
	[image: image24.png]

	oneM2M

Technical Report

	Document Number
	oneM2M-TR-0007- Study_of_Abstraction_and_Semantics_Enablements -v-0.3.0

	Document Name:
	Study of Existing Abstraction & Semantic Capability Enablement Technologies for consideration by oneM2M

	Date:
	2013-June-28

	Abstract:
	Collect and study the state-of-the-art technologies that may be leveraged by oneM2M to enable its abstraction & semantics capability. This includes a collection of terminology and use cases considered by other standardization or industrial fora working on ontologies, semantics and abstraction, as well as relevant source material proposed by Partner Types 1 for transfer to oneM2M and contributions from Partner Types 2.

Evaluate the possibility of leveraging all or part of those technologies and/or solutions by oneM2M architecture and protocols to enable its abstraction & semantics capability.

This Specification is provided for future development work within oneM2M only. The Partners accept no liability for any use of this Specification.

The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

No part of this document may be reproduced, in an electronic retrieval system or otherwise, except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

© 2013, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC).

All rights reserved.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

2Contents

1
Scope
4
2
References
4
2.1
Normative references
4
2.2
Informative references
4
3
Definitions, symbols, abbreviations and acronyms
4
3.1
Definitions
4
3.2
Symbols
5
3.3
Abbreviations
5
3.4
Acronyms
5
4
Conventions
5
5
Introduction on Abstraction and Semantic Capability Enablement in oneM2M
5
5.1
Overview
6
5.2
Use Cases
6
5.2.1
An example of Home Environment Monitoring Service using semantic mash-up
6
5.2.1.1
Description
6
5.2.1.2
Source (as applicable)
7
5.2.1.3
Actors
7
5.2.1.4
Pre-conditions
7
5.2.1.5
Triggers (if any)
7
5.2.1.6
Normal Flow (as applicable)
7
5.2.1.7
Post-conditions (if any)
9
5.2.1.8
High Level Illustration (as applicable)
9
5.3
Benefits of Abstraction and Semantics
10
6
Abstraction Technologies
10
6.1
Overview
10
6.2
Introduction of Existing Technologies
11
6.2.1
Introduction to ETSI M2M Device Abstraction
11
6.2.1.1
Architecture
11
6.2.1.2
Interworking with legacy devices (d) through abstract devices
11
6.2.1.3
Gateway Resource Abstraction (GRA) Capability
12
6.2.1.4
Subscription of Abstract Resources
13
6.2.1.5
Mapping Principle
13
6.2.2
Technology x
16
6.3
 Gap Analysis of Existing Abstraction Relevant Technologies
16
6.3.1
Abstraction Related Requirements Gap Analysis Reference
16
6.3.2
Requirement 1
17
6.3.2.1
Technology 1
17
6.3.2.2
Technology x
17
6.4
oneM2M Architectural Considerations for Abstraction
17
6.4.1
Introduction
17
6.4.2
Technology 1
17
6.4.3
Technology x
17
6.5
Evaluation
17
7
Technologies for Semantic M2M System
17
7.1
Overview
17
7.2
Introduction of Existing Technologies
17
7.2.1
Introduction to ETSI Semantic M2M System
18
7.2.1.1
System Overview
18
7.2.1.2
Semantic Annotation
18
7.2.1.3
Semantic Mashups for Virtual Things
21
7.2.2
Technology x
22
7.3
Gap Analysis of Existing Semantics Relevant Technologies
22
7.3.1
Semantics Related Requirements Gap Analysis Reference
22
7.3.2
Requirement 1
22
7.3.2.1
Technology 1
22
7.3.2.2
Technology x
22
7.4
oneM2M Architectural Considerations for Semantics
23
7.4.1
Introduction
23
7.4.2
Technology 1
23
7.4.3
Technology x
23
7.5
Evaluation
23
8
Conclusions
23
8.1
Conclusions for Abstraction
23
8.2
Conclusions for Semantics
23
Proforma copyright release text block
23
Annexes
23
Annex <y>: Bibliography
24
History
24

1
Scope

The present document describes and collects the state-of-art of the existing technologies on abstraction & semantics capability, evaluates if the technologies can match the requirements defined in oneM2M, analyzes how the technologies can leverage the design of the architecture of oneM2M.
2
References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

As a Technical Report (TR) is entirely informative it shall not list normative references.
The following referenced documents are necessary for the application of the present document.
Not applicable.

2.2
Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
ETSI TS 102 690: "Machine-to-Machine communication (M2M): Functional architecture".

[i.2]
ETSI TR 101 584: "Machine-to-Machine communication (M2M): Study on Semantic support for M2M Data".
[i.3]
Open Geospatial Consortium, http://www.opengeospatial.org/.

[i.4]
Open Geospatial Consortium, Sensor Web Enablement DWG, http://www.opengeospatial.org/projects/groups/sensorwebdwg.

[i.5]
Open Geospatial Consortium, Sensor Web Enablement architecture, August 2008.

[i.6]
Open Geospatial Consortium, Observations and Measurements, Available at http://www.opengeospatial.org/standards/om.

[i.7]
Open Geospatial Consortium, OpenGIS Sensor Model Language (SensorML), Available at http://www.opengeospatial.org/standards/sensorml.

[i.8]
Open Geospatial Consortium, OpenGIS Transducer Markup Language (TML) Encoding Specification, Available at http://www.opengeospatial.org/standards/tml.

[i.9]
Open Geospatial Consortium, Sensor Observation Service, Available at http://www.opengeospatial.org/standards/sos.

[i.10]
Open Geospatial Consortium, Sensor Planning Service (SPS), Available at http://www.opengeospatial.org/standards/sps.

[i.11]
Open Geospatial Consortium, Sensor Alert Service, Available at http://www.opengeospatial.org/standards/requests/44.

[i.12]
W3C Semantic Sensor Network Incubator Group, http://www.w3.org/2005/Incubator/ssn/wiki/Main_Page.

[i.13]
Open Geospatial Consortium, Sensor Web Interface for IoT SWG, http://www.opengeospatial.org/projects/groups/sweiotswg.

[i.14]
Open Geospatial Consortium Best Practice, Semantic annotations in OGC standards, Available at http://www.opengeospatial.org/node/1790.

[i.15]
Open Geospatial Consortium, Geography Markup Language, Available at http://www.opengeospatial.org/standards/gml.
[i.16]
W3C Semantic Sensor Network Incubator Group, http://www.w3.org/2005/Incubator/ssn/wiki/Main_Page.

[i.17]
Semantic Sensor Network XG Final Report, W3C Incubator Group Report 28 June 2011, http://www.w3.org/2005/Incubator/ssn/XGR-ssn/.

[i.18]
Open Geospatial Consortium, OpenGIS Sensor Model Language (SensorML), Available at http://www.opengeospatial.org/standards/sensorml.

[i.19]
Open Geospatial Consortium, http://www.opengeospatial.org/.

[i.20]
Open Geospatial Consortium, Sensor Web Enablement DWG, http://www.opengeospatial.org/projects/groups/sensorwebdwg.

[i.21]
SSN Suggested Key Ontology Intro Attributes, Available at http://www.w3.org/2005/Incubator/ssn/wiki/SSN_Suggested_Key_Ontology_Intro_Attributes.

[i.22]
 W3C Semantic Sensor Network Incubator Group, Semantic Sensor Network Ontology, Available at http://www.w3.org/2005/Incubator/ssn/ssnx/ssn.

[i.23]
W3C Semantic Sensor Network Incubator Group, Semantic Sensor Network Ontology, Available at http://www.w3.org/2005/Incubator/ssn/wiki/SSN.

[i.24]
DUL ssn, http://www.w3.org/2005/Incubator/ssn/wiki/DUL_ssn.

3
Definitions, symbols, abbreviations and acronyms
3.1
Definitions

Abstraction: The process of mapping between a set of Device Application Information Models and an Abstract Application Information Model according to a specified set of rules.

Attribute: (also called “property”, “characteristics”, “characteristics”)
Example: Name, Time, Location
Ontology : An ontology is a formal specification of a conceptualization, that is defining Concepts as Objects with their properties and relationships versus other Concepts.

Physical entity: a tangible element that is intrinsic to the environment, and that is not specific to a particular M2M application in this environment.

Depending on the environment, the physical entity may be an appliance, a piece of furniture, somebody, a room of a building, a car, a street of a city, etc. To be part of the M2M/IoT architecture, a physical entity does not need to be connected through a direct network interface, or even to be identified through a universal identification scheme such as RFID/EPC global, provided it can be sensed by sensors that are supposed to be deployed in this environment, and possibly acted upon by actuators.

Relation : (also called “interrelation”) stating a relationship among Concepts
Example: “is-part-of”, “is-subtype-of”

Thing: an element of the environment that is individually identifiable in the M2M system.

Thing Representation: It is the instance of the informational model of the Thing in the M2M System. A Thing Representation provides means for applications to interact with the Thing.

3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Abbreviation format

<ABBREVIATION1>
<Explanation>

<ABBREVIATION2>
<Explanation>

<ABBREVIATION3>
<Explanation>

3.4
Acronyms

Acronyms should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Acronym format

<ACRONYM1>
<Explanation>

<ACRONYM2>
<Explanation>

<ACRONYM3>
<Explanation>

4
Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [1].
5
Introduction on Abstraction and Semantic Capability Enablement in oneM2M
Editor’s Note: The chapter is to introduce concepts, use cases, benefits, etc.
5.1
Overview

Editor’s Note: The section is to introduce an overview of abstraction&semantics.

5.2
Use Cases
Editor’s Note: The section is to introduce several use cases for abstraction&semantics.
Editor’s Note: It is FFS whether to keep use cases in this TR or oneM2M use case collection TR.

5.2.1
An example of Home Environment Monitoring Service using semantic mash-up
5.2.1.1
Description

Semantic mash-up provides functionalities to support new services through the creation of new virtual devices, which do not exist in physical world, by obtaining semantic information through semantic descriptions from existing M2M resources in the M2M System.

Semantic mash-up function in the M2M system may have the following advantages:

· Communication efficiency: By using virtual devices created through mash-up, M2M Applications can obtain necessary information by using only a single query to M2M system. It reduces communication overload between the M2M System and the applications.

· Reusability: Virtual devices created by mash-up can be used by multiple M2M applications. It can improve a reusability of information.

· Authentication/security: When a mash-up needs information of devices residing in several M2M systems, authentication/security issues can be solved by M2M systems rather than applications.

For mash-up, abstract device is defined as follows:

· Abstract device: a resource represented in the M2M System through the abstraction of either a physical device or a functionality implemented as a software.
Virtual device is a new resource created by a mash-up of multiple abstract devices. Additionally, it also includes a composite virtual device created by the mash-up of either other abstract devices or existing virtual devices. It is manipulated as a general M2M resource.

Virtual devices can provide new information which the existing resources do not contain.

In general, the virtual devices are created in the M2M System by a query from a M2M Application. They can be created through the composition of other existing virtual devices as well as physical and abstract devices. The M2M System manages the created virtual devices.

For example, if a user in a home requests home environment information like Discomfort Index (DI) or Air Pollution Index (API), new virtual device (i.e., ‘Home Environment Management’) is created through mash-up of data from home appliances (e.g., heater, air conditioner, humidifier, air cleaner, etc.) equipped with environment sensors (e.g., sensors for temperature, humidity, CO2 level, VOC(Volatile Organic Compound) level, etc.) in the home. The virtual device-‘Home Environment Management’ provides users with DI or API calculated using average values of temperature, humidity, CO2 level or VOC level based on collected data from various environment sensors.

5.2.1.2
Source (as applicable)

Modacom (TTA)

5.2.1.3
Actors

· M2M Application: An application to provide a M2M application service based on M2M resources to M2M application service users.

· M2M System: A system to provide M2M service functions.
· Physical Device: A physical M2M appliance equipped with environment sensors (e.g., fan/heater, air conditioner, composite sensor, humidifier, air cleaner, etc.)

5.2.1.4
Pre-conditions

· A M2M System has capabilities for semantic processing.

· Physical devices and abstract devices for home appliances equipped with environment sensors are registered in a M2M System.

· A M2M resource has semantic description for semantic based searching and discovery.

5.2.1.5
Triggers (if any)

none
5.2.1.6
Normal Flow (as applicable)

The following figure shows the procedure for creation and execution of a virtual device for the request in case that a M2M Application sends a semantic query for DI or API.

[image: image2]
1. A M2M Application sends a semantic query to a semantic engine in a M2M System (e.g., What’s DI or API inside home?).
2. The Semantic Engine discovers virtual device which can meet the semantic query in a CSE.
3. The CSFs return the result that there is no appropriate resource (Not Found).
4. The Semantic Engine determines semantic description to create a virtual device (e.g., i) information of temperature and humidity required for calculating DI, ii) the method for calculating DI from data on temperature and humidity, etc.).

5. The Semantic Engine discovers related member resources (i.e., abstract devices).
6. The CSFs return URIs of discovered member resources.
7.The Semantic Engine requests to create a virtual device and associate member resources with the virtual device.
8. The CSFs return information for created virtual device.
9. The Semantic Engine starts to run the virtual device.
10. The Semantic Engine collects M2M data based on information from member resources of the virtual device (e.g., values of temperature and humidity obtained from sensors in a home, etc.) .
11. The CSFs return the result.
12.The Semantic Engine applies a service logic using the collected values (e.g., the calculation of average temperature and humidity in a home, the calculation of DI value, etc.).
13. The Semantic Engine returns the result to the M2M Application (e.g., the current DI value inside home).

5.2.1.7
Post-conditions (if any)

none
5.2.1.8
High Level Illustration (as applicable)

In case that a M2M Application requests the information for DI or API, a M2M System creates a new virtual device (i.e., ‘Home Environment Management’) through mash-up of related data after analysing the request and identifying required data. DI and AI are created as new attributes inside the ‘Home Environment Management’ virtual device. To find a DI value, a Semantic Engine inside the M2M System calculates average values of temperature and humidity from the data obtained through mash-up. After that, the DI value calculated from the average values is provided to the M2M Application. Similarly to DI, the API value is also calculated through mash-up of data for CO2, VOC level and is provided to the M2M Application.

[image: image3]
5.3
Benefits of Abstraction and Semantics
Editor’s Note: The section provides benefits of abstraction&semantics.

6
Abstraction Technologies
Editor’s Note: The chapter is to introduce abstraction technologies.
6.1
Overview

Device Abstraction is a M2M Service that allows an M2M Application to use a generic, “abstract” interface to access the functions a set of devices irrespective of the specific technology they support.

The following requirements on Abstraction can be found in TS 0002

	Requirement ID
	Description
	Release

	ABR-001
	The M2M system shall provide a generic structure for data representation.
	

	ABR-002
	The M2M system shall be able to provide translation mechanisms among Information Models (including meta-data) used by M2M Applications, M2M Devices/Gateways, and other devices.
Editor’s Note: need definition for Information Model and Meta-data.
	

	ABR-003
	The M2M System shall provide capabilities to represent Virtual Devices and Things, (which are not necessarily physical devices.)
	

Table 3 Abstraction Requirements

6.1.1
Basics about Interworking and Abstraction

Many systems (standardized and proprietary) that have been defined outside of oneM2M will require interworking with the M2M System. For example in the area of Home Automation ZigBee Smart Energy (SE2.0) and BACnet provide standards that describe devices and functionality to manipulate electrical machines in the home. OneM2M will need to interwork with both.

Interworking

Interworking the oneM2M System with these external systems/technologies allows am M2M Application to use devices from other technologies (e.g. ZigBee or BACnet) that are attached to the M2M System. Interworking is accomplished by Interworking Proxy functions, which could be realized as a M2M Application or as part of some CSE, that map the native interface of the device (e.g. ZigBee, BACnet,…) into oneM2M resources that can be accessed by M2M Applications. These resources are called a oneM2M Representation of the Information Model of the native device.
Therefore, for interworked devices the M2M Application does not have to communicate with the device via its native interface but via interfaces (X and possibly Y) provided by oneM2M – the oneM2M Representation. Still, the M2M Application needs to understand the information model and the semantics of the native interface, even if the external (non-oneM2M) devices can be accessed through oneM2M mechanisms.

Abstraction

In addition to interworking the target of Abstraction is to enable an M2M Application to access the external (non-oneM2M) devices without the need to understand the information model and the semantics of the native interface. To meet that goal “abstract” devices are created in the oneM2M System. These Abstract Devices are M2M Applications or functions, located in a CSE, that translate access to its interfaces into access to interfaces of a native device. An Abstract Device can do this translation to devices from a multitude of external technologies.
Instead of communicating with the native device – or, to be more precise, with the related Interworking Proxy function – the M2M Application communicates with the Abstract Device and only needs to understand the information model of the Abstract Device.

The following figure gives an overview on Interworking and Abstraction.

[image: image4.emf]Native

device

Interworking Proxy functionInterworking Proxy function

N’ative

device

Abstract M2M DeviceNative System (Technology)other NativeSystem

oneM2M System

<xml>

Description of data and procedures

of Ndevice

Data: XYZprocedure: xyz(params)Data: ABCprocedure: abc(params)

<xml>

Description of data and procedures of

N’device

Representation creation

<xml>

Description of data and procedures of

Abstract device

Abstraction: (manual)mapping data and procedures between Nativeand Abstractdevices

Information Models ofdevicesRepresentations of Information model

Abstraction: (manual)mapping data and procedures between Nativeand Abstractdevices

interworkinginterworking

Systems(standardized or proprietary)Example:

ZigBeeOn/Off Switch in a ZigBeenetworkZigBeeOn/Off Switch inter-worked in oneM2MAbstract Binary Device in oneM2MBACnetBinary Input Object interworked in oneM2MBACnetBinary Input Object in a BACnetnwk

Representation creation Representation creation

6.1.2
Information models for Interworking

In this section we explain the difference between Information Model and a Representation of that Information model.

Additionally, we suggest that any Information Model, that can be used for interworking purposes, needs at least to be capable to differentiate between pure data operations (Create/Read/Update/Deletw) and procedure calls. While CRUD operations are sufficient in pure RESTful systems, RPC based systems require an Information Model that allows to describe procedure calls.

Information Model

An Information Model is an “abstract, formal representation of entities that may include their properties, relationships and the operations that can be performed on them”. In particular, the Information Model describes the interfaces (their datatypes and -structure) with which the entity communicates with other entities.

In general, it is not necessary for an M2M Application (i.e. an entity, that is defined outside of oneM2M) to reveal to the M2M System (i.e. to CSEs via the X reference point) the internal – application specific – structure of the data it wants to exchange with other M2M Applications. In this case the interface to other M2M Applications would consist of an opaque “Container” sub-resource. The M2M System would not know about the internal structure of this container, the container could even be encrypted.

However, in the case of interworking of external systems / devices with the M2M System such information is required by the M2M System to be able to realize the related Interworking Proxy functions.

The information on the structure of an interface to an entity (e.g. application, device..) is called it’s “Information Model”. It describes the names of parameters, its value ranges, substructures, etc. If the interface is using procedure calls it must contain information about whether parameters are input- or output-parameters.

Representation

Note, however, that the Information Model of an interface is independent of any concrete system to which it may apply (e.g. ZigBee, oneM2M ..). It is merely describing what data are transferred across an interface. The system specific implementation of the Information Model in a specific system is called the “Representation” of the Information Model in that system.
For example, the Information Model of a ZigBee On/Off Switch has (naturally) a Representation in a ZigBee network, but can also have a Representation in the M2M System (for the purpose of interworking with ZigBee).

Requirements on the Information Model

It should be possible to describe the Information Model of any kind of interface - whether it observes REST principles or is procedure based – in a common format. In addition the format in which Information Models are described should be machine readable to enable automatic creation of a Representations of the Information Model in the target system.

A natural choice for such a format would be XML. More specifically, since an Information Model contains only the structure and not the actual values of an interface it can be described as an XML Schema, as an XSD file [see http://www.w3.org/XML/Schema].

Examples for existing XML Schemas are:

· XSD for BBF’s TR-069 CWMP data model for device management:
http://www.broadband-forum.org/cwmp/cwmp-datamodel-1-1.xsd

· ...

A shortcoming of existing published XML Schemas is that they usually describe only data and do not contain a description of procedures. The difference in describing procedures as compared with other data structures is that:

· Input- and output-parameters need to be clearly separated from each other

· While the input parameters of a procedure can be individually set, one at a time, this setting of parameters does not yet imply that the procedure is executed. Only “invoking” the procedure executes it.

· A procedure may take some time to execute, so after invocation the output, relating to that invocation, may not be available until the procedure has finished.

· After invocation, a procedure may have different states (e.g. “invoked”, “started”, “paused”, “finished”..) that may be relevant (e.g. to interrupt procedure execution).

For that reason it is important that an Information Model clearly distinguishes between data and procedures.

The xsd for a procedure could roughly look like:

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="procedure" type="procedureType"/>

 <xsd:complexType name="procedureType">

 <xsd:sequence>

 <xsd:element name="procedureName" type="xsd:string"

 minOccurs="1" maxOccurs="1"/>

 <xsd:element name="procCallParams" type="procCallParamsType"

 minOccurs="0" maxOccurs="1"/>

 <xsd:element name="methodResponse" type="methodResponseType"

 minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

<xsd:element name="procCallParams" type="procCallParamsType"/>

 <xsd:complexType name="procCallParamsType">

 <xsd:sequence>

 <xsd:element name="params" type="paramsType"

 minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="paramsType">

 <xsd:sequence>

 <xsd:element name="param" type="paramType"

 minOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="paramType">

 <xsd:sequence>

 <xsd:element name="value" type="valueType"

 minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="valueType">

 <!--

 Here the data types from other XSDs (from existing data models) can be included

 -->

 </xsd:complexType>

<xsd:element name="methodResponse" type="methodResponseType"/>

 <xsd:complexType name="methodResponseType">

 <xsd:sequence>

 <xsd:element name="params" type="paramsType"

 minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

In the past, several attempts have been made also to describe procedures in XML, e.g. XML-RPC [http://en.wikipedia.org/wiki/XML-RPC] , which later evolved into SOAP/WSDL. However these later evolutions were targeting the use of XML for indeed implementing RPCs (i.e. to be used at runtime), which is not needed if we only want to describe the structure of a procedure.

6.1.2.1
Mapping Information Models into oneM2M Resources:

For interworking purposes for a given Information Model oneM2M Resources need to be created according to the structure given by the Information model.

In particular, when the Information Model is specified by an XSD file the following rules should apply:

· Attribute names shall be the same ones as given in the element name of the XSD description

· Simple atomic attribute types (like “Boolean”, “integer”, “string”..) shall be indicated in the Description of the resource.

· Attributes of type “sequence” shall be mapped into a Collection Resource with the same name as the element name of the XSD description.

· Resources that represent Procedures contain

· A sub-Resource which contains 0..1 sub-Resources "procCallParams"

· A sub-Resource which is a collection of execution Instances.

· Each execution Instance contains 0..1 sub-Resource "methodResponse".

· A special attribute “execEnable”. An UPDATE on that attribute will trigger execution of the procedure with the current "procCallParams" parameters

[image: image5]
6.1.2.1
Proposal:

It is proposed that oneM2M should encourage external bodies, who wish to interwork with oneM2M, that similar approach should be taken and Information Models should be published as XSD files.

A convention on how to express the xsd description of procedures – similar to the one given above – needs to be established.

6.1.3
Abstraction and Semantics

A common format for describing Information Models, as described above, facilitates creation of system specific interface Representation (e.g. as oneM2M Resources) for external systems/entities. This allows easy creation of Interworking Proxy functions.

However, from the oneM2M Resource representation it cannot be deduced that a particular resource has been built according to a published Information Model. E.g. although all the parameters in a resource are called exactly the same way as described in BBF’s TR-069 CWMP data model this still may have happened by coincidence.

If it is desired to indicate that Resources have been built according to a specified Information Model, these Resources should contain a special attribute that contains a link to the XSD of the Information Model. That way it is always possible to ensure compliance of the Resource structure with that Information Model

In addition, this link would allow to search for entities that comply with that Information Model (e.g. devices of a particular TR-069 Device Type).

Semantics

The Information Model (the XSD file as described above) only describes the structure of the interface to entities (oneM2M or external). However it does not describe any semantics (i.e. the meaning of data / behaviour of entity types). To enable the described abstraction, the semantic relation between each concrete instance (e.g. the ZigBee Information Model) and the common super type (the Abstraction Information Model) has to be modelled.

For example, within a home environment one light switch might implement the ZigBee protocol, another one the BACnet protocol. The first one would have a type “ZigBee On/Off Switch”, the type of the second one would be “BACnet Binary Input Object”. Only knowing their types and Information Model would not allow the conclusion that both are light switches.

This additional (semantic) information could be added by adding references to an ontology, that defines “ZigBee On/Off Switch” and “BACnet Binary Input Object” as sub-classes of “binary switch”.

Depending on how the Information Model of an Abstract Device for a binary switch would in the future look like, another sub-class “ABSTRACT Binary Input Object” could be created in that ontology and would be a sub-class (or maybe an equivalent class) to “binary switch”.

Such semantic information, which basically would consist of vocabulary of class-type names and their relationship (e.g. sub-class of …) can be formally described in an ontology. The most common languages for describing ontologies are RDF(S) and OWL. RDF (Resource Description Framework) allows making statements as triples consisting of subject, predicate and object. RDFS (Resource Description Framework Schema) provides a vocabulary for structuring RDF Resources. This includes the modelling of classes (rdfs:Class), the rdf:type property that links instances to a class and the rdfs:subClassOf property, which allows the specification of class hierarchies. SPARQL is a query language for RDF triples that takes into account the subclass relations. OWL (Web Ontology Language) goes a step further enabling ontology reasoning. OWL offers different sublanguages with different levels of expressiveness and related properties regarding reasoning completeness and time complexity. Ontology reasoning can be used to deduce subclass relations, to determine whether something is an instance of a class and to check consistency.

While the capability for semantic search (e.g. give me all instances of classes that are sub-classes of “binary switch”) is clearly of importance for oneM2M as it will allow satisfying identified search requirements, further aspects related to the need of supporting ontology reasoning require some further study.

Abstraction

Also, ontologies, depending on the granularity of their entries, may contain information on the mapping between Abstract Device Information Models and ‘real’ Device Information Models. E.g. it could be stated that the “On” state of the ZigBee On/Off Switch corresponds to the “TRUE” state of the “ABSTRACT Binary Input Object”.

6.1.3.1
Proposal:

For the purpose of abstraction, it is not absolutely necessary to have semantic information available in the oneM2M System. Nevertheless, it should already now be foreseen in the design principles to add semantic aspects to the resources in the oneM2M System.

We propose to add semantic information by linking resources to ontology concepts, e.g. as specified in RDF or OWL ontology files.

6.2
Introduction of Existing Technologies
Editor’s Note: The section provides existing technologies that can be used for providing abstraction capability enablement in oneM2M..All the description in this section is the introduction to the currently existing technology. The relation between the technology and oneM2M is not covered in this section.
6.2.1
Introduction to ETSI M2M Device Abstraction
6.2.1.1
Architecture
Native devices (type d) can host several applications. For example, a ZigBee device can have several on/off switches. Each switch is a distinct application and needs to be registered to the Gateway as well as the Network. As specified in the TS 102 690 [i.1] section 6.1, the GIP capability provides interworking between non ETSI compliant devices and the GSCL.

Figure 6.1 [i.2] shows a high-level architecture for supporting device abstraction. Native devices (e.g. ZigBee devices) are first registered in the GSCL as native applications through the GIP capability. These native applications are then abstracted in corresponding abstract resources through a capability supporting device abstraction, which is called the Gateway Resource Abstraction (GRA) capability. Both native and abstracted applications are then registered (or announced) to the NSCL via mId interface. Both GSCL and NSCL have abstract resources in their resource tree.

This architecture provides both legacy M2M applications, which have access network specific knowledge, and standard M2M applications to have an access to native resources. The legacy M2M applications can access through the native applications while the standard M2M applications do through the abstracted resources.

[image: image6.png]
Figure 6.1: High-level architecture for supporting device abstraction

6.2.1.2
Interworking with legacy devices (d) through abstract devices
The following figure provides a resource-entity model that represents an M2M area network. In this model, each device in the network has native data and methods which are provided via access network-specific interfaces to applications. In order to provide interworking with M2M network applications that do not understand access specific technologies, the model defines an abstract application and linked it to its native application.

Since not all native applications are directly mapped to an abstracted application, the model provides 1 (native application) to 0..n (abstract application) relationship. All child entities of both native and abstract application such as interface, data field and method have the same 1 to 0.n relationship.

[image: image7]
Figure 6.2: Generic entity-relation diagram for an M2M Area Network and its resources

This entity-relation diagram is applicable to the following M2M Area Networks:

· ZigBee

· DLMS/COSEM

· Zwave

· BACnet

· ANSI C12

· mBus

Native resource.
Native resource is an Application resource specified in the TS 102 690 that shall store network specific information about the Application. Same as application resource, native resource is created as a result of successful registration of an Application with the local SCL. M2M network applications that understand network specific information can interwork with legacy devices (d) through this native resource.

Abstract resource.
An abstracted resource shall point to the native resource hosted in another SCL or in the same SCL. The abstracted resource is a virtual resource which consists of a set of generalized attributes instead of local area network specific attributes, such as, the searchStrings, the abstractLink to the original resource, a set of genericCommands, which are visible to applications (e.g. toggle, on and off), and the accessRight. The purpose of the abstracted resource is to represent the original resource without any network-specific information, so that the issuer does not need to know about any prior knowledge of the used underlying network technology. An abstracted resource itself shall be considered the same as other native resources that are located in the same SCL. When an abstracted resource is discovered, it returns a direct reference to the native resource.

6.2.1.3
Gateway Resource Abstraction (GRA) Capability
At start-up of forming a local area network, the GIP capability detects new devices that have joined the network and creates original M2M resources on GSCL, which are specific to the local network technology. When the GIP capability creates the original resources, the GRA capability detects new resources, creates their corresponding abstract resources and registers them in proper SCLs.

The GRA Capability in the M2M Gateway is an optional capability, i.e. deployed when needed/required by policies.

The GRA Capability provides the following functionalities:

· Detects any additions of new native resources in the GSCL.

· Generates an abstracted resource from the native resource, which is non ETSI compliant resource.

· Links native resources to their corresponding abstract resources.

· Registers abstract resources to the NSCL.

· Subscribes to native resources to be notified any updates.

· Synchronize abstracted resources to their native resources.

· Provides functional mapping between the abstracted information (i.e. generic attributes and commands) and the underlying network specific information.

· GRA may either be an internal capability of GSCL or an application communicating via reference point dIa with GSCL. GRA can also be merged with the xIP (i.e. GIP, NIP and DIP) capability, so that provides resource abstraction and interworking capabilities together.
6.2.1.4
Subscription of Abstract Resources
Any xA in the ETSI M2M architecture should be able to create a subscription to an abstract resource. The xSC is responsible for managing the subscription. Any xA that subscribes to an attribute value can be notified when the value changes.
6.2.1.5
Mapping Principle
This section describes the mapping principles that are used to map a generic M2M abstract resource into a native M2M resource. There exist two ways of describing an abstract device. The first one is to consider each abstract device as an application. The second mapping method uses the subcontainers resource so that each abstract device is considered as a container resource and registered to the network application where they are belonging to.

Representing the M2M Area Network using Link: Each abstract application belonging to a Device (N.B.: they are not ETSI M2M Applications) is modeled with an ETSI M2M <abstract-application> resource. The URI used to access this <abstract-application> resource has the following format:

<sclBase>/applications/<networkX_deviceY_abstract-applicationZ>

The <abstract-application> resource contains an ETSI M2M <container> sub resource. The URI used to access this <container> resource has the following format:

<sclBase>/applications/<networkX_deviceY_abstract-applicationZ>/containers/descriptor

The <container> resource contains one or more <contentInstance> sub resource. The “content” attribute of this sub resource contains the representation of the Application. In particular, since an Application can implement several Interfaces, each of them modeled with ETSI M2M resources (see next bullet for description), the “content” attribute of the <contentInstance> resource may contain the URIs of the ETSI M2M resources representing these Interfaces. The URI used to access the <contentInstance> resource containing the current representation of the Application has the following format:

<sclBase>/applications/<networkX_deviceY_abstract-applicationZ>/containers/descriptor/contentInstances/latest

The <contentInstance> resource pointed by the “latest” attribute of the contentInstances resource contains always the current representation of the Device.

Each Data Field and each Method belonging to an Abs_Interface is generalized from their corresponding native Data Field and method. Same as to the native one, they can be mirrored or retargeted.

If the Data Field or the Method is mirrored the ETSI M2M <abstract_application> resource modeling the Application contains an ETSI M2M <container> sub resource for each interface element mirrored (either Data Field or Method). The URI used to access this <container> resource has the following format:

<sclBase>/applications/<networkX_deviceY_abstract-applicationZ>/containers/<abs_interfaceW_datafieldN>

or

<sclBase>/applications/<networkX_deviceY_abstract-applicationZ>/containers/<abs_interfaceW_methodM>

The <container> resource contains one or more <contentInstance> sub resource. The “content” attribute of this sub resource contains the representation of the Data Field or the Method; for the Data Field it is its value, for the Method it is the actual parameters used for a Method invocation or the result of a Method invocation. The URI used to access the <contentInstance> resource containing the current representation of the Data Field or the Method has the following format:

<sclBase>/applications/<networkX_deviceY_abstract-applicationZ>/containers/<abs_interfaceW_datafieldN>/contentInstances/latest

or

<sclBase>/applications/<networkX_deviceY_abstract-applicationZ>/containers/<abs_interfaceW_methodM>/contentInstances/latest

The ETSI M2M <abstract_application> also has a link to its native <application>. The URI used to access the <native_application> resource containing the native representation of the resource has the following format:

<sclBase>/applications/<networkX_deviceY_native-applicationZ>

Figure 6.3 provides an overview of the resources used to model an example of an abstract device.

[image: image1.png][image: image23.png]
[image: image8]
Representing abstract device using subcontainers:In this representation method, the “subcontainers” resource can be used instead of the link. The subcontainers resource is a resource that is used to represent a collection of sub-container <container> resources. Since the subcontainers resource links a <container> resource with sub-container <container> resources, e.g. ../containers/<parentcontainer>/subcontainers/<container>, all abstract devices and original devices are represented as a container.

For example, in the representation using subcontainers, each device regardless of type (i.e. abstract or original) is described as a container and included in the subcontainers of the M2M Area Network application resource. The URI used to access the <container> resource of an abstract device Y has the following format:

<sclBase>/applications/<networkX >/subcontainers/<networkX_deviceY_abstract_container>

while the <container> resource of an original device Y has the following format:

<sclBase>/applications/<networkX >/subcontainers/<networkX_deviceY_container>

The <subcontainers> resource contains one or more containers for devices. Figure 6.2 provides an overview of the resources used to model an example of an abstract device using the subcontainers resource:

[image: image9]
6.2.2
Technology x
Editor’s Note: The section provides a potential technology.

6.3
 Gap Analysis of Existing Abstraction Relevant Technologies
Editor’s Note: The section lists all the requirements related to abstraction in oneM2M and analyzes how the proposed architectures can fulfil the requirements and identifies potential gaps.The section also gives reference to the specification of the analysed technologies.
6.3.1
Abstraction Related Requirements Gap Analysis Reference
Editor’s Note: The table below gives cross reference to the requirements and the technologies. The matrix represents whether or not the technology can fulfil the requirement. At the same time, in the following sections, detailed description of the depth of how well the technology can fulfil the requirement should be shown.
	
	Technology 1
	Technology x
	

	DSR-XX1
	
	
	

	DSR-XX2
	
	
	

	
	
	
	

Table 1 Requirements fulfilment reference
6.3.2
Requirement 1
Editor’s Note: The section gives descriptions in depth how the technologies can fulfil each abstraction related requirements defined in oneM2M.

6.3.2.1
Technology 1

6.3.2.2
Technology x

6.4
oneM2M Architectural Considerations for Abstraction
6.4.1
Introduction

This section analyzes whether utilisation of the analysed abstraction technologies, to fulfil the oneM2M abstraction related requirements, results in any architectural recommendations for, or potential constraints to, the oneM2M architectural design. This section also highlights any restrictions that the oneM2M arhctecture potentially places on utilisation of the analysed abstraction technologies within oneM2M.
6.4.2
Technology 1

6.4.3
Technology x
6.5
Evaluation

Editor’s Note: The section evaluates the discussed architectural considerations for abstraction.
7
Technologies for Semantic M2M System
Editor’s Note: The chapter is to introduce technologies that enable adding semantics to the M2M system.
7.1
Overview

Editor’s Note: The section provides an overview of technologies used for semantics capability.

7.2
Introduction of Existing Technologies
Editor’s Note: The section provides existing technologies that can be used for providing semantics capability enablement in oneM2M.. All the description in this section is the introduction to the currently existing technology. The relation between the technology and oneM2M is not covered in this section.
7.2.1
Introduction to ETSI Semantic M2M System
7.2.1.1
System Overview
Figure 7.1 [i.2] describes a high-level architecture of Semantic M2M with internal components.

[image: image10.png]
Figure 7.1: Semantic M2M system overview

Semantic engine:

Semantic engine plays a key role in Semantic M2M system. Similar to interworking proxy capabilities (xIP) in NSCL [i.1], semantic engine can be deployed in NSCL. For discovery, the engine receives a semantic query; handles the query and returns results.

Semantic engine provides functionalities as follows:

· validate semantic attributes (according to semantic model, e.g., RDF and OWL, either defined by ETSI M2M or outside of ETSI M2M),

· process semantic queries, for example decomposing a query into multiple sub-queries, aggregating the results from sub-queries.

M2M ontologies:

M2M ontology is a formal description of M2M resources, of the structures of things, properties, processes and their relationships in a domain.

7.2.1.2
Semantic Annotation
Semantic annotation of M2M resources is a method for adding semantic information to M2M resources so that provides consistent data translation and data interoperability to heterogeneous M2M applications. Semantically annotated M2M resources can be contacted by an M2M application that understands what data are provided by the resources and what these data means. These annotations provide more meaningful descriptions and expose M2M data than traditional M2M system alone.

In brief, M2M resources usually consist of sensor devices monitoring and reporting a specific data and actuators executing a given command. Comparing with other semantic services, such as Semantic Web and Semantic Sensor Web, semantic M2M needs to provide semantic information for both data and commands.

In many cases, semantic information is annotated using RDF because RDF provides a general, flexible way to decompose any knowledge into discrete pieces and can be stored in many different formats. In addition, RDF is useful to encode information about relations between things which includes a lot of semantic information. A triple store is usually selected in order to store and retrieve such relational information. However, ETSI M2M uses a hierarchical resource tree to store resource information and provide discovery of these resources.

The first step towards a semantic M2M system is to annotate semantic information to its managing resources. Semantic information is retrieved from the relations between M2M resources and can be annotated as an attribute of the resources. The ETSI M2M system uses a hierarchical tree structure to store and represent its resources. Thus, in the ETSI M2M system, semantic information can be retrieved from the relations between M2M resources and embedded as an attribute of the resources.

The semanticInfo attribute contains the semantic description of the thing. This ontology shows what is the meaning of the thing. This semantic description is expressed with namespace prefix to avoid name conflicts.
To describe relationships with other things, the relations attribute can be introduced, this attribute can have a pair format, i.e. <relation : link to other thing>. For example, a Zigbee temperature sensor that is controlled by a Zigbee controller 1 can be described in the following format:

“m2m:isControlled – Zigbee-Controller-1” – (example 1)

These senaticInfo and relations attributes are a subject for resource discovery so that any applications can easily discover ETSI M2M resources without any domain specific expert knowledge.

The object of relation, i.e. link to other thing, can be any type of resources. All type of things in ETSI M2M, physical thing, abstract devices and virtual things, can be used as a subject for link to other thing. This field should be an (absolute or relative) URI pointing to another ETSI M2M resource. In the previous example, the Zigbee controller 1 is an actual thing that exists in the ETSI M2M system. Virtual things can be used to add more semantic information to the actual things.

For example, if a sensor is deployed in a room-1, semantic annotation between the sensor and the room-1 can add semantic information about the location. In this example, room-1 is not a physical object but a virtual thing. Through annotating the relationship between the sensor and room-1, user can discovery the sensor when asking sensors in the room-1. The relationship can be described in the following format:

“m2m:isDeployed – room-1” – (example 2)

A new semantic information can be easily created, updated and deleted through using ETSI M2M supported Restful commands, CREATE, UPDATE and DELETE, respectively. In order to avoid name conflicts between vocabularies used in semanticInfo and relations, namespace prefix and the namespace URI are also defined. For example, isDeployed could be defined differently in two different domains: sns:isDeployed and m2m:isDeployed. This means that other could define isDeployed with other namespace prefix. If semantic information is provided together with this namespace prefix, a reader could be able to understand that they are different semantic information even though they have the same name.

The namespace URI can also be introduced as an attributed. The following figure shows how semantinInfo, relations and namespaceURI can be expressed within the ETSI M2M resource tree. In this case, <namespaceURIs> contains a list of namespace URIs. For example:

<m2m=http://www.m2m-semantic.org/sensor#>
<sns=http://www.homeautomation.org/sensor#>

[image: image11]
Figure 7.2: An example of Namespace URI as part of a sub-resource of the application resource
The attributes used for annotating semantic information are described in the following table.

Table 7.1: Attributes for annotating semantic information

	Name
	Description

	semanticInfo
	This attribute contains the semantic description of the thing. This ontology shows what is the meaning of the thing.

	Relations
	This attribute is used to describe the relationships with other things. This attribute can have a pair format, i.e. <relation : link to other thing>.

For example, if a zibgee sensor is controlled by a Zigbee controller #1, <m2m:controlledBy – URI to Zigbee controller #1> can be a way of expressing a relationship to Zigbee controller.

	namespaceURIs
	This attribute is used to describe namespace URIs. This attribute contains the information about namespace prefix and the namespace URI.

For example, the m2m namespace with the URI http://www.etsi-m2m.org can be expressed as follows:

m2m=http://www.etsi-m2m.org/sensor#

Now semantic information of resources is stored in the ETSI M2M system. However, since legacy M2M systems do not support semantic queries, such as SPARQL, they need to provide a way to deliver semantic queries to the ETSI M2M system. For this purpose, the semantic M2M system should provide a capability to provide a unified access point of a semantic query to M2M applications.

When a semantic query is arrived at the semantic engine, it parses the query and generates RESTful sub-queries. The engine then processes the RESTful queries and gets resources from SCLs. The returned resources are checked for semantic information.

7.2.1.3
Semantic Mashups for Virtual Things
In the domain of Web Service, mashup is a method composing web data from more than one web resources to create a new service. Examples include metacrawlers that blends web search results from multiple search engines and news aggregators that aggregate integrated web contents in a single location. Similarly, the mashup technique can be used to create a new M2M resource in the M2M System.

In the M2M System, a M2M application can publish “virtual things” that act similar to physical resources and provide new information such as: number of vehicles that passed during the last minute/hour, average speed of vehicles, etc. These “virtual things” can be searched and discovered in the M2M System same as other M2M resources. However, in contrast to the physical things, virtual things are only implemented as software and do not require a network connectivity.

When a new virtual thing is registered (or published) to the M2M system, a list of member M2M resources is stored together as an attribute of the thing. If the virtual thing collects information dynamically at the time of receiving a query, a pre-programmed query that collects member resources is also stored along with other information.
Once a virtual thing is added to the NSCL, it is handled and processed the same as all other M2M resources. This means that virtual things are exposed to M2M applications to be discovered. An example of the semantic virtual mashup process is shown in the following Figure 7.3:

[image: image12]
Figure 7.3: Semantic virtual mashup procedure
· Step 1: M2M application sends a semantic query to the M2M system, for example, “Get the temperature of the room 1”.

· Step 2: semantic engine handles this like a normal semantic query so that sends a discovery request to the NSCL.

· Step 3: the NSCL returns the URI of a virtual thing that provides the temperature of the room 1.

· Step 4: semantic engine sends a request to the NSCL to retrieve the information of the virtual thing, i.e., service logic, mashup type (either static or dynamic) and pre-programmed queries.

· Step 5: the NSCL returns the requested information.

· Step 6: semantic engine instantiates the virtual thing. For a virtual thing that is frequently requested, it can be cached in semantic engine and handles the request directly.

· Step 7: the virtual thing at semantic engine collects required data from its member resources using the pre-programmed query.

· Step 8: the NSCL returns the results from member resources

· Step 9: the virtual thing applies its service logic (e.g., calculating the average value) to the received data and calculates the results.
7.2.2
Introduction to OGC Sensor Web Enablement

7.2.2.1
Overview

A sensor Web simply refers to web accessible sensor networks for enabling an interoperable usage of sensor resources by enabling Web-based discovery, access, tasking and alerting using standard protocols and application program interfaces (APIs). It enables the advancement of Web applications through improved situation awareness.

[image: image13.emf]
Figure 7.5: Sensor Web Concept
The Open Geospatial Consortium (OGC) [i.3] has worked to specify interoperability interfaces and metadata encodings that enable real time integration of heterogeneous sensor Web into the information infrastructure. The OGC has developed publicly available encoding and interface standards. These standards can be used so that developers create applications, platforms, and products involving Web-connected devices so as to make complex spatial information and services accessible and useful with all kinds of applications.

The Sensor Web Enablement (SWE) [i.4], a suite of web service interfaces and communication protocols, presents many opportunities for adding a real-time sensor dimension to the Internet and the Web as a unique and revolutionary framework of open standards for exploiting Web-connected sensors and sensor systems of all types. This has extraordinary significance for various vertical applications and services in M2M domains.

7.2.2.2
Sensor Web Enablement (SWE) Languages

The models, encodings, and services of the SWE architecture enable implementation of interoperable and scalable service-oriented networks of heterogeneous sensor systems and client applications. The OGC’s SWE initiative has focused on developing standards to enable the discovery, exchange, and processing of sensor observations, as well as the tasking of sensor systems. The functionality that OCG has targeted within a sensor Web includes [i.5]:

· Discovery of sensor systems, observations, and observation processes that meet an application’s or user’s immediate needs

· Determination of a sensor’s capabilities and quality of measurements

· Access to sensor parameters that automatically allow software to process and geo-locate observations

· Retrieval of real-time or time-series observations and coverage in standard encodings tasking of sensors to acquire observations of interest

· Subscription to and publishing of alerts to be issued by sensors or sensor services based upon certain criteria.
In SWE, the OGC has made a framework of open standards for exploiting Web-connected sensors and sensor systems of all types. This framework is called a Sensor Web, and refers to web accessible sensor networks and archived sensor data that can be discovered and accessed using standard protocols and APIs. SWE is composed of three languages and four service specifications:

· Observations & Measurements (O&M) [i.6]: Standard models and Extensible Markup Language (XML) schema for encoding observations and measurements from a sensor, both archived and in real time.

· An observation is an event with a result that has a value describing some phenomenon. The observation is modeled as a feature within the context of the ISO/OGC General Feature Model. An observation feature binds the result to the feature of interest, upon which it was made. An observation uses a procedure to determine the value, which may involve a sensor or observer, analytical procedure, simulation or other numerical processes.

· Sensor Model Language (SensorML) [i.7]: Standard models and XML schema for describing sensor systems and processes associated with sensor observations in order to provide information required for the discovery of sensors, location of sensor observations, processing of low-level sensor observations, and listing of taskable properties, as well as supporting on-demand processing of sensor observations.

· Within SensorML, everything including detectors, actuators, filters, and operators are defined as process models. A Process Model defines the inputs, outputs, parameters, and method for that process, as well as a collection of metadata useful for discovery and human assistance. The inputs, outputs, and parameters are all defined using SWE Common data types. Process metadata includes identifiers, classifiers, constraints (time, legal, and security), capabilities, characteristics, contacts, and references, in addition to inputs, outputs, parameters, and system location.

· Transducer Model Language (TransducerML or TML) [i.8]: A conceptual model and XML schema for describing transducers and supporting real-time streaming of data to and from sensor systems.

· TML defines:

· A set of models describing the hardware response characteristics of a transducer.

· An efficient method for transporting sensor data and preparing it for fusion through spatial and temporal associations.
· Sensor Observations Service (SOS) [i.9]: A standard Web service interface for requesting, filtering, and retrieving observations and sensor system information as the intermediary between a client and an observation repository or a near real-time sensor channel.

· The SOS includes three core operations:
· The GetObservation operation provides an interface to query over observation data and returns an O&M document.
· The DescribeSensor operation provides an interface to query for the description of a sensor and returns a SensorML document.
· The GetCapabilities operation provides an interface to query for the description of a SOS. GetCapabilities allows clients to retrieve service metadata about a specific service instance and returns a GetCapabilites response document.

· Sensor Planning Service (SPS) [i.10]: A standard Web service interface for requesting user-driven acquisitions and observations as the intermediary between a client and a sensor collection management environment.
· Sensor Alert Service (SAS) [i.11]: A standard Web service interface for publishing and subscribing to alerts from sensors.
· Web Notification Services (WNS): A standard Web service interface for asynchronous delivery of messages or alerts from SAS and SPS Web services and other elements of service workflows.

The OGC SWE standards became a basis for the World Wide Web Consortium (W3C) Semantic Sensor Network (SSN) - Incubator Group (XG) [i.12] to study and recommend methods for using the ontology to semantically enable applications through the extension of the SenosrML for supporting semantic annotations.
As the OGC has identified the need for standardized interfaces for sensors in the Web of Things (WoT), the OGC has created a new Standards Working Group (SWG) on the sensor Web interface for the Internet of Things (IoT). The sensor Web interface for the IoT SWG [i.13] aims to develop such a standard based on existing WoT portals with consideration of the existing OGC SWE standards. This group is developing a candidate standard for access to sensor observations including location information well-suited to IoT and WoT deployment environments.

7.2.2.3
Semantic annotations in OGC standards
Introducing annotation
In the OGC Best Practice [i.14], the OGC has introduced the notion of semantic annotation.
NOTE – Annotation of Web Services or data compliant to OGC standards refers to the task of attaching meaningful descriptions to the service and the served geospatial data or processes. The OGC has extended the expressiveness of such annotations by including more sophisticated (semantic) descriptions.
Semantic annotations enable data providers to connect the standardized service descriptions to the modeled knowledge. Semantic annotations establish a connection between the geospatial resource, its metadata, and the ontology. Figure 7.6 illustrates the three different levels of (semantic) annotations which are possible for OGC Web Services.
[image: image14.emf]
Figure 7.6: Semantic annotations at three different levels
It is possible to distinguish between three locations where particular information about the resource can be acquired.
· The first source of information: the Capabilities-document which comprises functional properties telling the user how to access and invoke the service, as well as some resource metadata with information about the service provider, licensing, a title and description, or a keyword section.
· The second source of information: a XML-based schema representing the data model, which comprises a description of the data model with focus on syntax and structure.
NOTE – The metadata and the schema are describing the underlying data, and therefore explicitly linked (the orange arrow in Figure 7.6).
· The third source of information: the data entities itself, encoded in the format predefined in the data model specified in the data schema.
There are two types of references (see Figure 7.7):

· Domain reference: links between a local, application-specific model and a global, shared vocabulary. It can be also expressed in form of complex rules.
· Model reference: bridge different languages. It is always a link between two models (e.g., XML Schema or UML modelling data, RDF modelling a domain vocabulary, and so on) and a unique URI which points to the corresponding element in another model.
NOTE – The two types of references can overlap. In many cases a domain reference is in the same time also a model reference, since the reference performs both tasks (bridging in between two languages and linking from local to global). In this case, the domain reference should be used.
[image: image15.emf]
Figure 7.7: Two types of references
Semantic annotations at three different levels
Modeling knowledge and publishing it in a well-defined and machine interpretable format can result in increased usability of OGC Web Services. OGC considers ontologies as most promising format to capture such knowledge. But the possibilities to connect ontologies with OGC services are manifold. The followings discuss how we can annotate OGC services on the already mentioned three levels:

· Level 1 - The service metadata
· Adding knowledge model references in one of the existing sections in the data and/or services metadata (e.g., by extending the keyword section of OWS Capabilities) as the most pragmatic and still useful approach
[image: image16.emf]
Figure 7.8: Annotations as part of the resource metadata
· Level 2 - The data models and process descriptions

· Semantic annotation on the data models and the service operations in order to relate service metadata more efficiently to domain knowledge. Considering data structures (e.g., Geography Markup Language (GML) [i.15] application schema) for semantic annotations enables reasoning on data model level.
NOTE – The GML is an XML grammar for expressing geographical features.
[image: image17.emf]
Figure 7.9: Referencing elements in the data model to domain ontologies
· Level 3 - The actual data instances in the database

· Semantic annotations are also possible on the data entity level (e.g., GML features and feature attributes in OGC Web Service)

The three annotations levels differ in their potential. This is due to different reasoning capabilities, i.e. the abilities to infer either new knowledge (making implicit knowledge explicit) or to identify conflicts in existing models. Accordingly, the applications for semantically supported OWS discovery and workflow validation vary.
7.2.3
Introduction to W3C Semantic Sensor Network Ontology

7.2.3.1
Overview

The World Wide Web Consortium (W3C) Semantic Sensor Network (SSN) - Incubator Group (XG) [i.16][i.17] had worked on two main objectives: 1) to develop an ontology to describe sensors and sensor networks, and 2) to study and recommend methods for using the ontology to semantically enable applications through the extension of the Sensor Model Language (SenosrML) [i.18] developed in the Open Geospatial Consortium (OGC) [i.19] for supporting semantic annotations.

The W3C SSN-XG had recognized that several Sensor Web Enablement (SWE) [i.20] standards developed by the OGC should be replaced by approaches based on the semantic Web languages developed by W3C. Furthermore, the group were also motivated the fact that the development of ontologies and of mechanisms to support semantic annotations for sensors could improve interoperability and integration of various services with enhanced capabilities such as reasoning and automation.

For developing an ontology, the W3C SSN-XG considered the following two axes for identifying a set of use cases: 1) various users who use and manipulate data as well directly manage sensor and sensor networks, and 2) technical evolution toward the integration of sensor Web and semantic Web. The following provides four groups of use cases identified for the modeling of sensors in the group:

· Data discovery and linking to find all observations that meet certain criteria, and possibly link them to other external data sources.
· Device discovery and selection to find all the devices that meet certain criteria.
· Provenance and Diagnosis to provide extra information about the instrument to better evaluate or process the data.

· Device Operation Tasking and Programming to command a device’s operation using its description and information on its conditions of use.

Based on use cases, the W3C SSN-XG had developed the ontology (called SSN ontology, see the Section 7.2.3.2) which provides a high-level schema to describe sensor devices, their operation and management, observation and measurement data, and process related attributes of sensors. The SSN ontology supports a domain-independent and end-to-end model for sensing applications, and it can be used with domain ontologies and other ontologies to model the observation and measurement data produced by the sensors. For ontology specification, Web Ontology Language Description Logic (OWL DL) was selected to encode sensor descriptions considering mapping between the ontologies and OGC models.

7.2.3.2
The Semantic Sensor Network Ontology

Introduction

Before starting the work on the SSN ontology, the W3C SSN-XG extensively reviewed ontologies and data models describing sensors and their capabilities as well as observation, using attributes [i.21]. After reviewing them, the group identified that there are important concepts that should be included, but found that none of the existing ontologies supported all of those required concepts. Therefore, the group started to newly develop a formal OWL DL ontology for modeling sensor devices (and their capabilities), systems and processes.
NOTE – The Section 4 in [i.17] provides details reviewed senor ontologies and observation ontologies as well as surveys of various ontologies.
For describing the physical and processing structure of sensors, the ontology is based around concepts of systems, processes, and observations. There had been considered various kinds of sensors (e.g., a device, computational process or combination) including typical physical sensing devices and anything for estimating or calculating the value of a phenomenon. The representation of a sensor in the ontology links the followings: 1) what it measures (the domain phenomena), 2) the physical sensor (the device) and 3) its functions and processing (the models).

NOTE – The ontology is available as a single OWL file: SSN ontology [i.22] and a semi-automatically generated documentation [i.23] derived from it is also provided as a standalone document.
NOTE – In the Section 5 in [i.17], there are five worked examples to illustrate different parts of the SSN ontology: University deployment, Smart product, Wind sensor, Agriculture Meteorology, and Linked Sensor Data.

Ontology structure

The SSN ontology revolves around the central Stimulus-Sensor-Observation pattern.

NOTE – The Stimulus-Sensor-Observation Ontology Design Pattern aims at all kind of sensor or observation based ontologies and vocabularies for the Semantic Sensor Web and especially Linked Data.
· Stimuli: detectable changes in the environment (i.e., in the physical world).
· Sensors: physical objects that perform observations (i.e., they transform an incoming stimulus into another, often digital, representation).
· Observations: act as the nexus between incoming stimuli, the sensor, and the output of the sensor (i.e., a symbol representing a region in a dimensional space).
Several conceptual modules (see Figure 7.9) build on the pattern to cover key sensor concepts. Figure 7.10 which shows the relationships between modules contains an overview of the main classes and properties inside the ontology modules.

[image: image18.jpg]

Figure 7.9: Overview of the Semantic Sensor Network ontology modules

The ontology can be used for a focus on any (or a combination) of a number of perspectives:

· Sensor perspective: what senses, how it senses, and what is sensed.
· Data or observation perspective: observations and related metadata.
· System perspective: systems of sensors.
· Feature and property perspective: features, properties of sensors, and what can sense those properties.

The modules allow further refining or grouping of these views on sensors and sensing. The description of sensors may be detailed or abstract. The ontology does not include a hierarchy of sensor types.

NOTE – Domain experts can define further details. Thus, the ontology could be a simple hierarchy or a more complex set of definitions based on the workings of the sensors.

[image: image19.jpg]

Figure 7.10: Overview of the Semantic Sensor Network ontology classes and properties

The modules contain the classes and properties that can be used to represent particular aspects of a sensor or its observations: for example,
· Sensors
· Observations
· Features of interest (i.e., entities in the real world that are the target of sensing)

· The process of sensing (i.e. how a sensor operates and observes)
· How sensors are deployed or attached to platforms
· The measuring capabilities of sensors
· Their environmental, and survival properties of sensors in particular environments
Figure 7.11 shows a detailed enumeration of these properties.

Figure 7.11: Enumeration of the measurement, environmental and survival properties

The main classes of the SSN ontology have been aligned with classes in the DOLCE Ultra Lite (DUL) foundational ontology to facilitate reuse and interoperability [i.24]. Figure 7.12 shows in blue arrows the subclass properties used to align these two ontologies.

Figure 7.12: Alignment of the Semantic Sensor Network ontology to DOLCE Ultra Lite

Finally, Figure 7.13 shows how the ontology modules defined above support the use cases described in the Section 7.2.3.1.
· Orange color users developing Semantic Sensor Web applications: more specifically interested in the modules connected to the Data Discovery and Linking and Provenance and Diagnosis uses cases.
· Green color users developing Semantic Sensor Web applications: need the modules connected to the Device Discovery and Selection and Device Operation Tasking and Programming uses cases.

[image: image22.png]

Figure 7.13: Use cases and ontology modules
7.2.x
Technology x
Editor’s Note: The section provides a potential technology.

7.3
Gap Analysis of Existing Semantics Relevant Technologies
Editor’s Note: The section lists all the requirements related to semantics in oneM2M and analyzes how the proposed architectures can fulfill the requirements and identifies potential gaps. The section also gives reference to the specification of the analysed technologies.
7.3.1
Semantics Related Requirements Gap Analysis Reference
Editor’s Note: The table below gives cross reference to the requirements and the technologies. The matrix represents whether or not the technology can fulfil the requirement. At the same time, in the following sections, detailed description of the depth of how well the technology can fulfil the requirement should be shown.

	
	Technology 1
	Technology x
	

	DSR-XX1
	
	
	

	DSR-XX2
	
	
	

	
	
	
	

Table 2 Requirements fulfilment reference
7.3.2
Requirement 1

Editor’s Note: The section gives descriptions in depth how the technologies can fulfil each semantics related requirements defined in oneM2M.

7.3.2.1
Technology 1

7.3.2.2
Technology x

7.4
oneM2M Architectural Considerations for Semantics
7.4.1
Introduction

This section analyzes whether utilisation of the analysed semantics technologies, to fulfil the oneM2M semantics related requirements, results in any architectural recommendations for, or potential constraints to, the oneM2M architectural design. This section also highlights any restrictions that the oneM2M arhctecture potentially places on utilisation of the analysed semantics technologies within oneM2M.
7.4.2
Technology 1

7.4.3
Technology x
7.5
Evaluation

Editor’s Note: The section evaluates the discussed architectural considerations for semantics.
8
Conclusions
Editor’s Note: Based on the work in WG2, the chapter evaluates how the analyzed technologies can help the designing of the architecture in order to fulfill the requirements in oneM2M.
8.1
Conclusions for Abstraction
8.2
Conclusions for Semantics
Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, OneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex <A>:
Title of annex (style H9)
<Text>

<PAGE BREAK>

Annex :
Title of annex (style H9)
<Text>

B.1
First clause of the annex (style H1)
<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself.

It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	
	
	

	Draft history (to be removed on publication)

	
	
	

	V.0.0.1
	22 03 2013
	Skeleton

	V.0.1.0
	18.04.2013
	Approved at MAS #4

	V.0.2.0
	07.05.2013
	Incorporate agreed contributions from MAS #4

- oneM2M-MAS-2013-0021R01-ETSI_style_device_abstraction
- oneM2M-MAS-2013-0022R01-ETSI_style_semantic_m2m

	V.0.3.0
	28.06.2013
	Incorporate agreed contributions from MAS #9 at TP#5 (Seoul)

- oneM2M-MAS-2013-0047R02-Home_Environment_Monitoring_Service_using_semantic_mash-up

	V.0.4.0
	18.10.2013
	Incorporate agreed contributions from MAS #7.0 at TP#7 (Sophia-Antipolis)

 - oneM2M-MAS-2013-0106-OGC_standards
 - oneM2M-MAS-2013-0107-W3C_standards
 -

	
	
	

<procedure>

“attribute”

n

execInstances

1

subscriptions

1

procedureType

procCallParams

execEnable

1

1

0::1

M2M Area Network

d device

Native�Application

Native�Interface

Native�Data Field

Native�Method

1

1

1

1

1

n

n

n

n

n

Abstract�Application

Generic�Interface

Generic�Data Field

Generic�Method

m

1

1

1

n

n

n

n

m

n

m

n

m

n

1

n

Figure 6.3 Linking an abstract resource to its native resource based on the ETSI M2M resource architecture

containers

descriptor

contentInstances

latest

Last contentInstance of the container

<abs_interfaceW_datafieldN>

contentInstances

<current_value>

<abs_interfaceW_methodM>

contentInstances

<actual_parameters>

Links to the Interface Data Fields, Methods and the native application

latest

latest

Last contentInstance of the container

<sclBase>

applications

<abstract_application1>

Last contentInstance of the container

<Native_application1>�e.g. Zigbee_app1

<current_status>

Figure 6.� SEQ Figure * ARABIC �4� Mapping of an abstract device to the ETSI M2M resource architecture using the subcontainers resource

subcontainers

<NetworkX_deviceY_appZ_abstract_container>

<abs_interfaceW_datafieldN>

contentInstances

<current_value>

<abs_interfaceW_methodM>

contentInstances

<actual_parameters>

Links to the Interface Data Fields, Methods and the native application

latest

latest

Last contentInstance of the container

<NetworkX_application>

containers

<deviceY_abstract_container>

Last contentInstance of the container

<Native_application1>�e.g. Zigbee_app1

subcontainers

contentInstances

latest

Last contentInstance of the container

<current_status>

<application>

k

containers

1

groups

1

accessRights

1

”attribute” (including semantic information)

1

subscriptions

1

notificationChannels

1

M2M

Application

Semantic Engine

NSCL

1. Semantic query (e.g., average temperature in room 1)

2. Discover a virtual thing satisfying the query

3. Return the URI of the virtual thing

4. Request the information of the virtual thing

5. Return the requested information

7. Collect data from member M2M resources

8. Return the results

6. Locate virtual thing in Semantic Engine

9. Apply service logic to the results

10. Response the results

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC)
Page 42 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

