ARC-2018-0199-Introduction_to_The_Newly_Proposed_Access_Control_Policy_Example_#2

	Input Contribution

	Meeting ID*
	TP#36

	Title:*
	Introduction to The Newly Proposed Access Control Policy_Example_#2

	Source:*
	Wei Zhou, Datang, zhouwei@catt.cn

	Date:*
	2018-07-16

	Input related to*
	WI-0077

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Impacted other TS/TR(s)
	TR-0055 Attribute Based Access Control Policy, V0_1_0

	Decision requested or recommendation:*
	

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction

The objective of “WI-0077: Attribute Based Access Control Policy” is to develop fine-grained access control policy. The corresponding TR of the WI-0077 is: “TR-0055 Attribute Based Access Control Policy”.

New access control policy scheme is introduced in “ARC-2018-0197-Introduction_to_The_Newly_Proposed_Access_Control_Policy”.

This contribution shows how the newly proposed ACP scheme can be used to describe access control policies.
Example 3
Background:

Currently, oneM2M ACP cannot specify multiple constraints in one access control rule.
The following example shows how to specify Role-Based Access Control rule with extra constraints using the newly proposed ACP scheme.
Scenario:
AE1 and AE2 with role “admin” can create <AE> resources under resource: <CSEBase> during a given time window.
Access Control Policy 3:
Applicable Originators:
Rule primitive 1: request.get(“from”) in {“AE1”, “AE2"}

//valid originators are: “AE1”, “AE2"
Applicable Resources:
null
//not specified
Rule 3:
Rule effect =”permit”
//if successfully match the rule, the result of the evaluation is “permit”
Rule primitive combining algorithm=”and”
//the logic between primitives is "and"
Rule primitive 2: request.get (“to”) == “CSE1”
//created resource shall be created under resource “CSE1”

Rule primitive 3: “admin” in request.get(“role ids”)
//the originator shall be the role of “admin”

Rule primitive 4: request.get(“operation”) in {”create”}
//the permitted operation on the resource is: “create”

Rule primitive 5: request.get(“resource type”) ==”AE”
// the permitted type of the resource to be created
Rule primitive 6: getDate() >= 2018.07.01
// the permitted start time of creation
Rule primitive 7: getDate() <= 2018.07.11

// the permitted end time of creation
Example 4
Background:

Currently, oneM2M ACP cannot specify multiple constraints in one access control rule.
The following example shows how to specify Role-Based Access Control rule with extra constraints using the newly proposed ACP scheme.

Scenario:

AE1 and AE2 with role “admin” can retrieve <group> resources under resource: <CSE1>, and the resource creation time is in a given time window.

Access Control Policy 4:

Applicable Originators:
Rule primitive 1: request.get(“from”) in {“AE1”, “AE2"}

//valid originators are: “AE1”, “AE2"
Applicable Resources:
null

//not specified
Rule 4:

Rule effect =”permit”
//if successfully match the rule, the result of the evaluation is “permit”
Rule primitive combining algorithm=”and”
//the logic between primitives is "and"
Rule primitive 2: request.getParents(“to”) == “CSE1”
//the target resource shall be the sub-resource of “CSE1”

Rule primitive 3: “admin” in request.get(“role ids”)
//the originator shall be the role of “admin”

Rule primitive 4: request.get(“operation”) in {”retrieve”}
//the permitted operation on the resource is: “retrieve”

Rule primitive 5: request.get(“resource type”) ==”group”
// the permitted type of the resource to be retrieved
Rule primitive 6: resource.get(“creationTime”) >= 2017.01.01
// the permitted start time of creation time
Rule primitive 7: resource.get(“creationTime”) <=” 2017.12.31”
// the permitted end time of creation time
© 2017 oneM2M Partners

Page 1 (of 2)

