Doc# ARC-2017-0198_BDT_approaches_discussion.doc

	Input Contribution

	Meeting ID*
	ARC#29

	Title:*
	oneM2M use of 3GPP Background Data Transfer Feature

	Source:*
	Catalina Mladin, Convida, Mladin.Catalina@convidawireless.com
Rocco DiGirolamo, Convida, DiGirolamo.Rocco@convidawireless.com

	Date:*
	2017-05-15

	Input related to*
	TR-0024

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Impacted other TS/TR(s)
	

	Decision requested or recommendation:*
	Discussion of oneM2M options for using 3GPP Background Data Transfer feature

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction
The potential use of the 3GPP Background Data transfer feature has been discussed in the last few oneM2M face-to-face meetings. From the perspective of 3GPP, this feature allows a 3rd party application to schedule transfer of data “in the background”, in order to take advantage of potentially higher data rates and/or lower transmission cost. However, there has been some disagreement as to how oneM2M should take advantage of this feature. This contribution attempts to present various options showing how oneM2M can use this feature.
3GPP Background Data Transfer Feature

3GPP work on background data transfer began during a feasibility study geared toward “Service Exposure and Enablement Support (SEES)” [1]. In particular, the study item description that led to the work on BDT focuses on applications that need to send traffic to a set of cellular devices. It identifies the need to allow a Mobile Network Operator (MNO) to:

“ provide network policy information to the application (e.g. for video service or non-time critical service) thus the application could adapt the service accordingly” [2]
Typical use cases for BDT were described in [3] and included below:

“Currently some types of software on Smartphone

 are upgraded frequently and at any time, this causes significant traffic in the network and can be problematic in the busy time. There’s no way for such non real-time critical process to be activated when the network is in low load situation and there’s no way currently for the operator to advice the application to avoid sending data when the network load conditions are not favorable.

Also some services are not time critical for the data transfer but need high data throughput, such as music/viI deo downloads. They can cause great load on the network. There is interest for the MNO to facilitate the transfer of such background traffic during the non-busy hours: the operator can use non-busy time period to allow transfer of the background traffic and offer a lower charging rate during this period. “
It is expected that BDT would reduce the need for the applications to react when the network provides insufficient capacity (due to overload for example), and allows the applications to complete data transfers with less risk that the transfer is interrupted or failed, all the while, potentially allowing these applications to use a higher data rate.
The basic operation is as described in Figure 1 (adapted from TR 22.853)

[image: image1.png]Application UEs

| need to reach UE1-UES. I'd A
really like to send these in
the background...

| need to reach UE1-UES5,
preferably in the early morning

Let me take a look at
the network and see

- what’s scheduled
Here are your options:

Policy 1: Time window; aggregated bit rate; cost
Policy 2: Time window; aggregated bit rate; cost
Policy j: Time window; aggregated bit rate; cost

Policy 2 look good - I'll send
my traffic during this time!

Please enable policy 2 for UE1-
UES

I'm in time window for Policy
2....here’s my data

Data transfer

Figure 1: 3GPP Background Data Transfer
Step 0: The application has traffic to send to a set of UEs, and this traffic can be sent in the background. Application has a preferred time window to send the data, and it may also know the geographic area where the UEs are located.

Step 1: Application makes a request to the mobile network. It includes:

· Application Service Provider (ASP) Identifier
· Volume of data to be transferred to the UEs

· Number of UEs participating in the transfer

· Desired time window for transfer

· Geographic area (optional

)

Step 2: Mobile network determines potential transfer policies.

· Note that the transfer policies can be determined based only on the info provided in step 1. Also PCRF seems to store and retrieve policies based on ASP identifier.
Step 3: Mobile send the list of transfer policies to the application. This includes:

· Policy 1: start/end of Time window; maximum aggregated bit rate; cost

· Policy 2: start/end of Time window; maximum aggregated bit rate; cost

· Policy j: start/end of Time window; maximum aggregated bit rate; cost

Step 4: Application selects from the available policy and informs the network

Step 5: Application enables the policy for each of the UEs it is trying to reach

Step 6: Application schedules its transmissions to take advantage of the selected policy

Some interesting details which are not readily apparent from the high-level description are:

1) For step 0, 3GPP assumes that the application “expects to initiate a push service to its mobile users in a geographical area” (s1-135316).

2) For Step 3, the application is provided with the maximum aggregated bit rate within the time window, so that it can “spread out traffic during that time” [1]. The assumption is that the feature is useful for applications that need to transfer a set of dat

a within a time window.
3) For Step 4, 3GPP assumes that the applications are configured to understand the reference to the charging rate associated with the traffic policy

.

4) For Step 5, the enablement of the policy is done per UE (prior to the data transfer phase).

5) For Step 6, during the data transfer, the mobile network does not enforce the maximum aggregated bit rate associated with the traffic policy. Applications benefit from the agreed cost if they abide by the transfer policy, but may be charged for any excess traffic not abiding to the transfer policy.

6) For Step 6, during the data transfer, the mobile network monitors the policy usage per IP flow. It typically uses the IP 5-tuple to identify the flow (source and destination IP address, protocol type, and source and destination port number

).

7) The ASP Identifier is used in policy selection, as well as to identify policies for future BDT. Although the relationship between ASP and Service Layer credentials is unclear, it seems that the 3GPP intent has been to deal with policies with ASP granularity/ scope
oneM2M use of 3GPP Background Data Transfer
The details provided in the 3GPP documentation point to an “application” being the main driver for the background data transfer – the application expects to initiate a push service, the application negotiates the background data transfer with the mobile network, the application selects the desired policy from the list of policies provided by the mobile network, and the application waits for the policy time window to transfer its data. However, 3GPP has used the term “application” in a very broad sense in relation to BDT. For instance, they have used it to refer to a 3rd party application, 3rd party application provider, application service provider, service capability server, and application server. This makes the feature quite flexible.

Owing to this flexibility, there are various options on how oneM2M can exploit 3GPP BDT. These are briefly described below:

Option 1: IN-AE negotiates the background data transfer directly with the mobile network. This option assumes that the “3GPP application” is an IN-AE. The IN-AE is aware that it needs to start a push service to transfer a set of data within a preferred time window and with certain bit rate requirements. It is also “smart” enough to understand the traffic policies provided by the mobile network and in particular to interpret the charging information included in these traffic policies [4]

Option 2: IN-AE asks oneM2M service layer (IN-CSE) to negotiate the background data transfer with the mobile network, on its behalf. This option also assumes that the “3GPP application” is an IN-AE. The IN-AE is aware that it needs to start a push service to transfer a set of data within a preferred time window and with certain bit rate requirements. However, the IN-AE does not understand the traffic policies provided by the mobile network and in particular it cannot interpret the charging information included in these traffic policies. Instead, the IN-AE provides some overall guidance to the IN-CSE (e.g. “lowest cost”) so that the IN-CSE can select from the provided traffic policies. After selection, the IN-CSE provides the transmission details to the IN-AE [5].

Option 3: IN-CSE negotiates background data transfer with the mobile network, based on its own needs. That is, the IN-CSE acts like a “3GPP application”. IN-AEs are unaware of the BDT service provided by the mobile network. The IN-AEs issue requests to the IN-CSE, and provide some guidance on how these requests are to be treated by the IN-CSE. For instance, they may indicate that the want to use the “lowest cost” transfer possible. The requests from multiple IN-AEs are accumulated and buffered at the IN-CSE. To transmit these buffered requests, the IN-CSE may decide to request a background data transfer. Consequently, the IN-CSE negotiates the background data transfer with the mobile network, and sends the buffered requests during the appropriate time windows.

[image: image2.png]PCEF

SPR

SPR

=]

L

Data Transfer

SCS
IAS

SCEF

A4
D —
o

Applications
negotiate
background data
transfer

IN-AE uses policy

pplications
request a background
data transfer, and rely
on Service Layer to
negotiate the
background data
transfer with network
IN-AE uses policy

IN-CSE
negotiates
background data
transfer —based on
buffered requests.
IN-CSE uses policy

Figure 2: oneM2M options for using 3GPP Background Data Transfer Feature
Recommendation

In our assessment, Options 1& 2 are more in line with the original spirit of how 3GPP intended background data transfer be used. The 3GPP intent was to provide a mechanism for Operators to enable Application Service Providers to offer resource intensive but not time critical services at lower cost while not putting a strain on the network.
We agree that Option 3 leverages the BDT cost savings across applications and reduces some of the complexity at the IN-AEs, but this may be at the expense of added complexity at the IN-CSE. In addition, we feel that there are a number of issues/shortcomings with this third option. Namely:

· Since the mobile network uses the IP 5-tuple to monitor/track the policy usage, it can only have one policy active for each IP flow. As a result, IN-CSE data traffic to a specific UE, is restricted to use a single traffic policy. This may result in lack of flexibility, as an IN-CSE may have multiple requests targeting the same UE, but from different IN-AEs.

As these requests share the same IP 5-tuple, they will all be tied to the same IP flow, and would be required to use the same traffic policy. This may be an issue of the IN-AEs have different preferences on the traffic profile (e.g. IN-AE1 might want “lowest cost”, while IN-AE2 may want “highest bit rate”)
· The IN-CSE is not typically aware of any future requests that will be arriving from IN-AEs. It can only look at its buffered requests to determine when to negotiate the background data transfer. However, the IN-CSE needs some trigger to start the negotiation. As an alternative, the IN-CSE could negotiate an overprovisioned transfer policy. However this would be inefficient for the network operator, and it would also result in the network offering more expensive transfer policies.

In addition future requests might pertain to different ASPs resulting in different applicable policies.
· The link between the cost of the transfer and the initiator of the transfer (the IN-AE) is not very tight. The traffic policies provided by the mobile network depend on the number of UEs to be included in the BDT. For example, consider that an IN-CSE has 5 buffered requests from IN-AE1 and 5 buffered requests from IN-AE2. A BDT request from IN-AE1 for 5 UEs and a BDT request from IN-AE1 & IN-AE2 for 10 UEs, will likely generate different traffic policies from the network. As a result, IN-AE1 may want the policy with the “lowest cost” to reach its 5 UEs, but the network selects the policy which minimizes the cost to reach the 10 UEs.

· There is no way for the IN-AE to convey to the IN-CSE that it expects to start a push service and transfer a set of data within a preferred time window and with certain bit rate requirements.
· There is no coordination with the network to ensure the actual UEs are awake at the time of the transfer.
References

[1] TR 22.853 V13.0.0, Study on Service Exposure and Enablement Support (SEES) requirements
[2] SP-130505, WID for Service Exposure and Enablement Support (SEES), September 9-11, 2013

[3] S1-135316, SEES Use Case on background traffic, November 11-15, 2013

[4] ARC-2016-0521-TS-0026_Background_Data_Transfer
[5] ARC-2017-0047-TS-0026_Background_Data_Transfer
�So here’s our first problem. This is not really an IoT/M2M feature.

�Any IoT Devices will certainly need software upgrades. Sometimes devices will need to be upgraded simultaneously. For example, all sensors and actuators in a factory need to be updated between 12 and 1 am while factory maintenance is happening

�Within the home PLMN? What happens if the actual UE is roaming?

�Since the request is not for a specific UE, I still think it can be included. Assuming the home PLMN does not cover the requested area the response can show no policies available in this case.

�Who pre-determines these devices are even on this carrier?

�This is determined from the device’s external identifier and subscription.

 Maybe another way of asking the question is how do you determine that all the devices are associated with the same SCEF. The answer is that the IN-CSE should determine this based on the external ID. The could be based on provisioning or a DNS lookup.

�What happens if the device was asleep during transfer attempt?

�Should be handled by each application differently, just as different apps have different behaviour for communicating with sleeping UEs even when BDT is not used.

�I think they mean spread out the transfer to multiple UEs, not that there are multiple pieces of content/data to send to each UE.

�So are you saying that the window is meant to be broken down in sub-windows and the application should choose only a subset of UEs to transfer data to in each? E.g. when given a window for 500 UEs, have 5 sub-windows, using each for 100 UEs?

I don’t see anything wrong with that, but since that behaviour is AE specific and cannot be specified, it doesn’t really provide the operator with all the benefits of resource scheduling for BDT.

I believe an operator would benefit more from being asked for 5 individual BDT occasions in this case, as its own resource scheduling is more precise. Otherwise IN-AE1 may use each sub-window for 100 UEs, but AE2 may use sub-window 1 for all 500.

Allowing the IN-AE to structure its transfer as needed (multiple transfers per UE is needed for acks, etc.) also makes the feature more valuable. A SW download may consist of several patches which require ack of the previous step to proceed.

�For Step 5, afaik, there is no guaranteed reservation by the network made for the application. Or at least no ACK.

�This is just a discussion, we did not show the ack because we thought it is assumed. This is a 3GPP interface and 23.682 shows that there is an ack.

But I’m unsure if I got the point correctly

�There is no check to see if the actual UE is reachable at that time, nor a step for the AS/Application to reset the sleep policy for the UEs in question

�Yes, the IN-AE can check which UEs to include by looking at their availability, just as it can for scheduling transfers without using BDT

�There is also no check that the actual UE receiving the data is not roaming, or that the roaming MNO supports the policy prior to sending the data,

�The IN-AE chooses which UEs to communicate with during this occasion. If it knows that the UE is roaming it can choose not to include it in the group.

�Option 1 is not supported by oneM2M is it? This is the “Direct Model” in 23.682 which bypasses the SCS. We don’t have an interface defined for that network request from the AE.

� We are including it to differentiate between it and option 2 and to clarify who does the negotiation.

In this option the request still has to go through the IN_CSE. The IN_CSE talks to the network, but forwards the policies to the IN-AE…who understands these policies

�I would show somewhere the fact there could be multiple IN-CSEs and/or multiple Underlying Networks to show how complicated this whole thing could get.

�Got it. Will include this in updates so far I am not sure if this document is something that would be discussed further, or an update to our solution brought before.

�How about Option 4:

1) AE asks IN-CSE “When’s the cheapest times to send my data?

2) IN-CSE asks network

3) Network replies with options

4) IN-CSE passes them on to AE

<selected time window opens>

5) AE transfers data directly to UEs

�You’re right, this is also an option, I think it can be accomplished with our proposal.

As it is, or latest solution (ARC-2017-0047, 0046 for ppt), differs in step 1:

 I would like to send about this much data within this time-frame (for so many UEs, etc.), at EITHER lowest cost, highest throughput, etc. What can you get me?

2-5 are the same.

If in step 1 the timeframe is large, let’s say a day, it becomes your step 1 as “when’s the cheapest time to send my data within the next day?”

�That’s not the benefit per se, the benefit is the IN-CSE gets to leverage cost savings across apps by aggregating the data transfers.

�Agreed, updated.

�Seems unlikely if we are talking about IoT use cases

�Why? There will situations where sensors are read by multiple IN-AE’s.

�There’s actually no guarantee/ack that you will get your transfer anyway, right?

�No, the network does indeed ack the policy, thus confirming that it has been granted

© 2017 oneM2M Partners

Page 1 (of 2)

