Doc# ARC-2017-0197R03- Modbus_Interworking_Solutions.doc

	Input Contribution

	Meeting ID*
	ARC#29

	Title:*
	Modbus Interworking Solutions

	Source:*
	Qiuting Li, ZTE, li.qiuting@zte.com.cn
Hao Wu, ZTE, wu.hao18@zte.com.cn

	Date:*
	2017-07-01

	Input related to*
	WI-0072/ TR-0043

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Impacted other TS/TR(s)
	

	Decision requested or recommendation:*
	New text about Modbus interworking Solution need to be incorporated into TR-0043.

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction

This contribution is proposal for possible solution for oneM2M and Modbus interworking, including Functional Architecture and Generic Entity Mapping.
-------------------------------Start of new text-------------------------------------
7 Possible Solutions for oneM2M and Modbus Interworking
7.1 Introduction

This clause describes possible solutions for oneM2M and Modbus interworking and provides:
· Functional architecture
· Resource Model Mapping and operation translation
· Operational procedures
Firstly functional architecture with main entities is described. Secondly possible resource model mappings and operation translations are described. Thirdly operational procedure mappings are described, i.e oneM2M entity reads or writes Modbus devices. This functional architecture can address all scenarios from clause 6 where Modbus devices are controlled and monitored by the oneM2M system.
7.2 Functional Architecture for Interworking
The Modbus interworking scheme is based on IPE (Interworking Proxy Application Entity) as a specialized AE whichtranslates different protocol messages and exposes services provided by both system, oneM2M and Modbus.
As depicted in Figure7.2-1, the IPE is characterized by the support of a non-oneM2M reference point (Modbus interface) and by the mapping the non-oneM2M (Modbus) data models to oneM2M resources exposed via the Mca reference point..The remote CSE or AE operates the oneM2M resource which represents Modbus device in hostingCSE, and triggers Modbus translation in IPE to operate Modbus device via Modbus interface.
The IPE may support two levels of interworking. One is the semantic interworking of full mapping so that an oneM2M application can access non-oneM2M solutions without the need to know the specific protocol encoding. The other is transparent transport of encoded non-oneM2M data and commands that the CSE or AE needs to know the specific protocol encoding rules.

[image: image1.emf]IPE

Modbus device oneM2M AE/CSE

oneM2M CSE

Mca/Mcc

Mca

Non-oneM2M

Interface

Figure 7.2-1Functional Architecture with IPE
Editor’s Note: Integration mode for Interworking needs more consideration and study, it isn’t considered here.
The main entities and their characteristics are as below.
· IPE : A specialized AE for Modbus interworking.The IPE communicates with Modbus device via a non-oneM2M reference point, and has the capability of remapping the related data model to the oneM2M resources exposed via the oneM2M Mca reference point.The IPE may deploy on Modbus device, oneM2M ASN, MN or IN.
· Modbus Device : NoDN which only plays Modbus Server roles that implementates Modbus application and saves Modbus data.The remote CSE or AE as Modbus Client accesses the Modbus Server to read and write Modbus data by Modbus function codes, i.e. data collection & controlling.

· oneM2M CSE: A Common Service Entity represents an instantiation of a set of “common service function” of the M2M/IoT environments. Such service functions are exposed to other entities through the Mca and Mcc reference points.
The figure 7.2-2 demonstrates a possible deployment model which describes the main entities and their interworking via reference points. According to different interworking scenarios IPE may be deployed in different nodes.

[image: image3.emf]Modbus Device

Node

oneM2M Device

Node

MN-AE

MN-CSE

Mca

IPE

Mca

oneM2M Middle Node

IN-AE

IN-CSE

Mca

oneM2M Infrastructure Node

Mcc

Mcc/Mca

Modbus

interface

Modbus

interface

Modbus Device

Node

IPE

Modbus Device

Node

Mca

IPE

Mca

Figure 7.2-2 Deployment Model based on Functional Architecture
7.3 Resource model mapping
7.3.1 Introduction

In Modbus, a master as client always initiates request to slave (server) and waits for response. A user implements service by accessing data in Modbus device of application memory blocks.This clause firstly describes a possible mapping between oneM2M and Modbus entities at devices, resources and attribute level. Then mapping between Modbus termperature device to oneM2M resource as an example is described.

7.3.2
Generic Entity Mapping
The diagram below represents these different levels of model. The tree represents a structure of any Modbus device and how it is mapped into oneM2M entities. Each Modbus device may include four memory blocks for four types of data models. Each data model represents application data, e.g. temperature, status of Modbus device. A user can access and change the value of these data models by simple reading and writing operation. One possible entity mappings are:
· Modbus Device --- <AE> oneM2M resource

· Modbus Data model and Modbus Function --- <container> oneM2M resource
· Modbus Data and Modbus function representation --- <contentInstance> oneM2M resource
Note: <timeSeries>and<timeSeriesInstance>resource may be used for representation of periodical Modbus data.
Modbus devices is represents by Modbus data models that have to be bound to the device application. Modbus data is organized and saved in device application memory based on Modbus data models. In the Modbus data models each element is saved within a memory block. Each Function is mapped to a Modbus Function Code which well defined in Modbus protocol and determine how data is accessed and modified by oneM2M entity.
Though further procedures in this document map Modbus Device to oneM2M <AE> resource, it is also possible that a Modbus Device be mapped to a oneM2M <container> resource.

[image: image6.emf]Modbus Device

Register A

DataRepresentation A

<container>

<AE>

<contentInstance>

Function A

<container>

FunctionRepresentation A <contentInstance>

Coil B

DataRepresentation B

<container>

<contentInstance>

Function B

<container>

FunctionRepresentation B <contentInstance>

Figure 7.3.2-1 Generic Entity Mapping

In interworking scenarios, oneM2M entities play originator role to operate Modbus devices by IPE which translates oneM2M operations on mapping resources to Modbus operations on physical Modbus devices. Below table shows a brief translation between Modbus and oneM2M.
Table7.3.2-1 Modbus Function Request Translation
	Modbus Operation
	OneM2M Resource and operation

	Write registers or coils
	Create <contentInstance> as Instance to corresponding <container> which represents Modbus Function,

Note: each data model support different Modbus Function which represent by function code in Modbus

	Read registers or coils
	

	Diagnostics
	Create <container> which represent diagnosed object, e.g. device identification.

Note: each diagnostic operation mapping to Modbus Function code.

In the Figure 7.3.2-2, for example a temperature device is mapped to oneM2M <AE> resource which comprises of several <container> resources and its child resources which represent temperature values and device information saved in the temperature device. ReadTemperature represents Modbus function which exposes to oneM2M system to access data in TemperatureRegister of Modbus device. Temperature Instance represents temperature value and related description, it may be represented with <timeSeries> if IPE periodically reports Temperature in Modbus Temperature Device to hostingCSE.

[image: image8.emf]Modbus

Temperature Dev

Temperature

Register

Temperature Instance

Device

Identification

<container>

<AE>

<container>

<contentInstance>

<contentInstance>

VendorName

ProductCode

MajorMinorRevision

UserApplicationName

VendorUrl

Object Description

ReadTemperature

<container>

FunctionRepresentation

<contentInstance>

Figure 7.3.2-2 Modbus Temperature Device mapping into oneM2M entities

At the originator, oneM2M CREATE operation is translated to Modbus operation to read or write registers or coils, or to diagnose Modbus devices. For example, CREATE a <contentInstace> to ReadTemperature as an operation instance is translated to the Read operation onTemperature Register with corresponding Modbus Function code, e.g.Write single Register, the data field content of Modbus message is represented within content attribute.
-------------------------------End of new text-------------------------------------

© 2017 oneM2M Partners

Page 1 (of 2)

_1557208039.vsd
IPE

Modbus device

oneM2M AE/CSE

oneM2M CSE

Mca/Mcc

Mca

Non-oneM2M Interface

_1557221622.vsd
Modbus Device

Register A

DataRepresentation A

<container>

<AE>

<contentInstance>

Function A

<container>

FunctionRepresentation A

<contentInstance>

Coil B

DataRepresentation B

<container>

<contentInstance>

Function B

<container>

FunctionRepresentation B

<contentInstance>

_1557221702.vsd
Modbus Temperature Dev

Temperature
Register

Temperature Instance

Device Identification

<container>

<AE>

<container>

<contentInstance>

<contentInstance>

VendorName

ProductCode

MajorMinorRevision

UserApplicationName

VendorUrl

Object Description

ReadTemperature

<container>

FunctionRepresentation

<contentInstance>

_1557210061.vsd
Modbus Device Node

oneM2M Device Node

MN-AE

MN-CSE

Mca

IPE

Mca

oneM2M Middle Node

IN-AE

IN-CSE

Mca

oneM2M Infrastructure Node

Mcc

Mcc/Mca

Modbus interface

Modbus interface

Modbus Device Node

IPE

Modbus Device Node

Mca

IPE

Mca

_1555915818.vsd
Modbus Device Node

ADN-AE

ASN-AE

Mca

ASN-CSE

oneM2M Device Node

oneM2M Device Node

MN-AE

MN-CSE

Mca

oneM2M Middle Node

IPE

Mcc

Mca

IN-AE

IN-CSE

Mca

IPE

oneM2M Infrastructure Node

Mcc

Mca

Modbus interface

Modbus interface

Modbus Device Node

_1556308150.vsd
Modbus Temperature Dev

Temperature
Register

Temperature Instance

Device Identification

<container>/<flexContainer>

<AE>

<container>

<timeSeries>/<contentInstance>

<contentInstance>

VendorName

ProductCode

MajorMinorRevision

UserApplicationName

VendorUrl

Object Description

ReadTemperature

<container>/<flexContainer>

FunctionRepresentation

<contentInstance>

_1557060595.vsd
Modbus Device Node

oneM2M Device Node

IPE

Mca

Modbus Device Node

MN-AE

MN-CSE

Mca

IPE

Mca

oneM2M Middle Node

IN-AE

IN-CSE

Mca

IPE

oneM2M Infrastructure Node

Mcc

Mcc/Mca

Modbus interface

Modbus interface

Modbus Device Node

_1556273508.vsd
Modbus Device

Register A

DataRepresentation A

<container>/<flexContainer>

<AE>

<contentInstance>/<timeSeries>

<container>/<flexContainer>

Function A

FunctionRepresentation A

<contentInstance>/<timeSeries>

Coil B

DataRepresentation B

<container>/<flexContainer>

<contentInstance>

Function B

<container>/<flexContainer>

FunctionRepresentation B

<contentInstance>/<timeSeries>

_1555826797.vsd
IPE

Modbus device

Modbus device

oneM2M AE/CSE

IPE

oneM2M CSE

Mca/Mcc

Mca

Non-oneM2M Interface

Non-oneM2M Interface

