Doc# ARC-2017-0290-Semantic_Query_Support

	CHANGE REQUEST

	Meeting ID:*
	ARC30

	Source:*
	Chonggang Wang, Convida, wang.chonggang@convidawireless.com
Catalina Mladin, Convida, mladin.catalina@convidawireless.com
Xu Li, Convida, li.xu@convidawireless.com
Martin Bauer, NEC, martin.bauer@neclab.eu

	Date:*
	2017-07-02

	
	

	Reason for Change/s:*
	Propose a new request parameter to trigger a semantic query; propose the description on semantic query functionality and procedures.

	CR against: Release*
	Release 3

	CR against: WI*
	 FORMCHECKBOX
 Active WI-0053 for Rel-3 Enhancements on Semantic Support
 FORMCHECKBOX
 MNT maintenance / < Work Item number(optional)>
Is this a companion CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

Companion CR number: (Note to Rapporteur - use latest agreed revision) Is this a mirror CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

Mirror CR number: (Note to Rapporteur - use latest agreed revision)

 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0001, v3.6.0

	Clauses *
	8.1.2, 10.2.7.12, 10.2.14

	Type of change: *
	 FORMCHECKBOX
 Editorial change

 FORMCHECKBOX
 Bug Fix or Correction

 Change to existing feature or functionality

 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	<TS/TR number>, <Version Number>, and <Description on which aspect should be reflected in this TS/TR>

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction
Semantic query has been well defined in TR-0033 including its functionalities and how to trigger a semantic query. According to the recommendation from the joint ARC/MAS session in TP29, this contribution proposes the following changes to TS-0001 in order to support semantic query.

· A new request parameter referred to as Semantic Query Indicator is introduced as an approach to trigger a semantic query.

· Semantic query functionality and the complete procedure for performing a semantic query request are included as well. Part of this is to use <semanticFanOutPoint> to explicitly support semantic query over a group of semantic resources.

-----------------------Start of change 1---
8.1.2
Request

Requests over the Mca and Mcc reference points, from an Originator to a Receiver, shall contain mandatory and may contain optional parameters. Certain parameters may be mandatory or optional depending upon the Requested operation. In this clause, the mandatory parameters are detailed first, followed by those that are operation dependent, and then by those that are optional:

· To: Address of the target resource or target attribute for the operation. The To parameter shall conform to clause 9.3.1.

NOTE 1:
To parameter can be known either by pre-provisioning (clause 11.2) or by discovery (clause 10.2.6 for discovery). Discovery of <CSEBase> resource is not supported in this release of the document. It is assumed knowledge of <CSEBase> resource is by pre-provisioning only.

NOTE 2:
The term target resource refers to the resource which is addressed for the specific operation. For example the To parameter of a Create operation for a resource <example> would be "/m2m.provider.com/exampleBase". The To parameter for the Retrieve operation of the same resource <example> is "/m2m.provider.com/exampleBase/example".

NOTE 3:
For Retrieve operation (clause 10.1.3), the To parameter can be the URI of an attribute to be retrieved.

· From: Identifier representing the Originator.

The From parameter is used by the Receiver to check the Originator identity for access privilege verification.

· Operation: operation to be executed: Create (C), Retrieve (R), Update (U), Delete (D), Notify (N).

The Operation parameter shall indicate the operation to be executed at the Receiver:
· Create (C): To is the address of the target resource where the new resource (parent resource).
· Retrieve (R): an existing To addressable resource is read and provided back to the Originator.
· Update (U): the content of an existing To addressable resource is replaced with the new content as in Content parameter. If some attributes in the Content parameter do not exist at the target resource, such attributes are created with the assigned values. If some attributes in the Content parameter are set to NULL, such attributes are deleted from the addressed resource.
· Delete (D): an existing To addressable resource and all its sub-resources are deleted from the Resource storage.
· Notify (N): information to be sent to the Receiver, processing on the Receiver is not indicated by the Originator.
· Request Identifier: request Identifier (see clause 7.1.7).

Example usage of request identifier includes enabling the correlation between a Request and one of the many received Responses.

Operation dependent Parameters:

· Content: resource content to be transferred.

The Content parameter shall be present in Request for the following operations:

· Create (C): Content is the content of the new resource with the resource type ResourceType.
· Update (U): Content is the content to be replaced in an existing resource. For attributes to be updated at the resource, Content includes the names of such attributes with their new values. For attributes to be created at the resource, Content includes names of such attributes with their associated values. For attributes to be deleted at the resource, Content includes the names of such attributes with their value set to NULL.

· Notify (N): Content is the notification information.

The Content parameter may be present in Request for the following operations:

· Retrieve (R): Content is the list of attribute names from the resource that needs to be retrieved. The values associated with the attribute names shall be returned.

· Resource Type: type of resource.

The ResourceType parameter shall be present in Request for the following operations:

· Create (C): Resource Type is the type of the resource to be created.

Optional Parameters:

· Role IDs: optional, required when role based access control is applied. A list of Role-IDs that are allowed by the service subscription shall be provided otherwise the request is considered not valid.

The Role IDs parameter shall be used by the Receiver to check the Access Control privileges of the Originator.

· Originating Timestamp: optional originating timestamp of when the message was built.

Example usage of the originating timestamp includes: to measure and enable operation (e.g. message logging, correlation, message prioritization/scheduling, accept performance requests, charging, etc.) and to measure performance (distribution and processing latency, closed loop latency, SLAs, analytics, etc.)

· Request Expiration Timestamp: optional request message expiration timestamp. The Receiver CSE should handle the request before the time expires. If a Receiver CSE receives a request with Request Expiration Timestamp with the value indicating a time in the past, then the request shall be rejected.

Example usage of the request expiration timestamp is to indicate when request messages (including delay‑tolerant) should expire and to inform message scheduling/prioritization. When a request with set expiration timestamp demands an operation on a Hosting CSE different than the current Receiver CSE, then the current CSE shall keep trying to deliver the Request to the Hosting CSE until the request expiration timestamp time, in line with provisioned policies.

· Result Expiration Timestamp: optional result message expiration timestamp. The Receiver CSE should return the result of the request before the time expires.

Example usage of the result expiration timestamp: An Originator indicates when result messages (including delay-tolerant) should expire and informs message scheduling/prioritization. It can be used to set the maximum allowed total request/result message sequence round trip deadline.

· Response Type: optional response message type: Indicates what type of response shall be sent to the issued request and when the response shall be sent to the Originator:

· nonBlockingRequestSynch: In case the request is accepted by the Receiver CSE, the Receiver CSE responds, after acceptance, with an Acknowledgement confirming that the Receiver CSE will further process the request. The Receiver CSE includes in the response to an accepted request a reference that can be used to access the status of the request and the result of the requested operation at a later time. Processing of Non-Blocking Requests is defined in clause 8.2.2 and in particular for the synchronous case in clause 8.2.2.2.

· nonBlockingRequestAsynch {optional list of notification targets}: In case the request is accepted by the Receiver CSE, the Receiver CSE shall respond, after acceptance, with an Acknowledgement confirming that the Receiver CSE will further process the request. The result of the requested operation needs to be sent as notification(s) to the notification target(s) provided optionally within this parameter as a list of entities or to the Originator when no notification target list is provided. When an empty notification target list is provided by the Originator, no notification with the result of the requested operation shall be sent at all. Processing of Non‑Blocking Requests is defined in clause 8.2.2 and in particular for the asynchronous case in clause 8.2.2.3.

· blockingRequest: In case the request is accepted by the Receiver CSE, the Receiver CSE responds with the result of the requested operation after completion of the requested operation. Processing of Blocking Requests is defined in clause 8.2.1. This is the default behaviour when the Response Type parameter is not given the request.
· flexBlocking {optional list of notification targets}: When Response Type in the request received by the Receiver CSE is set to flexBlocking, it means that the Originator of the request has the capability to accept the following types of responses: nonBlockingRequestSynch, nonBlockingRequestAsynch and blockingRequest.

The Receiver CSE shall make the decision to respond using blocking or non-blocking based on its own local context (memory, processing capability, etc.) if not defined in the resource handling procedure.

If the Receiver CSE choose to respond using non-blocking mode, based on the presence of notification targets in the request:
· If the notification targets are provided in the request and the Recerver CSE is responding, the Receiver CSE shall notify the result using nonBlockingRequestAsynch.
· If notification targets are not provided, the Receiver CSE shall respond with the address of <request> resource using nonBlockingRequestSynch.

Example usage of the response type set to nonBlockingRequestSynch: An Originator that is optimized to minimize communication time and energy consumption wants to express a Request to the receiver CSE and get an acknowledgement on whether the Request got accepted. After that the Originator may switch into a less power consuming mode and retrieve a Result of the requested Operation at a later time.

Further example usage of response type set to nonBlockingRequestSynch: When the result content is extremely large, or when the result consists of multiple content parts from a target group which are to be aggregated asynchronously over time.

· Result Content: optional result content: Indicates what are the expected components of the result of the requested operation. The Originator of a request may not need to get back a result of an operation at all. This shall be indicated in the Result Content parameter. Settings of Result Content depends on the requested operation specified in Operation. Possible values of Result Content are:

· attributes: A representation of the targeted resource including all its attributes shall be returned as content, without the address(es) of the child resource(s) or their descendants. For example, if the request is to retrieve a <container> resource, the address(es) of the <contentInstance> child-resource(s) is not provided. This setting shall be only valid for Create, Retrieve, Update, or Delete operation. If the Originator does not set Result Content parameter in a Create, Retrieve or Update request message, this setting shall be the default value when the Receiver processes the request message.
· modified-attributes: This setting shall be only valid for a Create or Update operation. A representation of the targeted resource including only the assigned or modified attributes relative to what was provided by the Originator of the request shall be returned as content, without the address(es) of the child resource(s) or their descendants.
· hierarchical-address: Representation of the address of the created resource. This setting shall only be valid for a Create operation. The address shall be in hierarchical address scheme.

· hierarchical-address+attributes: Representation of the addresss in hierarchical address scheme and the attributes of the created resource. This setting shall only be valid for a Create operation.

-
attributes+child-resources: Representation of the requested resource, along with a nested representation of all of its child resource(s) , and their descendants, in line with any provided filter criteria as given in the Filter Criteria parameter shall be returned as content. If there is no filter criteria parameter in the request message then all children/descendants are returned along with their attributes. For example, if the request is to retrieve a <container> resource that only has <contentInstance> children, the attributes of that <container> resource and a representation of all of its <contentInstance> child-resource(s) , including their attributes, are provided.

The originator may request to limit the maximum number of allowed nesting levels. The orginator may also include an offset that indicates the starting point of the direct child resource. The offset shall start at 1. The hosting CSE shall return all direct child resources and their descendants, or up to the maximum nesting level specififed in a request subject to maximum size limit that may be imposed by the hosting CSE. The offset, maximum number/size and maximum level shall be specified in Filter Criteria as offset, limit, and level condition, respectively, by the Originator.

The hosting CSE shall list parent resources before their children. This means that the originator of the request will not receive a discovered resource without having received its parents. The hosting CSE shall also ensure that proper nesting representation of all the children is incorporated in its listing for parents and children.

Nested processing is applicable at every level in the resource tree. If a direct child resource and all its descendants cannot be included in the returned content due to size limitations imposed by the hosting CSE then the direct child resource shall not be included in the response.

An indication shall be included in the response signalling if the returned content is partial. If the indication is for partial content, the response shall include an offset for the direct child resource where processing can restart for the remaining direct child resources

This shall be only valid for a Retrieve/Delete operation.
· child-resources: A nested representation of the resource's child resource(s) their descendants and their attributes shall be returned as content. The resources that are returned are subject to any filter criteria that are given in the Filter Criteria parameter (if there are no filter criteria then all children and their descendants are returned). The attributes of the parent resource are not returned, but all the attributes of the children are returned. For example, if the request is to retrieve a <container> resource that only has <contentInstance> children, only a representation of all of its <contentInstance> child-resource(s) is provided.

The offset, maximum number/size and maximum level shall be specified in Filter Criteria as offset, limit, and level condition, respectively, by the Originator. Processing of direct child resources, size limitations, maximum nesting level, and offset for the starting of direct child resource processing of the attributes+child-resources option shall apply to this option as well.

This shall be only valid for a Retrieve/Delete operation.
· attributes+child-resource-references : Representation of the requested resource, along with the address(es) of the child resource(s), and their descendants shall be returned as content. For example, if the request is to retrieve a <container> resource, the <container> resource and the address(es) of the <contentInstance> child-resource(s) are provided.

The offset, maximum number/size and maximum level shall be specified in Filter Criteria as offset, limit, and level condition, respectively, by the Originator. Processing of child resources, size limitations, maximum nesting level, and offset for the starting of child resource processing of the attributes+child-resources option shall apply to this option as well.

This shall be only valid for a Retrieve/Delete operation.

· child-resource-references: Address(es) of the child resources and their descendants, without any representation of the actual requested resource shall be returned as content. For example, if the request is to retrieve a <container> resource, only the address(es) of the <contentInstance> child-resource(s) is provided.

The offset, maximum number/size and maximum level shall be specified in Filter Criteria as offset, limit, and level condition, respectively, by the Originator. Processing of child resources, size limitations, maximum nesting level, and offset for the starting of child resource processing of the attributes+child-resources option shall apply to this option as well.

This shall be only valid for a Retrieve/Delete operation.

This option can be used within the context of resource discovery mechanisms (see clause 10.2.6).
· nothing: Nothing shall be returned as operational result content. If the Originator does not set the Result Content parameter in a Delete request message, this setting shall be the default value when the Receiver processes the request message. This setting shall be valid for a Create,Update,Delete, orNotify operation.

EXAMPLE:
If the request is to delete a resource, this setting indicates that the response shall not include any content.

· original-resource: Representation of the original resource pointed by the link attribute in the announced resource shall be returned as content, without the address(es) of the child resource(s). This shall be only valid for a Retrieve operation where the To parameter targets the announced resource.
· semantic-content: Representation of semantic information that is the result of a semantic query as indicated by the setting of the Semantic Query Indicator parameter.

Note that for any of the above options, Discovery access control is applied against discovery related procedures, while Retrieve access control procedures is applied against non-discovery related Retrieve operations.

Note that the fitter criteria usage governs the purpose of a Retrieve operation.
Table 8.1.2-1: Summary of Result Content Values
	Value
	Create
	Retrieve
	Update
	Delete
	Notify

	attributes
	default
	default
	default
	valid
	n/a

	modified-attributes
	valid
	n/a
	valid
	n/a
	n/a

	hierarchical-address
	valid
	n/a
	n/a
	n/a
	n/a

	hierarchical-address+attributes
	valid
	n/a
	n/a
	n/a
	n/a

	attributes+child-resources
	n/a
	valid
	n/a
	valid
	n/a

	child-resources
	n/a
	valid
	n/a
	valid
	n/a

	attributes+child-resource-references
	n/a
	valid
	n/a
	valid
	n/a

	child-resource-references
	n/a
	valid
	n/a
	valid
	n/a

	nothing
	valid
	n/a
	valid
	default
	valid

	original-resource
	n/a
	valid
	n/a
	n/a
	n/a

	semantic-content
	n/a
	valid
	n/a
	n/a
	n/a

· Result Persistence: optional result persistence: indicates the time for which the response may persist to. The parameter is used in case of non-blocking request where the result attribute of the <request> resource should be kept at the CSE, for example, with the purpose of sharing, tracking and analytics.

In the case the response of a request is required to be kept in the CSE, for example the procedures of <request> resource, <delivery> resource and <group> resource, the Result Persistence indicates the time duration for which the CSE keeps the response available after receiving it.

Example usage of result persistence includes requesting sufficient persistence for analytics to process the response content aggregated asynchronously over time. If a result expiration time is specified then the result persistence lasts beyond the result expiration time.

· Operation Execution Time: optional operation execution time: indicates the time when the specified operation Operation is to be executed by the target CSE. A target CSE shall execute the specified operation of a Request having its operational execution time indicator set, starting at the operational execution time. If the execution time has already passed or if the indicator is not set, then the specified operation shall be immediately executed, unless the request expiration time, if set, has been reached.

Example usage of operational execution time includes asynchronous distribution of flows, which are to be executed synchronously at the operational execution time.

NOTE 6:
Time-based flows could not supported depending upon time services available at CSEs.

· Event Category: optional event category: Indicates the event category that should be used to handle this request. Event categories are impacting how Requests to access remotely hosted resources are processed in the CMDH CSF. Selection and scheduling of connections via CMDH are driven by policies that can differentiate event categories.

Example usage of "event category" set to specific value X: When the request is demanding an operation to be executed on a Hosting CSE that is different from the current Receiver CSE, the request may be stored in the current Receiver CSE that is currently processing the request on the way to the Hosting CSE until it is allowed by provisioned policies for that event category X to use a communication link to reach the next CSE on a path to the Hosting CSE or until the request expiration timestamp is expired.

The following values for Event Category shall have a specified pre-defined meaning:

· Event Category = immediate: Requests of this category shall be sent as soon as possible and shall not be subject to any further CMDH processing, i.e. the request will not be subject to storing in CMDH buffers when communication over an underlying network is possible. In particular, CMDH processing will respect values for Request Expiration Timestamp, Result Expiration Timestamp given in the original request and not fill in any default values if they are missing.

· Event Category = bestEffort: Requests of this category can be stored in CMDH buffers at the discretion of the CSE that is processing the request for an arbitrary time and shall be forwarded via Mcc on a best effort basis. The CSE does not assume any responsibility to meet any time limits for delivering the information to the next CSE. Also the maximum amount of buffered requests for this category is at the discretion of the processing CSE.

· Event Category = latest:
· If this category is used in a request asking for a CRUD operation on a resource, the following shall apply:
CRUD requests using this category shall undergo normal CMDH processing as outlined further below in the present document and in oneM2M TS-0004 [3] with a maximum buffer size of one pending request for a specific pair of From and To parameters that appear in the request. If a new request message is received by the CSE with a pair of parameters From and To that has already been buffered for a pending request, the newer request will replace the buffered older request.

· If this category is used in a notification request triggered by a subscription, the following shall apply:
Notification requests triggered by a subscription using this category shall undergo normal CMDH processing as outlined further below in the present document and in oneM2M TS-0004 [3] with a maximum buffer size of one pending notification request per subscription reference that appears in a notification request. If a new notification request is received by the CSE with a subscription reference that has already been buffered for a pending notification request, the newer request will replace the buffered older request.

· If no further CMDH policies are provisioned for this event category, the forwarding process shall follow the 'bestEffort' rules defined above.

The M2M Service Provider shall be able to provision CMDH policies describing details for the usage of the specific Underlying Network(s) and the applicable rules as defined in the [cmdhPolicy] resource type for other Event Category values not listed above.

· Delivery Aggregation: optional delivery aggregation on/off: Use CRUD operations of <delivery> resources to express forwarding of one or more original requests to the same target CSE(s). When this parameter is not given in the request, the default behaviour is determined per the provisioned CMDH policy if available. If there is no such CMDH policy, then the default value is "aggregation off".
NOTE 7:
Since Delivery Aggregation is optional, there could be a default value to be used when not present in the Request. This parameter could not be exposed to AEs via Mca.

Example usage of delivery aggregation set on: The CSE processing a request shall use aggregation of requests to the same target CSE by requesting CREATE of a <delivery> resource on the next CSE on the path to the target CSE.

· Group Request Identifier: optional group request identifier: Identifier optionally added to the group request that is to be fanned out to each member of the group in order to detect loops and avoid duplicated handling of operation in case of loops of group and common members between groups that have parent-child relationship.

· Group Request Target Members: optional group request target members: Indicates subset of members of a group for which fanout is to be executed. Example usage of Group Request Target Members: if fanout operation failed for some of the members then the Originator may use this parameter to execute fanout for failed members of a previous fanout operation.
· Filter Criteria: optional filter criteria: conditions for filtered retrieve operation are described in table 8.1.2-2. This is used for resource discovery (clause 10.2.6) and general retrieve, update, delete requests (clauses 10.1.3, 10.1.4 and 10.1.5).

Example usage of retrieve requests with filter criteria using modifiedSince condition tag: if a target resource is modified since 12:00 then the Hosting CSE will send a resource representation.
· Discovery Result Type: Optional Discovery result format. This parameter applies to discovery related requests (see filterUsage in table 8.1.2-2 and clause 10.2.6) to indicate the preference of the Originator for the format of returned information in the result of the operation. This parameter shall take on one of the following values reflecting the options in clause 9.3.1:

· Hierarchical addressing method.

· Non-hierarchical addressing method.

For example if Discovery Result Type is set to Non-hierarchical addressing method, then the request Originator indicates that the discovered resources should be in the form of Non-hierarchical address.

The absence of the parameter implies that the result shall be in the form of a Hierarchical address.
· Token Request Indicator: Optional parameter used to indicate that the Originator supports the Token Request procedure, and the Originator may attempt the Token Request procedure if the Receiver provides a Token Request Information parameter in the response.
· Tokens: Optional parameter used to transport ESData-protected Tokens applicable to the request for use in Indirect Dynamic Authorization.
· Token IDs: Optional parameter used to transport Token-IDs applicable to the request for use in Indirect Dynamic Authorization.
· Local Token IDs: Optional parameter used to transport Local-Token-IDs applicable to the request for use in Indirect Dynamic Authorization.
· Authorization Signature Indicator: Optional parameter used to indicate the capability for creating AuthorRelMapRecord when Originator is an AE. If the Hosting CSE does not support this parameter, the Hosting CSE should ignore it. The details of the AuthorRelMapRecord are described in clause 7.3.2.2 of oneM2M TS-0003 [2].
· Authorization Signature: Optional parameter used to transport the signatures for Token(s) or TokenID(s) generated using the certificate of the AE or a MIC generated using a symmetric key shared between the AE and DAS server.
· Authorization Relationship Indicator: Optional parameter used to indicate that the relationship between the AE and the Token(s) are maintained in the DAS server.
· Semantic Query Indicator: Optional parameter used to indicate whether the request is a semantic query or not. If the request contains this parameter with the value set to “TRUE”, the request shall be processed as a semantic query based on the SPARQL query statement included in the “semanticsFilter” condition tag; other Filter Criteria and the following parameters shall be ignored: Discovery Result Type, Delivery Aggregation.The parameter Result Content shall be set to semantic-content to indicate that the response message contains the result of a semantic query request.
Table 8.1.2-2: Filter Criteria conditions

	Condition tag
	Multiplicity
	Matching condition

	createdBefore
	0..1
	The creationTime attribute of the resource is chronologically before the specified value.

	createdAfter
	0..1
	The creationTime attribute of the resource is chronologically after the specified value.

	modifiedSince
	0..1
	The lastModifiedTime attribute of the resource is chronologically after the specified value.

	unmodifiedSince
	0..1
	The lastModifiedTime attribute of the resource is chronologically before the specified value.

	stateTagSmaller
	0..1
	The stateTag attribute of the resource is smaller than the specified value.

	stateTagBigger
	0..1
	The stateTag attribute of the resource is bigger than the specified value.

	expireBefore
	0..1
	The expirationTime attribute of the resource is chronologically before the specified value.

	expireAfter
	0..1
	The expirationTime attribute of the resource is chronologically after the specified value.

	labels
	0..1
	The labels attributes of the resource matches the specified value.

	labelsQuery
	0..1
	The value is an expression for the filtering of labels attribute of resource when it is of key-value pair format. The expression is about the relationship between label-key and label-value which may include equal to or not equal to, within or not within a specified set etc. For example, label-key equals to label value, or label-key within {label-value1, label-value2}. Details is defined in [3]

	resourceType
	0..n
	The resourceType attribute of the resource is the same as the specified value. It also allows differentiating between normal and announced resources.

	sizeAbove
	0..1
	The contentSize attribute of the <contentInstance> resource is equal to or greater than the specified value.

	sizeBelow
	0..1
	The contentSize attribute of the <contentInstance> resource is smaller than the specified value.

	contentType
	0..n
	The contentInfo attribute of the <contentInstance> resource matches the specified value.

	limit
	0..1
	 The maximum number of resources to be returned in the response. This may be modified by the Hosting CSE. When it is modified, then the new value shall be smaller than the suggested value by the Originator.

	attribute
	0..n
	This is an attribute of resource types (clause 9.6). Therefore, a real tag name is variable and depends on its usage and the value of the attribute can have wild card *. E.g. creator of container resource type can be used as a filter criteria tag as "creator=Sam" , "creator=Sam*" , "creator=*Sam" .

	filterUsage
	0..1
	Indicates how the filter criteria is used. If provided, possible values are 'discovery' and 'IPEOnDemandDiscovery'.
If this parameter is not provided, the Retrieve operation is a generic retrieve operation and the content of the child resources fitting the filter criteria is returned.
If filterUsage is'discovery', the Retrieve operation is for resource discovery (clause 10.2.6), i.e.only the addresses of the child resources are returned.
If filterUsage is 'IPEOnDemandDiscovery', the other filter conditions are sent to the IPE as well as the discovery Originator ID. When the IPE successfully generates new resources matching with the conditions, then the resource address(es) shall be returned. This value shall only be valid for the Retrieve request targeting an <AE> resource that represents the IPE.

	semanticsFilter
	0..n
	Both semantic resource discovery and semantic query use semanticsFilter to specify a query statement that shall be specified in the SPARQL query language [5]. When a CSE receives a RETRIEVE request including a semanticsFilter, and the Semantic Query Indicator parameter is also present in the request, the request shall be processed as a semantic query; otherwise, the request shall be processed as a semantic resource discovery.
In the case of semantic resource discovery targeting a specific resource, if the semantic description contained in the <semanticDescriptor> of a child resource matches the semanticFilter, the URI of this child resource will be included in the semantic resource discovery result.
In the case of semantic query, given a received semantic query request and its query scope, the SPARQL query statement shall be executed over aggregated semantic information collected from the semantic resource(s) in the query scope and the produced output will be the result of this semantic query.

Examples for matching semantic filters in SPARQL to semantic descriptions can be found in [i.28].

	filterOperation

	0..1
	Indicates the logical operation (AND/OR) to be used for different condition tags. The default value is logical AND.

	contentFilterSyntax
	0..1
	Indicates the Identifier for syntax to be applied for content-based discovery.

	contentFilterQuery
	0..1
	The query string shall be specified when contentFilterSyntax parameter is present.

	level
	0..1
	The maximum level of resource tree that the Hosting CSE shall perform the operation starting from the target resource (i.e. To parameter). This shall only be appiled for Retrieve operation. The level of the target resource itself is zero and the level of the direct children of the target is one.

	offset
	0..1
	The number of direct child and descendant resources that a Hosting CSE shall skip over and not include within a Retrieve response when processing a Retrieve request to a targeted resource.

------------------------End of change 1--
------------------------Start of change 2--
10.2.7.12
Retrieve <semanticFanOutPoint>

The RETRIVE operation on <semanticFanOutPoint> shall be used for two purposes: 1) performing semantic resource discovery; and 2) performing semantic query.

The procedure below shall be used for performing a semantic discovery or a semantic query procedure using the descriptor content of all member semantic resources belonging to an existing <group> resource.
Table 10.2.7.12-1: <semanticFanOutPoint> RETRIEVE for Semantic Resource Discovery and Semantic Query
	<semanticFanOutPoint> RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	According to clause 10.1.3.
For the semantic query case, the request message shall include the parameter Semantic Query Indicator, which shall not be included in the request for semantic resource discovery.

	Processing at Originator before sending Request
	For the semantic resource discovery case, the Originator shall request a semantic discovery to be performed using the content of the semantic descriptors of all member resources belonging to an existing <group> resource.
For the semantic query case, the Originator may discover various <group> resources defining different explicit query scopes and select the one having the desired query scope. Then, the Originator shall request a semantic query to be performed using the semantic information of all member resources belonging to this <group> resource.
The Originator may be an AE or CSE.

	Processing at Receiver
	The Receiver shall:

· Check if the Originator has RETRIEVE privilege in the <accessControlPolicy> resource referenced by the membersAccessControlPolicyIDs in the parent <group> resource. In the case membersAccessControlPolicyIDs is not provided, the access control policy defined for the parent <group> resource shall be used

· Upon successful validation, obtain the URIs of all the member semantic resources from the memberIDs attribute of the parent<group> resource

· If there are semantic resources stored on different CSEs, individual RETRIEVE requests are sent to each CSE for retrieving the descriptors, otherwise the descriptor attributes are simply retrieved for all the semantic resources hosted locally. All semantic descriptors are accessed based on the respective access control policies

· Once all of the related descriptor attributes have been retrieved, the SPARQL request is being executed on the combined content

	Information in Response message
	The result of the SPARQL request executed on the content retrieved from the semantic resources.

	Processing at Originator after receiving Response
	According to clause 10.1.3

	Exceptions
	According to clause 10.1.3

------------------------End of change 2--
------------------------Start of change 3--
10.2.14.X
Semantic query
Note: In the following descriptions, the general term semantic resource is used to refer to <semanticDescriptor> resources and any other future resources containing semantic information (e.g. semantic content resources, etc.).
This clause describes semantic query procedures on semantic descriptions represented as RDF triples, given that an overall semantic description (i.e. a logical tree) may be distributed across several semantic resources.

In general, semantic queries enable the retrieval of both explicitly and implicitly derived information based on syntactic, semantic and structural information contained in data (such as RDF data). The result of a semantic query is the semantic information/knowledge for answering/matching the query. By comparison, the result of a semantic resource discovery is a list of identified resource URIs. Detailed comparison aspects between semantic query and semantic resource discovery are listed in table 10.2.14.X-1.

Table 10.2.14.X-1: Comparison between semantic query and semantic resource discovery

	Aspects
	Semantic Query
	Semantic Resource Discovery

	Objective
	The objective of Semantic Query is extracting “useful knowledge” over a set of “RDF data basis”.
	Semantic resource discovery is targeted to discovery of resources for further resource use (e.g., CRUD operations).

	Technical Focus
	Semantic Query is a more advanced feature leveraging semantics to derive knowledge from distributed semantic descriptors, based on a query statement.
	Semantic resource discovery is a resource-oriented feature to leveraging semantics to enable sophisticated resource discovery.

	Result
	The semantic query result (representing the derived “knowledge”) is provided as semantic information to answer the query not limited to resources URIs.
	The processed result of a semantic resource discovery is mainly to include a list of identified resource URIs.

A complete semantic query operation shall include the following steps:
· Step 1. The Originator shall be given or form a semantic query statement (i.e. using SPARQL) based on its needs.

· Step 2. The Originator shall form a RETRIEVE request including the semantic query statement in the semanticsFilter condition and shall set the “Semantic Query Indicator” parameter to “TRUE”. The Originator shall send the RETRIEVE request to a Receiver.

· Step 3. The Receiver shall execute the semantic query statement contained in the received semantic query request, for which the following information shall be required: a) the semantic query statement which is received from the Originator; and b) the RDF data basis. The RDF data basis is composed of all the RDF triples in scope of the semantic query. The RDF data basis may be distributed in the resource tree and stored in different semantic resources. Therefore, the Receiver shall perform Semantic Graph Scoping (SGS) which is the process of establishing the “query scope”, i.e. RDF data basis. An illustration of SGS is shown in Figure 10.2.14.X-1 and with two approaches described later.
· Step 4. Once the RDF data basis is determined through the SGS process, the Receiver shall apply the semantic query statement to the RDF data basis, yielding the semantic query result.

· Step 5. The semantic query result shall be included in a response message and returned to the Originator.

[image: image1.emf]... ...

oneM2M Normal Resource

oneM2M <semanticDescriptor> Resource

RDF

Data Basis

SD_n

SD_1

SD_1 SD_2

SD_3

SD_2

SD_3

Semantic Graph

Scoping (SGS)

A SPARQL Query

Statement

Executed on

Returns

Figure 10.2.14.X-1: An Illustration of SGS in oneM2M Architecture
The following two approaches may be used for the SGS process in Step 3 above, in order to decide the semantic query scope of the semantic query:

Approach-1: The scope of the semantic query is provided implicitly.

In Approach-1, a semantic query request message targets any resource (i.e. as specified by the “To” parameter) and the semantic query shall be executed relative to this target resource, similarly to other request messages. The scope of the semantic query is formed through the aggregation of the semantic contents of the target resource’s descendants. All the contents of semantic resource descendants of the target resource shall form the RDF data basis for this semantic query to be executed on. Thus, by targeting a oneM2M regular resource in the resource tree, the scope of the semantic query is implicitly decided as discussed above.
Approach-2: The scope of the semantic query is provided explicitly.

In Approach-2 the relevant semantic resources are the members of a <group> resource. The scope of the semantic query is formed through the aggregation of the semantic contents of all the group members. In this approach, the request targets the <semanticFanOutPoint> (as specified by the “To” parameter), i.e., the child resources of the <group> resource. As a result, this <group> resource explicitly specifies the RDF data basis of the semantic query (i.e. the scope is explicitly defined by the semantic resources which are the members of the <group> resource).
When the semantic query scope is explicitly defined by the <group> resource, the processing stage can be decoupled from the SGS process. For example, without processing any semantic query, the Receiver (e.g., a CSE) may proactively aggregate relevant semantic resources together using a <group> resource. The Originator may first discover various <group> resources and select the one with the desired RDF data basis, before launching a semantic query request. For example, the <semanticDescriptor> child resource of <group-1> resource may indicate that this group resource includes all the devices deployed in Building-1. The Originator, whose query is to be limited to Building-1, may then send its semantic query request to the <semanticFanOutPoint> child resource of the <group-1> resource.
In Approach-2, the SGS processing (included in step 3 above of the sematic query flow) shall include the following steps:
· The Receiver of the semantic query request targeting a <semanticFanOutPoint> resource shall use the memberIDs attribute of the parent <group> resource to retrieve all the related semantic information. If there are descriptors stored on different CSEs, individual RETRIEVE requests are sent to each CSE for retrieving the semantic information from the external resources.

· All semantic resources are accessed based on the respective access control policies. The <semanticFanOutPoint> resource uses membersAccessControlPolicyIDs attribute in the parent <group> resource for access control policy validation.

· Once all of the related semantic information has been retrieved (which forms the RDF data basis for this semantic query), the SPARQL query statement will be executed on the collected RDF data basis in order to provide the semantic query result.

The RETRIVE operation targeting a <semanticFanOutPoint> for semantic queries is detailed in clause 10.2.7.12.
------------------------End of change 3--
© 2017 oneM2M Partners

Page 1 (of 2)

