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Introduction

The objective of “WI-0077: Attribute Based Access Control Policy” is to develop fine-grained access control policy. The corresponding TR of the WI-0077 is: “TR-0055 Attribute Based Access Control Policy”.

New access control policy scheme is introduced in “ARC-2018-0197-Introduction_to_The_Newly_Proposed_Access_Control_Policy”. 

This contribution shows how the newly proposed ACP scheme can be used to describe access control policies.
Example 3
Background:

Currently, oneM2M ACP cannot specify multiple constraints in one access control rule.
The following example shows how to specify Role-Based Access Control rule with extra constraints using the newly proposed ACP scheme.
Scenario: 
AE1 and AE2 with role “admin” can create <AE> resources under resource: <CSEBase> during a given time window.
Access Control Policy 3:
Applicable Originators:
Rule primitive 1: request.get(“from”) in {“AE1”, “AE2"}

//valid originators are: “AE1”, “AE2"
Applicable Resources:
null
//not specified
Rule 3:
Rule effect =”permit”
//if successfully match the rule, the result of the evaluation is “permit”
Rule primitive combining algorithm=”and”
//the logic between primitives is "and"
Rule primitive 2: request.get (“to”) == “CSE1”
//created resource shall be created under resource “CSE1”

Rule primitive 3: “admin” in request.get(“role ids”)
//the originator shall be the role of “admin”

Rule primitive 4: request.get(“operation”) in {”create”}
//the permitted operation on the resource is: “create”

Rule primitive 5: request.get(“resource type”) ==”AE”
// the permitted type of the resource to be created
Rule primitive 6: getDate() >= 2018.07.01
// the permitted start time of creation
Rule primitive 7: getDate() <= 2018.07.11

// the permitted end time of creation
Example 4
Background:

Currently, oneM2M ACP cannot specify multiple constraints in one access control rule.
The following example shows how to specify Role-Based Access Control rule with extra constraints using the newly proposed ACP scheme.

Scenario: 

AE1 and AE2 with role “admin” can retrieve <group> resources under resource: <CSE1>, and the resource creation time is in a given time window.

Access Control Policy 4:

Applicable Originators:
Rule primitive 1: request.get(“from”) in {“AE1”, “AE2"}

//valid originators are: “AE1”, “AE2"
Applicable Resources:
null

//not specified
Rule 4:

Rule effect =”permit”
//if successfully match the rule, the result of the evaluation is “permit”
Rule primitive combining algorithm=”and”
//the logic between primitives is "and"
Rule primitive 2: request.getParents(“to”) == “CSE1”
//the target resource shall be the sub-resource of “CSE1”

Rule primitive 3: “admin” in request.get(“role ids”)
//the originator shall be the role of “admin”

Rule primitive 4: request.get(“operation”) in {”retrieve”}
//the permitted operation on the resource is: “retrieve”

Rule primitive 5: request.get(“resource type”) ==”group”
// the permitted type of the resource to be retrieved
Rule primitive 6: resource.get(“creationTime”) >= 2017.01.01
// the permitted start time of creation time
Rule primitive 7: resource.get(“creationTime”) <=” 2017.12.31”
// the permitted end time of creation time
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