ARC-2018-0336-OSGi_Service_Layer_API

	CHANGE REQUEST

	Meeting ID:*
	PRO#38

	Source:*
	NTT

	Date:*

	2018-12-03

	Contact:*
	Hiroyuki Maeomichi(maeomichi.hiroyuki@lab.ntt.co.jp), NTT,
Kei Harada(harada.kei@lab.ntt.co.jp), NTT

	Reason for Change/s:*
	To add a section for OSGi Service Layer API

	CR against: Release*
	R4

	CR against: WI*
	 FORMCHECKBOX
 Active < Work Item number(optional)>

 FORMCHECKBOX
 MNT maintenance / < Work Item number(optional)>
Is this a mirror CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number(optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0035 V0.2.0

	Clauses *
	Annex A

	Type of change: *
	 FORMCHECKBOX
 Editorial change

 Bug Fix or Correction

 FORMCHECKBOX
 Change to existing feature or functionality

 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	none

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES NO
This CR may break backwards compatibility with the last approved version of the TS? YES NO

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separate “mirror CR” should be posted at the same time of this CR

Mirror CR: applies only when the text, including clause numbering are exactly the same.

Companion CR: applies when the change means the same but the baselines differ in some way (e.g. clause number).
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.

All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
Service Layer API in cotext of OSGi interworking is proposed in ARC-2016-0198-Possible_Collaboration_Area_with_OSGi.PPTX and put as first candidate in the liaison letter to OSGi TP-2016-0090R02-Proposed_Liaison_Statement_Out_to_OSGi.DOC in TP22. The topic was also discussed in two OSGi/oneM2M joint workshops hosted by OSGi Alliance. As the result of the discussion, it will be standardized in OSGi Alliance first and then it will be shared to oneM2M side.
This CR aims to add the description of the current status of the work in infromative annex.

-----------------------Start of change 1---

2
References

2.1
Normative references

The following referenced documents are necessary, partially or totally, for the application of the present document. Their use in the context of this TS is specified by the normative statements that are referring back to this clause.
[1]
oneM2M TS-0023: "Home Appliances Information Model and Mapping".

[2]
oneM2M TS-0033: “Proximal IoT Interworking”
2.2
Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
 [i.1]
oneM2M Drafting Rules (http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf)

[i.2]
OSGi Residential (https://www.osgi.org/developer/downloads/release-6/)
[i.3]
OSGi RFP-187 oneM2M Service Layer API (https://github.com/osgi/design/raw/master/rfps/rfp-0187-oneM2M-Service-Layer-API.pdf)

[i.4]
OSGi RFC-237 Service Layer API for oneM2M (https://github.com/osgi/design/raw/master/rfcs/rfc0237/rfc-0237-Service-Layer-API-for-oneM2M.pdf)
-----------------------End of change 1--
-----------------------Start of change 2---
<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex <A> (Informative): OSGi Service Layer API for oneM2M

A.1
Introduction: Communication Method Agnostic API

OSGi framework can be used as an execution environment for application entities. OSGi provides core services (API), which enables modularity feature of OSGi, and domain specific service (API) for applications in certain domain. Providing oneM2M’s service layer interface as a domain specific service of OSGi, oneM2M application developers can get benfits in application portability, execution performance and easy development point of view.

Application portability here is expressed as whether an application developed for specific communication method (CM: which is combination of protocol and serialization) can run in other CMs. This is not realized spontaneously, because application developers tend to write CM dependent code in oneM2M applications, especially without proper API. For example, an application developed using HTTP and XML for its protocol and serialization, unlikely runs with a CSE which supports MQTT and JSON. This situation could segregate oneM2M echosystem. So providing CM agnostic API is important, and putting CM independent to application code and putting CM dependent code in oneM2M client library part under the API enables the application can run in other environment, if client library is provided for other CM (Figure A.1-1).
[image: image1.emf]CSE(HTTP/XML)

AE

CSE(CoAP/JSON)

AE

put other

environment

CSE(HTTP/XML)

AE

CSE(CoAP/JSON)

put other

environment

Client Library 1

AE

Client Library 2

Communication

method

independent I/F

work!

Figure A.1-1 Application Portability in other communication method

Execution performance can be enhanced by connecting CSE and AE through API directly, and not using protocol based communication, where they are located on the same Java Virtual Machine, as depicted in (b) and (c) of Figure A.1-2. In that case, serialization and deserialization of data, Inter process communication, network I/O, context switch of process are omitted and as a result it can get better execution performance.
By providing proper API, developers can easyily develop the application code.
[image: image2.emf]CSE AE

OSGi Framework

Client

Library

Service

Layer API

OSGi

based CSE

AE

OSGi Framework

Client

Library

Service

Layer API

Proprietary

API for CSE

OSGi based CSE

AE

OSGi Framework

Service

Layer API

(a)

(b)

(c)

Figure A.1-2 Deployment types of CSE and AE
A.2
Current standardisation activity in OSGi Alliance

In the OSGi Alliance, there is a standardisation work aiming to provide the API described above. RFP-187 “oneM2M Service Layer API” summarizes requriements for API and RFC-237 “Service Layer API for oneM2M” describes its solution. RFP-187 is agreed by the IoT Expert Group of OSGi Alliance and RFC-237 is mostly developped and getting stable, but waiting feedbacks by reference implementation and compliance tests. Major features are CM agnostic, asynchronus supports, adaption of call-by-value, support of both low level and high level request.
CM agnostic enables application as CM independent. Those application can run in other CM as long as client library for the CM is provided.

Asynchronus API enables application get immediate return of the call, even if the result is not ready, so they can do other operations until waiting the result. Multi-thread programing is usually used with synchronus APIs for doing it. Asynchronus programing can reduce number of threads, it contribute to reduce resource and provide better execution performance. For realizing asynchronus API, OSGi Promise is used and it can be used synchronus invocation manner easily just putting a single line of code.

Call-by-value concept is applied for the API, using OSGi Data Transfer Object (DTO), which is simple Java Object with only public fields of allowed simple classes and no aditional methods and allows easy serialization. Call-by-value concepts contributes reducing a potential problems in multithread environments. Data structures closed to root, which is request primitve and response primitive, are expressed as specific DTO, which has specific type and field name. Meanwhile deep structures are expressed as generic DTO, which has Map<String, Object> and accommodates key-value pairs.

The API supports both low level and high level request. Low level request passes the data structure for request primitive and gets one for response primitive. Meanwhile high level request is represented as CRUD operations of oneM2M resources. So application developers can write descriptive code with high level API or write precise operations with low level API.

Annex (Informative/Normative): Remove Informative or Normative as

-----------------------End of change 2--

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)
Page 3 of 5
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

