update <transaction>
[transactionControl = COMMIT]
transactioState = COMMITTED, responsePrimitive
Notify
[transactionState = COMMITTED, reponsePrimitives]
OK

AE
Group Hosting CSE
Member Hosting CSE
Member Hosting CSE
...
Create <contentInstance>
To: <transactionFanOutPoint>
Create <transaction>
[transactionControl = LOCK, requestPrimitive]
transactioState = LOCKED
Create <transaction>
[transactionControl = LOCK, requestPrimitive]
transactioState = LOCKED
OK
Update <transaction>
[transactionControl = EXECUTE]
transactioState = EXECUTED
Update <transaction>
[transactionControl = EXECUTE]
transactioState = ERROR
Update <transaction>
[transactionControl = ABORT]
transactioState = ABORTED
Update <transaction>
[transactionControl = ABORT]
transactioState = ABORTED, responsePrimitive
Notify
[transactionState = ABORTED, reponsePrimitives]
OK

AE
CSE
CSE
CSE
...
Create <transactionMgmt>
[requestPrimitives]
Create <transaction>
[transactionControl = LOCK, requestPrimitive]
transactioState = LOCKED
Create <transaction>
[transactionControl = LOCK, requestPrimitive]
transactioState = LOCKED
OK
Update <transaction>
[transactionControl = EXECUTE]
transactioState = EXECUTED
Update <transaction>
[transactionControl = EXECUTE]
transactioState = EXECUTED
Update <transaction>
[transactionControl = COMMIT]
transactioState = COMMITTED
Update <transaction>
[transactionControl = COMMITED]
transactioState = COMMITTED, responsePrimitive
Notify
[transactionState = COMMITTED,
reponsePrimitives]
OK

