Doc# ARC-2018-0317R01-TR-0057-oneM2M-overview_clause_5.doc

	Input Contribution

	ARC#38
	ARC#38

	Title:*
	oneM2M overview clause 5

	Source:*
	Laurent Velez, ETSI, laurent.velez@etsi.org
Omar Elloumi, Nokia, omar.elloumi@nokia.com

	Date:*
	2018-11-16

	Input related to*
	TR-0057

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Impacted other TS/TR(s)
	

	Decision requested or recommendation:*
	Incorporated the contribution if agreed.

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Header

This contribution provides text for clause 5 “oneM2M overview” of the TR-0057 Getting started with oneM2M.
R01:
· Fixed typos
· Removed some “may” verbs
· Redrawn figures 5.2.2.2-2 and
· Fixed oneM2M <container> resource representation in JSON and XML formats
---------------------------------- Start of Change 1---

5
oneM2M Overview

5.1
Introduction

5.1.1
REST Architecture

Representational State Transfer (REST) is a software architectural style that defines a set of constraints to be used for creating web services.

RESTful services allow the requesting systems to access and manipulate textual representations of resource by using a uniform and predefined set of stateless operations. A stateless protocol operation does not require the server to retain session information or status about each communicating partner for the duration of multiple requests.

REST is not a protocol. It is about manipulating resources, uniquely identified by URIs. A resource is stateful and contains a link pointing to another resource. All the actions on resources are done through a Uniform Interface.
As REST is an architecture style, it can be mapped to multiple protocols such as HTTP, CoAP, etc…

Six guiding constraints define a RESTful system. These constraints restrict the ways that the server can process and respond to client requests
· Client-server: Separation of concerns is the principle behind the client-server constraints.

· Stateless server: request from client to server contains all of the information necessary to understand the request, and cannot take advantage of any stored context on the server.

· Cache: the client can reuse response data, sent by the server, by storing it in a local cache
· Layered system: allows an architecture to be composed of hierarchical layers. It enables to add features like a gateway, a load balancer, or a firewall to accommodate system scaling.
· Code-on-demand: (optional) REST allows client functionality to be extended by downloading and executing code in the form of scripts (e.g. JavaScript).
· Uniform interface

· Identification of resources: resource identifier enables to identify the particular resource involved in an interaction between components.
· Manipulation of resources through representations: resource representations are the state of a resource that is transferred between components.
· Self-descriptive messages: contain metadata to describe the meaning of the message.
· Hypermedia as the engine of application state or HATEOAS: Clients find their way through the API by following links available in the resource representations.
5.1.2
oneM2M Architecture

Editor note: to provide concept behind oneM2M, architecture, high level definition of CSE and AE, Mca/Mcc , etc …
5.2
Application Program Interfaces (API)
5.2.1
Introduction

The oneM2M REST APIs are used to manipulate data generated by Application Entity (AE) to oneM2M Service platform (CSE) as well as data retrieve services. The oneM2M REST APIs are developed for handling CRUD+N (Create, Retrieve, Update, Delete and Notification) operations for oneM2M resources specified in oneM2M standard.

The oneM2M API includes the following components:
· Primitives

· Resources + Attributes

· Data Types

· Protocol Bindings

· Procedures (CRUD+N)

The oneM2M API is used by CSEs and AEs to communicate with one another. The communication can be originated from an AE or CSE depending on the operation.
Communication is done via the exchange of oneM2M primitives across the oneM2M defined reference points (Mca/Mcc/Mcc’).
Primitives are used to perform CRUD+N operations on resources hosted by CSEs or send notifications to AEs. Each CRUD+N operation is comprised of a pair of Request and Response primitives.
Access and manipulation of the resources is subject to access control privileges.

5.2.2 oneM2M Primitives
5.2.2.1
Overview
Primitives are service layer messages transmitted over the Mca/Mcc/Mcc’ reference points.
Originators send requests to Receivers via primitives. Originator and Receiver can be an AE or a CSE.
Each CRUD+N operation consists of one request and one response primitive.

[image: image1.emf]Originator

(AE or CSE)

Receiver

(AE or CSE)

1. Request Primitive

2. Response Primitive

Mca/Mcc/Mcc’

Figure 5.2.2.1-1: General primitives flow
Primitives are binded to underlying transport layer protocols such as HTTP, CoAP , MQTT or WebSocket. Primitives are generic with respect to underlying network transport protocols. Each primitive is binded to zero or more messages in the transport layer.

[image: image2.emf]

Binding Function

Receiver

 Under l ying networks

Response

Originator

Request

Application/ Service layer

Transport layer

Primitives

Request Response

Transport Messages

Primitives

Binding Function

Transport Messages

Figure 5.2.2.1-2: oneM2M Communications
5.2.2.2
Primitive structure
A primitive consists of two parts; control and content.

· The control part: contains parameters required for the processing of the primitive itself (e.g. request or response parameters).
The content part is optional based on the type of primitive and contains the representation of the resource consisting of all or a subset of the resource attributes.

[image: image3.emf]oneM2M

Primitive

Content Part

(Resource Representation/Attributes)

Control Part

(Request or Response Parameters)

Figure 5.2.2.2-1: Primitive structure
Primitives are encoded and serialized based on the particular oneM2M protocol binding being used.
The originator and receiver of each primitive use the same binding, and thus use compatible forms of encoding/ decoding and serialization/de-serialization.
During transfer, the control part is encoded based on the protocol binding being used and the content portion is serialized using XML, JSON and CBOR.

	oneM2M Request Primitive: oneM2M short names
HTTP/1.1

Method: POST

(op : Operation
URI: m2msp1.com/CSE01Base

(to : To
URI Query String: ?rcn=1

 (rcn : Result content
From: ae01.com

(fr : From
X-M2M-RI:0001

(rqi : Request identifier
X-M2M-RVI: 2a

(rvi : Release Version Indicator
Content: <AE> representation

(pc: primitive content
oneM2M Response Primitive:
Status: Created

(rsc :Response Status Code
Location: http//m2msp1.com/CSE01Base/ae01
(uri : URI

X-M2M-RI:0001

(rqi : Request identifier
Content: <AE> representation created
 (pc: primitive content

Figure 5.2.2.2-2: Example of Control part binded to HTTP
The Content part of a primitive contains serialized representation of a resource. oneM2M supports XML, JSON or CBOR serializations of resources.
This is an example of a oneM2M <container> resource representation in JSON format.

This is an example of a oneM2M <container> resource representation in XML format.
<?xml version="1.0" encoding="UTF-8"?>

<m2m:cnt xmlns:m2m="http://www.onem2m.org/xml/protocols" rn="cont_temp">

 <ty>3</ty>

 <ri>server/cnt-2951972863155866584</ri>

 <pi>server</pi>

 <ct>20181114T145000</ct>

 <lt>20181114T145000</lt>

 <et>20181114T145000</et>

 <st>0</st>

 <mni>10000</mni>

 <mbs>0</mbs>

 <mia>0</mia>

 <cni>0</cni>

 <cbs>0</cbs>

</m2m:cnt>
5.2.3 oneM2M Resources
5.2.3.1 Resource template

All entities in the oneM2M System, such as AEs, CSEs, application data representing sensors, commands,, etc. are represented as resources into the CSE. Each resource having its own specific type.

Each resource type has a defined set of mandatory and optional attributes as well as child resources.

A resource can contain child resources.
Each resource is addressable and can be the target of CRUD operations specified in oneM2M primitives.

[image: image4.emf]Resource AttributeN

<resourceType>

childResource1

childResourceN

Resource Attribute1

0..n

0..n

0..n

0..n

Figure 5.2.3.1-1 : Resource template

	Resource Type
	Short Description

	 accessControlPolicy
	Controls "who" is allowed to do "what" and the context in which it can be used for accessing the resources

	 AE
	Stores information about the AE. It is created as a result of successful registration of an AE with the registrar CSE

	 container
	Used to shares data instances among entities

	 contentInstance
	Represents a data instance in the <container> resource.

	 CSEBase
	The structural root for all the resources that are residing on a CSE. It stores information about the CSE itself

	 delivery
	Forwards requests from CSE to CSE

	 eventConfig
	Defines events that trigger statistics collection

	 execInstance
	The Execution Instance resource contains all execution instances of the same management command mgmtCmd

	 fanOutPoint
	Used for addressing bulk operations to all the resources that belong to a group.

	 group
	Stores information about resources of the same type that need to be addressed as a Group.

	 locationPolicy
	Includes information to obtain and manage geographical location.

	 mgmtCmd
	Represents a method to execute management procedures required by existing management protocols

	 mgmtObj
	Represents management functions that provides an abstraction to be mapped to external management technology.

	 node
	Represents specific Node information

	 pollingChannel
	Represent a channel that can be used for a request-unreachable entity

	 remoteCSE
	Represents a remote CSE for which there has been a registration procedure with the registrar CSE

	 schedule
	Contains scheduling information for delivery of messages

	 statsCollect
	Defines triggers for the IN-CSE to collect statistics for applications

	 statsConfig
	Stores configuration of statistics for applications

	 subscription
	Represents subscription information related to a resource.

Table 5.2.3.1-1 : Resource type examples

5.2.3.2
Resource structure
The root of the oneM2M resource structure is <CSEBase>.

The <CSEBase> is assigned an absolute address. All other child resources are addressed relative to <CSEBase>.
Depending on the type of child resource it is instantiated 0..n times.

[image: image5.emf]<CSEBase>

“attribute”

n

0..n

<remoteCSE>

<node>

<AE>

<container>

<group>

<accessControlPolicy>

<subscription>

<mgmtCmd>

<locationPolicy>

<statsConfig>

<statsCollect>

<request>

<delivery>

<schedule>

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..1

Figure 5.2.3.2-1 : <CSEBase> Resource example

5.2.3.3
Resource attributes
Each resource contains attributes that store information pertaining to the resource itself.
The attributes are :

· Universal Attributes : which appear in all resources

· Common Attributes : which appear in more than one resource and have the same meaning whenever they do appear.
· Resource-specific attributes

[image: image6.emf]<AE>

Universal Attributes:



resourceType



resourceID



parentID



lastModifiedTime



creationTime



resourceName

Common Attributes:



accessControlPolicyIDs



expirationTime



stateTag



announceTo



announcedAttribute



Labels



Etc ...

<AE> Specific Attributes:



appName



App-ID



AE-ID



pointOfAccess



ontologyRef



nodeLink



Etc ...

“attribute”

n

0..n

<subscription>

0..n

<container>

0..n

<group>

0..n

<accessControlPolicy>

0..n

<pollingChannel>

Figure 5.2.3.3-1: <AE> Resource example
	Universal Attribute
	Description

	resourceType
	Identifies the type of resource

	parentID
	resourceID of the parent of this resource.

	creationTime
	Time/date of creation of the resource.

	lastModifiedTime
	Last modification time/date of the resource.

	resourceID
	Identifier for resource.

	resourceName
	Name of the resource

Table 5.2.3.3-1 : Universal resource attributes
5.2.3.4
Resource Schema

oneM2M defines XML, JSON and CBOR schemas which define the attributes of each resource type.
Schemas bind oneM2M attributes to well-known data types defined by XML Schema definitions (e.g. xs:string, xs:anyURI, etc …).

Schemas also bind oneM2M attributes to oneM2M defined data types (e.g. m2m:id, m2m:stringList, etc ...).

<xs:schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.onem2m.org/xml/protocols"

xmlns:m2m="http://www.onem2m.org/xml/protocols" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

elementFormDefault="unqualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="CDT-commonTypes-v3_8_0.xsd" />

<xs:include schemaLocation="CDT-subscription-v3_8_0.xsd" />

<xs:element name="request" substitutionGroup="m2m:sg_regularResource">

<xs:complexType>

<xs:complexContent>

<!-- Inherit common attributes -->

<xs:extension base="m2m:regularResource">

<xs:sequence>

<!-- Common Attribute, specific to <container>, <contentInstance>, <request> and <delivery> resources -->

<xs:element name="stateTag" type="xs:nonNegativeInteger" />

<!-- Resource Specific Attributes -->

<xs:element name="operation" type="m2m:operation" />

<xs:element name="target" type="xs:anyURI" />

<xs:element name="originator" type="m2m:ID" />

<xs:element name="requestID" type="m2m:requestID" />

<xs:element name="metaInformation" type="m2m:metaInformation" />

<xs:element name="primitiveContent" type="m2m:primitiveContent" minOccurs="0" />

<xs:element name="requestStatus" type="m2m:requestStatus" />

<xs:element name="operationResult" type="m2m:operationResult" />

<!-- Child Resources -->

<xs:choice minOccurs="0" maxOccurs="1">

<xs:element name="childResource" type="m2m:childResourceRef" minOccurs="1" maxOccurs="unbounded" />

<xs:choice minOccurs="1" maxOccurs="unbounded">

<xs:element ref="m2m:subscription"></xs:element>

</xs:choice>

</xs:choice>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 5.2.3.4-1: Example of schema
5.2.4
oneM2M Procedures
5.2.4.1
Access Resources in Local CSE

[image: image7.emf]Originator

(AE or CSE)

(Registrar CSE = Hosting CSE)

The addressed resource

is stored here.

Request (access resource)

CSE verifies

Access Rights

If permitted, the CSE

accesses the resouces

and responds with a

Success or Failure

Response

Response

Figure 5.2.4.1-1 : Access Resources in Local CSE
5.2.4.2
Access Resources in Remote CSE

[image: image8.emf]Originator

(AE/CSE)

Registrar CSE = Transit CSE Hosting CSE

The addressed resource

is stored here.

Request (access resource)

Registrar CSE does not

have the addressed

resource

Hosting CSE verifies

Access Rights

If permitted, the Hosting

CSE accesses the

resource and responds

with Success or Failure

Response

Request (access resource)

Response

Response

Forward the Request to its

registered CSE, which is

the Hosting CSE

Figure 5.2.4.2-1 : Access Resources in Remote CSE
5.2.4.3
CREATE operation

[image: image9.emf]001: CREATE Request

Originator requests creation of a Resource

003: CREATE Response

Receiver responds to creation Request

Originator

(CSE or AE)

Receiver

(Hosting CSE)

002: Receiver

Processing

Figure 5.2.4.3-1 : CREATE operation
5.2.4.4
RETRIEVE operation

[image: image10.emf]001: RETRIEVE Request

Originator requests retrieval of a Resource

003: RETRIEVE Response

Receiver responds to retrieval Request

Originator

(CSE or AE)

Receiver

(Hosting CSE)

002: Receiver

Processing

Figure 5.2.4.4-1 : RETRIEVE operation

5.2.4.5
UPDATE operation

[image: image11.emf]001: UPDATE Request

Originator requests update of a Resource or

create/delete attributes of a Resource

003: UPDATE Response

Receiver responds to update request

Originator

(CSE or AE)

Receiver

(Hosting CSE)

002: Receiver

Processing

Figure 5.2.4.5-1 : UPDATE operation

5.2.4.6
DELETE operation

[image: image12.emf]001: DELETE Request

Originator requests deletion of a Resource

003: DELETE Response

Receiver responds to deletion Request

Originator

(CSE or AE)

Receiver

(Hosting CSE)

002: Receiver

Processing

Figure 5.2.4.6-1 : DELETE operation

5.2.4.7
NOTIFY operation

[image: image13.emf]002: NOTIFY Request

003: NOTIFY Response

Originator

(CSE)

Receiver

(Hosting CSE

or AE)

001: Local Processing

(Notification Triggered)

Figure 5.2.4.7-1 : NOTIFY operation

5.3
Data collection principles

5.3.1
Container
· Container for data instances is represented by <container> resource.
· Data storage used to share information with other entities and track data.
· <container> resource has no associated content.
· Only attributes and child resources are available.
· Actual data/content is stored in <contentInstance> child resource.
· <container> is the only resource allowed to have recursive child resources.
· <container> resource can have other <container> as a child resource.
· useful for representing hierarchical data structure.

[image: image14.emf]Room2

Home2

CSE1Base

Home1

Room1

Temperature

resourceType = <CSEBase>

resourceType = <container>

resourceType= <container>

resourceType = <contentInstance>

content = 19

°

resourceType = <container>

resourceType= <container>

Figure 5.3.1-1: Example of resources tree
5.3.2
Access Control Policy

· Access Control Policies (ACPs) are used by the CSE to control access to the resources.
· The resources are always linked with Access Control Policies . ACPs are shared between several resources
· Access Control Policies contain the rules (Privileges) defining
· WHO can access the Resource (e.g. Identifiers of authorized AE/CSE)
· For WHAT operation (CREATE / RETRIEVE / UPDATE / DELETE…)
· Under WHICH contextual circumstances (Time, Location, IP address)
· ACPs are represented by <accessControlPolicy> resources.
· Comprised of attributes privileges and selfPrivileges that represent a set of access control rules for entities.
<accessControlPolicy> resource content :

<m2m:acp xmlns:m2m="…" rn="">

<pv>

<acr>

<acor></acor>

<acop></acop>

</acr>

</pv>

<pvs>

<acr>

<acor></acor>

<acop></acop>

</acr>

</pvs>

</m2m:acp>
Signification

· acr = « Access Control Rule »

· acor = « Access Control Originators »

· acop = « Access Control Operations »
Operation Code
· CREATE

1

· RETRIEVE

2

· UPDATE

4

· DELETE

8

· NOTIFY

16

· DISCOVERY
32
Example:

<pv>

<acr>

<acor>admin</acor>

<acop>63</acop>

</acr>
</pv>
<pvs>

<acr>

<acor>guest</acor>

<acop>34</acop>

</acr>

<pvs>

· Common attribute accessControlPolicyIDs links resources that are not <accessControlPolicy> resources to <accessControlPolicy> resources.
· All resources are accessible only if the privileges from the ACP grants it.
· All resources have an associated accessControlPolicyIDs attribute, either explicitly or implicitly.

[image: image15.emf]resourceType = <CSEBase>

resourceType = <container>

accessControlPolicyIDs

CSE1Base

CRUD Request

arriving at CSE hosting

target resource

“cse1base/container1”

resourceType = <accessControlPolicy>

privileges

selfPrivileges

Container1

ACP1

ID or URI to <accessControlPolicy> resource

access control rules that define which AE/CSE

is allowed for which operation

set of access control rules for the

<accessControlPolicy> resource itself

Response to originator

after policy/rights check

Figure 5.3.2-1 : Access control policy verification example
5.3.3
Subscription and Notification

· Events generated by resources can be received using the <subscription> resource.
· The <subscription> resource contains subscription information for its "subscribed-to" resource.
· <subscription> resource is a child resource of the "subscribed-to" resource.
· The originator (resource subscriber) has RETRIEVE privilege to the "subscribed-to" resource in order to create the <subscription> resource.
· Notification policies specified in the attributes can be applied to the <subscription>.
· Specify which, when, and how notifications are sent.
· Example: batchNotify – receive batches of notification rather than one at a time.

[image: image16.emf]resourceType = <CSEBase>

resourceType = <container>

“subscribed-to” resource

currentNrOfInstances

= 1 → 3

CSE1Base

resourceType = <subscription>

notificationContentType

= modified attributes only

Container1

Notification via

URI specified in

notificationURI

currentNrOfInstances= 3

Originator

(AE1)

Resource Subscriber

to

“cse1base/container1”

Receiver

(CSE1)

Subscription1

Change in

resource attribute

triggers event notification

Figure 5.3.3-1 : Subcription and notification example

5.3.4
Discovery

· Resource Discovery Capabilities
· Under the RESTful architecture, Resource Discovery can be accomplished using RETRIEVE operation by an Originator.
· The use of the filterCriteria parameter allows limiting the scope of the results.
· Type, Labels, Content Size and so on can be configured in the parameter.

[image: image17]

Figure 5.3.4-1 : Discovery example
5.4
Data collection example

Editor note: to provide a basic example scenario using data collection + Subscription/Notification
---------------------------------- end of Change 1---

{

"m2m:cnt": {

"cbs": 0,

"cni": 0,

 "ct": "20180406T085712",

"et": "99991231T235959",

"lt": "20180406T085712",

"mbs": 60000000,	

"mia": 1600,

"mni": 10000,

"pi": "CAE0120180406T084680_cse01",

ri": "cnt20180406T08571214_cse01",

"rn": "cont_temp",	

"st": 0,	

"ty": 3

}

}

cnt : container

cbs : currentByteSize

cni : currentNrOfInstances

ct : creationTime

et : expirationTime

lt : lastModifiedTime

mbs : maxByteSize

mia : maxInstanceAge

mni : maxNrOfInstance

pi : parentID

ri : resourceID

rn :resourceName

st : stateTag

ty : resourceType

Privileges:

Manage the right for resources of this ACP

Self-privileges:

Manage the right to access or modify this resource. It defines who can set an Access Control Policy

Combinations of these values are specified by adding them together. For example the value 5 is interpreted as "CREATE and UPDATE".

63 grants all rights

34 grants Retrieve and Dicovery rights

© 2017 oneM2M Partners

Page 1 (of 2)

_1603202276.vsd

_1603202710.vsd

_1603202656.vsd

_1603202325.vsd

_1603113821.doc

Binding Function

Receiver

Underlying networks

Response

Request

Request

Response

Originator

Primitives

Application/Service layer

Transport layer

Primitives

Transport Messages

Binding Function

Transport Messages

_1603114207.vsd
oneM2M Primitive

Content Part
(Resource Representation/Attributes)

Control Part
(Request or Response Parameters)

_1603112990.vsd
Originator (AE or CSE)

Receiver
(AE or CSE)

1. Request Primitive

2. Response Primitive

Mca/Mcc/Mcc’

