ARC-2018-0105-Introduction_to_OpenFog_TR-0052.DOC

	Input Contribution

	Meeting ID*
	ARC35

	Title:*
	Introduction to OpenFog

	Source:*
	Catalina Mladin, Convida, Mladin.Catalina@convidawireless.com;

Lu Liu, Convida, Liu.Lu@convidawireless.com;
Kenichi Yamamoto, KDDI, kc-yamamoto@kddi-std.jp;

	Date:*
	2018-05-1

	Input related to*
	WI-0080 Edge and Fog Computing
TR-0052 V 0.0.2

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 Discussion

 Information

 Other <specify>

	Impacted other TS/TR(s)
	

	Decision requested or recommendation:*
	Agree for inclusion in TR-0052

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction

This contribution provides an introduction to OpenFog for the “Analysis Background” clause of TR-0052.
---------------------- Start of change 1---

6.1.1 OpenFog Consortium

6.1.1.1 Introduction

The OpenFog consortium was formed with the goal to create an open reference architecture for fog computing. The OpenFog Reference Architecture (OpenFog RA) [i.x] defined by the OpenFog consortium is a universal technical framework designed to enable the data-intensive requirements of Internet of Things, 5G and artificial intelligence applications. It is a structural and functional prescription of an open, interoperable, horizontal system architecture for distributing computing, storage, control and networking functions closer to the users along a cloud-to-thing continuum of communicating, computing, sensing and actuating entities. The OpenFog Consortium intends to partner with standards development organizations and to provide various levels of interoperability. The Consortium will be laying the groundwork (e.g., through requirements) for future component level interoperability and eventually certification. Technology used to facilitate part of a fog solution will be termed OpenFog Technology Ready.

Various use cases are introduced in the OpenFog RA, including transportation with smart cars and traffic control, visual security and surveillance, smart cities and smart buildings (as shown in Table 6‑1). The use cases focus on the concerns in performance control, latency and efficiency, and present the advantages of OpenFog approaches such as additional security, awareness of client-centric objectives, agility of rapid innovation and scaling, real-time processing and control, and dynamic pooling of local unused resources.

Table 6‑1: Use Cases in OpenFog RA

	Use case
	Highlights

	Smart cars and traffic control
	Multiple fog/cloud domain interactions; mobile fog nodes; multiple fog networks by different authorities; multi-tenancy across fog nodes; private and public fog/cloud networks; hierarchical and distributed architecture.

	Visual security and surveillance
	Support for high resolution cameras; machine vision; low latency detection and response; privacy preservation.

	Smart cities
	Optimized connectivity and network usage; secure data and distributed analytics.

	Smart buildings
	Real-time processing and responses of sensor data; hierarchical control; operational history assisted machine learning for optimization models.

6.1.1.2 Reference Architecture
The OpenFog RA defines the core driving principles as pillars, which act as the belief, approach, intent and guidance of the reference architecture, and represent the key attributes for a system to embody the OpenFog definition. The pillars include security, scalability, openness, autonomy, programmability, reliability-availability-serviceability, agility and hierarchy.

· Security pillar: The security pillar includes OpenFog node security, network security, management and orchestration security. The security pillar defines base building blocks starting from mandatory hardware root of trust on each fog node, and extending to chain of trust on other components, other fog nodes, and to the cloud, which ensures a secure end-to-end OpenFog deployment.

· Scalability pillar: The scalability pillar is defined to address dynamic technical and business needs of fog deployments, including all fog computing applications and verticals. The scaling opportunities could be found in individual fog node’s internal hardware or software, addition of fog nodes on the same or adjacent levels of the fog hierarchy, demand-driven environment, and services of storage, connectivity and analytics. The scalability may involve different dimensions in the fog networks, including performance, capacity, reliability, security, hardware and software. With the scalability pillar, fog nodes will be enabled to adapt to different workload, system cost, performance and other changing needs.

· Openness pillar: Openness is required as a foundational principle to achieve fully interoperable systems and a ubiquitous fog computing ecosystem for IoT platform and applications. The openness pillar in OpenFog RA defines several major characteristics including composability of apps and services, interoperability between different suppliers, open communication near the edge to enable resource pooling, and location transparency to allow nodes be deployed anywhere in the hierarchy.

· Autonomy pillar: The autonomy pillar requires fog nodes to be able to continue to deliver functionality in the case of external service failures. A wide range of autonomy functions are supported, such as discovery, orchestration and management, security, operation and cost savings, which do not rely on a centralized operation entity.

· Programmability pillar: Programmability pillar defines the re-tasking of a fog node or a cluster of fog nodes to accommodate operational dynamics and thus enables highly adaptive deployments. With the programmability of fog nodes, adaptive infrastructure, resource efficient deployments, multi-tenancy, economical operations and enhanced security could be achieved.

· Reliability, availability and serviceability (RAS) pillar: RAS pillar involves hardware, software and operation areas, and plays an important role in OpenFog especially in harsh environmental conditions and remote locations. The reliable aspect requires the deployment to continue to deliver functionality under both normal and adverse operation conditions. Availability, usually measured in uptime, ensures continuous management and orchestration. Serviceability ensures correct operation of the fog deployment.

· Agility pillar: Agility pillar transforms huge volumes of data generated in the fog deployments into actionable insights by creating context close to the data generation, thus enabling quick response to the highly dynamic nature of fog deployments.

· Hierarchy pillar: The hierarchy pillar is the main reason that the OpenFog architecture could become complementary to the traditional cloud-only architecture. The resources in the OpenFog RA can be viewed as a logical hierarchy based on the functional requirements, including devices, monitoring and control, operational support, surrogacy, and business support, where each layer addresses a specific concern of the system. The hierarchical fog deployments can result in different models by combining and deploying fog and cloud into different layers depending on the scenarios.

Based on the eight pillars, the OpenFog RA further describes the architecture in functional and deployment viewpoints. How the OpenFog architectural elements and views will be applied to address various concerns in a given scenario will be shown in a functional viewpoint, while how the fog systems are deployed will be defined in a deployment viewpoint. A multi-tier deployment is often exploited, where the number of tiers will be determined depending on the scenario requirements, and the fog nodes that are required to communicate within the fog hierarchy to discover, trust and utilize services of other nodes.

The OpenFog RA also provides an abstract representation of an instance of a fog node, which consists of multiple structural aspects (views) and cross-cutting concerns (perspectives), as presented in Figure 6‑1.

[image: image1.emf]
Figure 6‑1: Architecture Description with Perspectives [i.x]
Three views have been identified, including software view, system view, and node view. These views address multiple stakeholders such as a silicon manufacturer, system manufacturer, system integrator, software manufacturer and application developer.

· Node view: The node view is represented in the bottom two layers in Figure 6‑1, including Protocol Abstraction Layer and Sensors, Actuators, and Control.

· System view: The system view is represented in the middle layers in Figure 6‑1, including Hardware Virtualization down through the Hardware Platform Infrastructure.

· Software view: The software view is represented in the top three layers in Figure 6‑1, which includes Application Services, Application Support, Node Management and Software Backplane.

Five perspectives are defined in the abstract architecture, including performance and scale, security, manageability, data analytics and control, IT business and cross fog applications, which are employed throughout the architecture layers.

· Performance: Low latency is one of the driving reasons to adopt fog architectures, therefore multiple requirements and design considerations are to be taken to ensure the low latency in performance, which is a cross cutting concern that impacts system and deployment scenarios.

· Security: End-to-end security is critical to all fog computing deployment scenarios, which applies to both the underlying silicon layer and the upper layer software. Data integrity is a special aspect of security for devices that currently lack adequate security.

· Manageability: Manageability is a critical aspect across all layers of a fog hierarchy that includes the managing of all aspects of fog deployments.

· Data analytics and control: The ability for fog nodes to be autonomous requires localized data analytics coupled with control. The actuation/control needs to occur at the correct tier or location in the fog hierarchy as dictated by the given scenario, which could be at the physical edge or higher tier.

· IT business and cross fog applications: Applications need to migrate and properly operate at any level of a fog deployment’s hierarchy in a multi-vendor ecosystem. Applications should also be able to span all levels of a deployment to maximize their value.

6.1.1.3 Development Viewpoint

The development viewpoint is detailed in order to provide an understanding of the deployment models considered by OpenFog and their alignment with the onM2M models.

How fog systems and fog software are deployed to address a given scenario is very important. Depending on the scenario, the deployment could be cloud independent, or leverage the cloud for the entire stack, or a combination where fog and cloud elements collapse into a single physical deployment. In most fog deployments, usually there are multiple tiers of nodes, where the number of tiers will be determined based upon the scenario requirements. The focus or roles of nodes on different tiers could differ as follows:

· Nodes at the edge: sensor data acquisition/collection; data normalization; command/control of sensors and actuators;
· Nodes in the next higher tier: data filtering, compression, transformation; edge analytics (with higher level machine and system learning capabilities);
· Nodes at the higher tiers or nearest the backend cloud: aggregate data and turn the data into knowledge (greater insights).
Nodes closer to the edge may be provisioned with less processing, communications, and storage than nodes at higher levels. Therefore, fog nodes may be linked to form a mesh to provide load balancing, resilience, fault tolerance, data sharing, and minimization of cloud communication. This may require fog nodes to have the ability to communicate both laterally (east to west) and up and down (north to south) within the fog hierarchy, as illustrated in Figure 6-2.

[image: image2.emf]
Figure 6-2: Fog Node Communications [i.x]
6.1.1.4 Software View
The software view of the OpenFog RA is relevant to oneM2M as the stakeholders targeted are system integrators, software architects, solution designers and application developers of a fog computing environment. The software view can be separated into three layers on top of the platform hardware layer, as shown in Figure 6-3 and detailed in the following clauses.

[image: image3.emf]
Figure 6-3: Software Architecture View [i.x]
6.1.1.4.1 Software Backplane

The software backplane layer is required to run software on the node and facilitate node-to-node communications, including OS, software drivers and firmware, communication services, file system software, software virtualization, and containerization. The software backplane layer also orchestrates thing-to-fog, fog-to-fog and fog-to-cloud communications.

Software containers provide mechanisms for fine-grained separation of applications and micro services running on the software backplane. Unlike VMs, containers do not contain/require a separate OS and multiple containers can share a kernel. The containers and the applications within a container can be restricted to use a specific amount of resources (e.g. CPU, memory, network, I/O) Therefore, containers enable the elastic compute environment needed by fog computing, which facilitates highly distributed systems by allowing multiple applications running on a single physical compute node, across multiple VMs, or across multiple physical compute nodes.

Trust is established in the software layers above the backplane by the security component of software backplane, which will provide means of verification of the application support and service layers. The software backplane ensures that containers, their application services and micro services can be securely initialized and their intended services can be provided. This layer also ensures trusted computing by protecting communications between nodes through data confidentiality, integrity and nonrepudiation

Additional functionality of the software backplane include:

· Service discovery: essential for multiple fog deployments to come together and create multiple trust boundaries in an ad-hoc manner to achieve cooperative information exchange and computation;

· Node discovery: applies to intra-fog discovery in a clustered deployment such that a node will be available for sharing the workload when its presence in the cluster is known;

· State management: support for both stateful and stateless computational models, where the former can externalize or store the state within the fog cluster;

· Publication and subscription management: support temporal and standing subscriptions and pluggable notification endpoints for publication of events, notification of state changes, and broadcast of messages.

6.1.1.4.2 Node Management (In Band)

The fog In Band management layer is responsible for keeping the hardware and software of the fog node or system configured to the desired state, and running at the specified levels for availability, resilience and performance. The following capabilities are provided to a fog deployment :

· Configuration management: OS and application support configuration managed through software agent that maintains desired state of the OS and the application runtime;

· Operational management: capture, store, and present operational telemetry of fog nodes for system management personnel and automated systems responsible for monitoring the infrastructure;

· Security management: include key management, crypto suite management, identity management, and security policy management;

· Capacity management: monitor the capacity and page in additional computing, networking and storage resources;

· Availability management: automatic healing in case of malfunction or crash of software or hardware by relocating workload to different hardware node.

6.1.1.4.3 Application Support

Application support includes a broad spectrum of software used by or shared by multiple applications (micro services), where support software is provided in multiple forms depending on the deployment type or application, as shown in Figure 6-4.

[image: image4.emf]
Figure 6-4: Application Support [i.x]
· Application management: provisioning, verification, updating, and general management of the application support software, as well as application micro services;

· Runtime engines: execution environments for applications and micro services provided by VMs, platform runtimes, program language libraries and executables;

· Application servers: application or web servers hosting micro services or other node supporting infrastructure or applications;

· Messages and events (buses or brokers): support for message and event-based applications and micro service communications;

· Security services: support for application security including encryption services, identity brokers, etc.

· Application data management/storage/persistence: the capability for application data transformation and persistent storage;

· Analytic tools and frameworks: MapReduce types technologies such as Spark, Hadoop, etc.
Elements within the application support layer are often containerized deployed in some form of virtualization as provided by the software backplane (Figure 6-5), providing looser coupling, additional security, and allowing the backplane to scale the supporting layer more quickly/easily.

[image: image5.emf]
Figure 6-5: Containerization for Application Support [i.x]
6.1.1.4.4 Application Service Layer

Fog computing applications are composed of a loosely coupled collection of micro services, which can be separated into layers based on their roles, as shown in Figure 6-6.
[image: image6.emf]
Figure 6-6: Application Service Layer [i.x]
· Fog connector services: contain a set of APIs to enable higher-layer fog services to communicate with devices, sensors, actuators, and other platforms using edge protocol of choice. These APIs are used on the south-bound interfaces of the application layer, towards the edge,

· Core services: separate the edge from the enterprise, collect data from the edge and make it available to other services and systems above. Translation of requests for edge devices is a core service of the fog connectors, which contain a set of APIs for receiving and translating commands from higher-level fog computing services (or the cloud) to edge devices for actuation.
· Supporting services: provide software normal software application duties such as logging, scheduling, service registration, and data clean up;

· Analytic services: include both reactive and predictive capability, where the former looks at the raw incoming data and monitors for change, and the latter for forecasting analytics;

· Integration services: allow outside fog nodes to register for data of interest collected or generated by the fog node and dictate where, when, how, and in what format the data should be delivered;

· User interface services: dedicated to the display of collected and managed data, status and operation of services, results of analytics processing at the fog node as well as system management and fog node operations.

As with application supporting services, applications may also run inside of containerized/virtualized environments offered by the software backplane (Figure 6-7).

[image: image7.emf]
Figure 6-7: Containerization for Application Support [i.x]
-----------------------End of Change 1 ---
-----------------------Start of Change 2 ---
2 References

The following text block applies.

References are either specific (identified by date of publication and/or edition number or version number) or non- specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1 Normative references

Normative references are not applicable in the present document.

2.2 Informative references

Clause 2.2 shall only contain informative references which are cited in the document itself.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1]
oneM2M Drafting Rules.
NOTE:
Available at http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf.
[i.x]
OpenFog Reference Architecture for Fog Computing, February 2017 (OPFRA001.020817)
-----------------------End of Change 2 ---
-----------------------Start of Change 3 ---
3 Definitions, symbols and abbreviations

Delete from the above heading the word(s) which is/are not applicable.
3.1 Definitions

3.2 Symbols

3.3 Abbreviations

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

RA

Reference Architecture

RAS
Reliability, Availability and Serviceability
-----------------------End of Change 3 ---
© 2017 oneM2M Partners

Page 1 (of 2)

