	
	[image: image27.png]

	INPUT CONTRIBUTION

	Group Name:*
	oneM2M WG2(ARC)

	Title:*
	Rules based multimedia service description & composition and deployment in IoT system

	Source:*
	NIPA (TTA)

	Contact:
	Rashid Ahmad, DoHyeun Kim, YoonKyoung Chae, JaePil Seo (jpseo@nipa.kr)

	Date:*
	2014-11-03

	Abstract:*
	This input document proposes a service description and composition structure. Also, it describes the deployment of service composition in Internet of Things (IoT) architecture. The user-centric service composition is carried out using the rules set. The adaptive rules are updated in accordance with the user queries, profiles and history. This approach helps in server side service composition.

	Agenda Item:*
	TBD

	Work item(s):
	TBD

	Document(s)

Impacted*
	N/A

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 FORMCHECKBOX
 Information

 Other <specify>

	Decision requested or recommendation:*
	N/A

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

1. Introduction

Service-Oriented Computing (SOC) has emerged as an important computing paradigm in recent years. Its main feature is that it utilizes one or more inter-operable services (software components which implement specific functionalities) as fundamental building blocks to support rapid, low-cost development of distributed applications in heterogeneous environments. More recently, web services have been advanced as the technology of choice for realizing service oriented computing and its associated set of strategic goals. Web services are self-contained, modular business applications with open, Internet-oriented, standards-based interfaces. The communication between web services is via standards-based technologies which give users the opportunity to access different web services independent of their hardware, operating system, or even programming environment. This supports organizations with a technology to create services which can be easily discovered and consumed by external users.
Although a single web service has its own value for its users, the functionality offered by the individual web services is limited. The true potential of web services can only be realized through assembling multiple web services into more powerful applications with more sophisticated functionalities; i.e. Web Service Composition (WSC). Manual composition of web services is a time consuming, error-prone, and generally hard procedure and not scalable. Hence, a family of approaches to web service composition aims to fully or partially automate the process of composition in order to deal with the high level of complexity. The two main streams in the automatic WSC approaches are: workflow-based approaches and AI planning-based approaches.
Rule based service composition in IoT architecture
2.1 Service composition architecture
Figure 2.1 shows the architecture of our proposed rules based service composition system. The system composed of service description, service profile, and rules set for each service. The two services are added together to form a composite service. The service composition is made based on the composition rules. We will explain each part of the composition in the subsequent sections.
[image: image1.png]

Figure 2.1: Service Composition architecture
Service description mechanism

There are lots of heterogeneous resources and services in pervasive computing environment. Therefore, in order to make such resources work properly, how to describe such resources becomes one of the most important problems. At present there are many research works in this field, such as UPnP, SLP, Salutation, etc. Different knowledge representation methods, such as ontology, XML and attribute/value, have been used to solve this problem. However, most research methods are syntax-level. Semantic-level information is little considered.
In this study we design a XML based service description mechanism as shown in figure 2.2. The figure shows the structure of a service which is composed of four objects i.e. associated sensors, service definition, rules definition, and associated actuators.
[image: image2.png]Service

Description

Sensors
Profile

606

Service
Profile

Rules
Definition

Actuators
Profile

Abs

>

Rel
Address

>| Pre-Condition

“>| Post-Condition

Figure 2.2: Service description mechanism diagram
Sensors profile
The sensors profile means the sensors which are registered in the system and are providing the data to the defined service. The sensor profile keeps the basic information about the registered sensors in the system such as Id, name, type, latitude, longitude, absolute (abs) address, and relative (rel) address. The sensors are binded with service along with actuators. Every service is binded to different number of sensors. For example, service A is controlling the temperature of the room A, which will require the temperature sensors in the room to send data to the service. Besides the sensor’s configuration file will be saved at the application server so that all the registered sensors are visible to the application server and can be used during the service configuration and service composition. Figure 2.3 shows the attributes of sensor profile.
[image: image3.png]Sensors
Profile

(Name)

Abs
Address

Latitude

Rel
Address

Longitude

Figure 2.3: Sensor's profile with attributes
Service profile
The service profile refers to the basic information of the service. As shown in the figure 2.1, the service definition part consists of basic information and addresses of the service host. The ID, Name, and Keywords attributes are useful for discovery/findability the service and the IP, Port, and URL can be used for subscription of the service. However the Absolute (Abs) address and Relative (Rel) addresses are the physical or area of the service. These addresses can be used for location/area specific services, which can restrict subscription to the service in a specific geographical area.
Rules definition
The important part of the service description is the service behavior, which is defined through the rules set associated with the service. The rule set defined by the user or some artificial intelligence mechanism is stored in the service profile. The service uses this rule set for decision in the service execution.
Actuators profile
 Associated actuators refer to the actuators which are registered in the system and are associated with the services. When rules are triggers for an event, the system take some action either through the associated actuators or recommend other conclusions as defined in the rules set. Figure 2.4 shows the actuator profile attributes.
[image: image4.png]Actuator
Profile

¢ ID) C Name) Latitude
Type Status

Abs
Address

Longitude

Rel
Address

Figure 2.4: Actuator profile’s attributes
2.2 Service Generation Mechanism

The service generation mechanism is shown as a flow diagram in figure 2.5. The figure shows the dependencies of the proposed system’s units on each other. The sensors profile along with service definition is used to make a rules set for pattern identification and activity recognition. Based on the recognized activity and service rules the actuator control rule set is defined.
[image: image5.png]Configure
Sensor

Sensor Profile

Generate Activities

Classification Rules

Configure
Service

Configure
Actuator

J
Activities
Classification Rule
i Set
Service
Definition
J i
Generate Actions
recommendation
Rule set
Action
Actuator .
§ recommendation
Profile
Rule Set

-

Figure 2.5: Atomic Service Generation Mechanism
Activity Classification

The important part of the service generation mechanism is activity classification. The activity classification is based on the association rules. The rules comprised of pre-condition and post-condition as follow:
If {s1=x1, s2=x2 ………….. s3=x} Then {a=y}

(1)
The rule set is created manually by the administrator of the system using activities rules section of the prototype. The rules are generated based on threshold values of the sensors and class label for activities.
Figure 2.6 shows the flow diagram for both the classification rules generation and consumption mechanism. The figure 2.6.a shows the rules generation mechanism, which is based on sensors, and services. When the user initializes the classification module, the system looks for the registered sensors, and services. If any of dependent module is missing, then the system give message and exit the module. And when all the modules are configured then the system allows the user to configure a new rule. When the user configure a new rule, the system checks the rules set file, if it exists then the new rule is appended otherwise it create a new rule set and save the rule in this rule set. Figure 2.6.b shows the utilization of the activities rule set. When the system is initialized for activity classification, it is presented with a pattern of sensors values. The system checks the pattern in the classifier’s rule set which is stored as an xml file. If the system finds the pattern then it checks the values to match the condition. When the pattern values matches the rule, the system triggers that rule, and assign the class label otherwise a pattern miss message is issued and the pattern is stored in a temporary file. The system keeps track of the miss patterns, if the number of miss patterns increases a certain threshold values, then the system initiates a message to the administrator to assign a class label or discard the patterns. The system administrator then decides whether to discard the patterns or assign a new class label to that pattern.
	[image: image6.png]Sensor Service
Profile Definition
Read All Read All
Sensor Services

Create a
New xml &
store the
rule

Is sensor
& service
found ?

Configure New Rule

Is
Activities
Rule set

Append the Rule to
Rule set

Figure 2.6.a: Activity rules generation flow diagram
	[image: image7.png]Read a Pattern
from sensors

Activities

Classification Rule
set

Parse Xml <

Store
Isrules Temporary file
foun andissue a
pattern? pattern miss
message

Yes

Assign the class
label

. —

Figure 2.6.b: Rules utilization flow diagram

Service Composition Mechanism

The service composition is an important part of this work. The service composition mechanism is to combine the functionality of multiple services which are depended on each other for performing some specific tasks. Service composition can be automatic in which the system selects multiple services to make a composite service for certain task. Besides, service composition can also be static in which the system designer knows the dependencies of the service on each other for making a composite service. For example weather service is composed of multiple service i.e. temperature service, humidity service, air quality service and rain prediction service.
We used a hybrid approach for service composition in our prototype system which is a rules based composition. In the first case, the user selects the services to compose on run time and we make a composite service of the selected services. In the second case, a rule set is used to make composite service based on pre-defined conditions.
Deployment of Service Composition in Internet of Things (IoT) System

The IoT system

Figure 3.1 shows the IoT system architecture for indoor intelligent control. This architecture consists of virtual world and physical world parts. Virtual world part is composed of modules called as application server, Actuator Web provider, Sensor Web provider, sensor middleware and actuator middleware. Actuator middleware and sensor middleware are parts to interoperate with real world device. Sensor middleware is responsible for sensing data and the actuator middleware perform actuator state info collection and sending control command to the actuators. Service Provider’s service offers contents to application server. Application server monitors sensing data which is received in real-time from indoor sensor nodes and judge the indoor environment. Physical World part is the indoor environmental state sensing sensors and indoor environment control appliances.
[image: image8.emf]S

1

A

1

S

2

S

n

A

2

A

n

Sensor Middleware Actuator Middleware

Sensor Web Service Provider

Actuator Web Service Provider

Snsor

Database

App Server

Figure 3.1: Indoor intelligence control IoT system architecture
This distributed processing system is implemented with SOAP and APIs are implemented using Microsoft .NET environment WCF technology.
Deployment of service composition to IoT

The service composition is deployed into IoT system. Basically the IoT system was having a service named smart service which is used to control the actuators of the building with certain parameters or values calculated through fuzzy logic. The main problem with the existing approach is that it is hard coded rules system which cannot be modified by external entity or the clients. All the parameters are configured inside the code by the system administrator. This is a static configuration of rules and actuator control mechanism. The system modification requires domain experts.
We proposed a dynamic service configuration mechanism for IoT smart control system. Our approach allows the users to modify the rules configuration and vary the threshold values for different parameters. Besides, our approach is also adaptive to the environmental changes as we maintain a separate knowledge base in the form of xml files. Our knowledge base (xml rule set) can be modified by an external machine learning algorithm which can adapt the environmental changes and suggest new rules. Furthermore our knowledge base is accessible to all the units of the IoT system which can be utilized as the system requirement. Also our approach does not need any domain knowledge to modify the rule set.
Figure 3.2 shows the architecture is used to deploy the service composition mechanism to the IoT system.
[image: image9.png]App Service
Provider

App Server

Rule Set
(XML)

Figure 3.2: Service composition in IoT system
The rule set is stored at the App server and is available to the smart service of the app server. The smart control has two options to carry out smart control:
· Actuator control using Fuzzy Logic
· Actuator control using xml knowledge base
The fuzzy logic control is already tested in the existing system which has been thoroughly tested in the early studies of this system. As mentioned before, the modification in the fuzzy rules and threshold values needs domain expertise. Therefore we deployed a more sophisticated approach of xml rules set for smart actuator control. This xml rules set based approach gives the user the opportunity to define a user oriented rule set. Every user of the system can define different rules for different context. For example the user of room#1 may need high temperature value in the room which a user of room#2 may require a low temperature in his room. Therefore our approach is more adaptive and user centric than the existing fuzzy logic based approach.
We tested our service composition architectures as shown figure 3.3. The deployment with IoT system is carried out at the application server level. The smart service of the application server is modified for the service composition. The numbers of services are registered under the umbrella of smart service, which are then composed for certain tasks. The composition configuration of service composition module is used by the app server. This xml based configuration can be modified by the service composition module without the intervention of the app server.
[image: image27.png][image: image10.png]Service Composition

Sensor Profile

Services Profile

Actuator Profile

U

XML

U

App Service
Provider

App Server

XML Parser

Rules Set

Smart Service

Figure 3.3: Service Composition deployment in IoT system

Benefits of the Proposed Architecture
· The proposed system is based on user profile based services composition which allow user ease and simplicity.

· The service composition is carried out at the application server level on the IoT system which enables complex task carried out by composite services rather than atomic service.

Annex: Simulation and Results
1. Implementation Setup and Results

1.1. Implementation setup

Table 1 shows the implementation setup of the system. As shown in table 1, the system is implemented in visual studio 2013 with xml and sql server 2008 r2. The processor and RAM is not that much affects the results of the system, however the communication channels affects the results.
Table 1: Implementation configuration
	Division
	Detail

	Operating System
	Microsoft Windows 8(X64)

	Development Environment
	.Net Framework 3.5, 4.0

	Development Tool
	Visual Studio .Net 2013

	Programming Language
	C#, XML

	DBMS
	Microsoft SQL Server 2008 R2

	Hardware
	CPU: Intel® Core™ i5-3570 @ 3.40GHz 3.39GHz
RAM: 8GB

1.2. Implementation results of service composition

We developed a prototype of our proposed service description mechanism. Our prototype consist of modules for sensors configuration, actuator configuration, services configuration, rules set generation for activities classification, rule set for actuator control, and making composite services. The implementation environment we used is visual studio 2013 with xml. Figure A.1 shows the User interface of our prototype. The user interface gives a link to each module of the system.
[image: image11.png]

A.1. User view of the service composition toolbox
Figure A.2 shows the sensor profile module. This module is used to register new sensors, update registered sensors and delete registered sensors. The registered sensors will also be displayed to the user on the user’s demand.
[image: image12.png]2] SensorProfile
D Name. Type. Latitude Longitude Absolute_Addreq
> Temprature_423 | Temprature 100 100 Room No 423
sensord | | sensorName| | o2 Temprature_424 | Temprature 100 100 Room No 424
003 Light_423 llumination 100 100 Room 423
Type v 004 Light_424 lhumingtion 100 105 Room 424

Absolute Address

Relative Address

Add Update Delete Close Show Registered Sensors

A.2. Sensor Profile
Figure A.3 shows the results of the sensor profile. All the information provided in the sensor module is shown in figure 13. The resulted figure shows that there are 3 sensors registered which is shown along with the provided information.

[image: image13.png]k?xml version="1.e" encoding="utf-§"2>
<sensor_profiles
B <sensor>
<I0s001¢/10>
ane>Tenprature_423¢/Nane>
<TypesTemprature/Type>
<Latitudes100¢/Latitude>
<Longitude>100¢/ Longtude>
<absolute._Address>Roon Nlo 423¢/bsolute_Address>
<Relative_Address>guilding 4</Relative_Address>
<ssensor>
5 <sensors
<I0s002¢/10>
ane>Tenprature_426</lane>
<TypesTemprature</Type>
<Latitudes100¢/Latitude>
<Longitude>100¢/ Longtude>
<absolute._Address>Roon o 426</Absolute_Address>
<Relative_Address>guilding 4</Relative_Address>
<ssensor>
5 <sensors
<I0s003¢/10>
smesLight_423</liane>
<TypesTllusination/Type>
<Latitudes100¢/Latitude>
<Longitude>100¢/ Longtude>
<absolute_Address>Roon 423¢/Absolute_Address>
<Relative _Address>guilding 4</Relative Address>
P —

A.3. Sensor profile result
Figure A.4 shows the actuator profile module. This module is used to register new actuators, delete already registered actuators and update the information of registered actuators. The actuator list is shown in the view to the users. When the users want to see the status of the actuators, it can be seen in the view at column 4 of the actuator view.
[image: image14.png]ActuatorProfile

D Name. Type Status Lattude Longtude
Heater_423 Heater o 100 100

002 | Ar Condtioner_423 | A/C o 100 100

003 Tube Light_01.4.. | Light o 100 100

004 Tube Light_02.4.. | Light o 100 100

3 Tube Light_03.4.. | Light o 100 100

ActuatorID Name
e Status
Latiide Longitude
Absolute Address
Relative Address

Add Delete

Show Actustors

A.4. Actuator Profile
Figure A.5 shows the result of actuator profile module. This file is resulted after the user configures actuators in the system. This file is later used by the actuator control module.
[image: image15.png]<?xml version="1.8"
<Actuator_Profile>
<Actuator>
<ID>601</10>
<liame>Heater_423</Name>
<Type>Heater</Type>
<Status>0ff</status>
<Latitude>100</Latitude>
<Longitude>168</Longitude>
<absolute_Address>Room 423</absolute_Address>
<Relative_Address>Building 4</Relative_Address>
</actuator>’
<Actuator>
<ID>602</10>
<Mame>Air Conditioner_423</Name>
<Type>a/C</Type>
<Status>0ff</status>
<Latitude>100</Latitude>
<Longitude>168</Longitude>
<absolute_Address>Room 423</absolute_Address>
<Relative_Address>Building 4</Relative_Address>
</actuator>’
<Actuator>
<ID>683</10>
<Mame>Tube Light_61_423</Name>
<TypesLight</Type>
<Status>0ff</status>
<Latitude>100</Latitude>
<Longitude>168</Longitude>
<absolute_Address>Room 423</absolute_Address>
<Relative_Address>Building 4</Relative_Address>
</actuator>’
<Actuator>
<ID>604</10>
<Mame>Tube Light_62_423</Name>
<TypesLight</Type>
<Status>0ff</status>
<Latitude>100</Latitude>
<Longitude>168</Longitude>
<absolute_Address>Room 423</absolute_Address>
<Relative_Address>Building 4</Relative_Address>
</Actuator>

eencoding="utf-8":

A.5. Actuator profile result
Figure A.6 shows the service definition module. This module is used to register new service, modify existing services and also delete existing services. The module also provides a view of the existing services. The user needs to give all information which is mandatory for service configuration.
[image: image16.png]ServiceDescription - o EN

Basic Information O L k. o
> Wam ot tempratue, .| tps://wwwloca...| 111111111111 |100
Seviced| | o2 co cod. tempratue, .. | tps://wwwloca...| T111TLIT11T | 101
o0 Moderate weather,mid, | tips//wwwloca...| 111111111 | 102
Service Name Keywords | 004 light_Bright light, e luminati..| Http://locahhost .. | 111.1.1.1 1005
Location
URLAddress | 1P Address|

Pon [e[|

Absolute Address

Relative Address

New Service Update Delete Close ‘Show Configured Services

A.6. Service Definition
Figure A.7 shows the result of service definition module. It is evident from the resulted figure that there are 4 services registered in the system. When the user will make rules set for activity classification and actuator control, this resulted xml will be utilized.
[image: image17.png]<?xml version="1.8" encoding:
Ei<services_Profiles
B <service>
<ID>601</10>
<Mame>biarm< /Name>
<Keywords>hot, temprature, warm</Keywords>
<URL>https://wam. localhost . con/warm</URL>
<IP>111.111.111.111</1P>,
<Port>168</Port>
<Type>USDL</Type>
<absolute_Address>Jeju National University</absolute_Address>
<Relative_Address>Jeju-Do</Relative_Address>
</service>
B <service>
<ID>602</10>
<Mame>Cold</Mame>
<Keywords>cold, temprature, winter, freezing, snow</Keywords>
<URL>https://wa. localhost . con/Cold</URL>
<IP>111.111.111.111</1P>,
<Port>101</Port>
<Type>USDL</Type>
<absolute_Address>Jeju National University</absolute_Address>
<Relative_Address>Jeju-Do</Relative_Address>
</service>
B <service>
<ID>683</10>
<Mame>tioderate</ame>
<Keywords>weather, mild, </Keywords>
<URL>https://wm. localhost . con/Moderate</URL>.
<IP>111.111.111.111</1P>,
<Port>162¢/Port>
<Type>USDL</Type>
<absolute_Address>Jeju National University</absolute_Address>
<Relative_Address>Jeju-Do</Relative_Address>
</service>
B <service>
<ID>604</10>
<Mame>1ight_Bright</Name>
<Keywords>1ight, lux, illumination</Keywords>
<URL>http://localhost/light</URL>
<IP111.1.1.1</1P>
<Port>1085¢/Port>
<Type>USDL</Type>
<absolute_Address>423</absolute_Address>
<Relative_Address>423</Relative_Address>
</service>
</services_Profile>

A.7. Service definition result
Figure A.8 shows the rules configuration module for activity classification. All the rules are linked with services as these rules are part of the service behaviour. Therefore the registered services must be loaded to the system and one service must be selected for rules definition. Besides, all the rules are based on some pre-condition values of the sensors; therefore the registered sensors are also loaded to the system. After loading and selecting a sensor along with the conditional operator, the threshold value must be defined for sensors to define a rule. The users have the option extend the rules precondition to the nested level 4. The contextual information like time and location for the rules is also part of the rule. Furthermore rules set can also be viewed in the rules configuration module.
[image: image18.png]SensorID ‘SensorName Condition Threshold
Null v Null Null Null
Null v Null Null Null
Null v Null Null Null
Tme [12/21/2013][53520PM @ | Location v

Rules for Activities Classification

‘Condtion Operstor! ‘Condition2
003 Light 423 =.. | AND 001 Temprature... | Null
002 Temprature... | AND 002 Temprature... | Nl

Load Sensors Add

Show Activiies

A.8. Rules for activities classification module
The figure A.9 shows the resulted file of the activity classification rule. The figure shows that there are two rules configured in the system. The rule is a combination of conditions and operators along with contextual information (location, time) and a resulted class label.

[image: image19.png]<¥xml versior

" encoding="utf-8"2>

E<activities>

El

E

<Rules>
<serviceswarm</service>

<Condition1>63 Light 423 ==126</Conditionl>
<Operatorl>AND</Operatorl>

<Condition2>681 Temprature 423 &1t; 5</Condition2>
<Operator2>hull</Operator2>’

<Condition3>Null Null Null Null</Condition3>
<Operator3>hull</Operator3>

<Conditiond>Null Null Null Null</Conditiond>
<Tine>12/17/2613 2:00:13 A</Time>
<Location>Bedroom</Location>
<activity>Sleeping</Activity>

</Rules>

<Rules>

<servicesCold</service>

<Condition1>662 Temprature 423 &1t; 16</Conditionl>
<Operatorl>AND</Operatorl>

<Condition2>662 Temprature 423 > @</Condition2>
<Operator2>hull</Operator2>’

<Condition3>Null Null Null Null</Condition3>
<Operator3>hull</Operator3>

<Conditiond>Null Null Null Null</Conditiond>
<Activity>Relaxing</Activity>

<Tine>12/18/2613 1:49:54 P</Time>
<Location>Bedroom</Location>

</Rules>

</Activities>

A.9. Activities classification results
Figure A.10 shows the actuator control rules configuration module. This module consist of services, and rule set based on activity and actuator control based on activities. The user can configure rules for actuator control based on user selected activities. These activities will be taken from the registered activities in the configured rule set for activities.
[image: image20.png]ActuatorControl

Load Actives

Load Actuators

Add Rule

A.10. Rules Configuration for actuator control
[image: image21.png]<Pxml version="1.0" encoding="utf-8"2>
E<ActuatorControl>
B <Rules>
<Servicermarmc/Service>
<ActivitysRelaxing/Activity>
<Actuator>003</Actuator>
<Actions0FF</Action>
<Rules>
B <Rules>
<ServicexColde/service>
<ActivityRelaxinge/Activity>
<Actuator>0e1</Actuator>
<ActionsON</Action>
<Rules>
</ActuatorControl>

A.11. Actuator control rule set result
Figure A.11 shows the configuration file for actuator profile and actuator control. This information is provided from the user interface of actuator rule and actuator profile modules.
Figure A.12 shows the service composition module user interface. This user interface allow user to select the number of service used to make composite service. Based on the number of selected services, we allowed the user to select the services which are already registered in the system for making a composite service. When the user select the service for composite service, we collect the basic information about the service like, id, name, address and the associated sensors and associated actuators along with activities rules and actuator control rule set.
[image: image22.png]Numberof Service you wart to compose 2

A.12. Service Composition User Interface
Figure A.13 shows the resulted xml file for service composition. It is evident from the figure that two services are composed for service providing in a room. The 1st service is to control the temperature in the room and the 2nd service is to control the light in the room. So let’s suppose a user is sleeping in the room and temperature is within a certain threshold, then adjust temperature actuators i.e. heater, air conditioner, and fan. Also, if the user is sleeping then the light actuators control the light in the room.
[image: image23.png]<2xml version="1.0" encoding="UTF-8"?>
- <CompositeService_Warm_light_Bright>
- <ServiceWarm>
- <Service_Basic_Info>
<ID>001</ID>
<Name>Warm</Name>
</Service_Basic_Info>
- <Activities_Rules>
<Rule_1>1F 003 Light_423 ==120 AND 001 Temprature_423 < 5 AND
12/17/2013 2:00:13 AM AND Bedroom THEN ACTIVITY = Sleeping
</Rule_1>
</Activities_Rules>
- <Actuator_Rules>
<Rule_1>TF ACTIVITY = Relaxing THEN 003 = OFF</Rule_1>
</Actuator_Rules>
</ServiceWarm>
- <Servicewarm>
- <Service_Basic_Info>
<ID>004</ID>
<Name>light_Bright</Name>
</Service_Basic_Info>
<Activities_Rules/>
<Actuator_Rules/>
</ServiceWarm>
</Compositeservice_Warm_light_Bright>

A.13. Resulted xml of service composition for two services
1.3. Implementation Results of Deployment in IoT

The service composition is deployed in the IoT system with the architecture shown in figure A.14. The application server accesses the rules generation mechanism of our service composition module. As shown in figure A.14, the rules generation module initiated by the app server, communicates the app server for registered sensors and actuators. The app server requests the registered sensors and actuators from the SensorWeb and ActuatorWeb providers respectively. The rules generation module then specifies the threshold values for sensors and respective action of actuators to build a rule. These rules are then utilized by the smart service in the app server for controlling the actuators dynamically. The rules can be updated and can also be deleted by the rules configuration module. These rules are used by the smart service in the app server. When the smart service gets started, listen to the listed sensors. When the data is received from the sensors; the smart service calls upon the rules module to find the rule which meets the sensors readings. The rules module parse the xml rule base and look for the rule which meets the sensor reading. When the module finds the rule which meets the sensor reading, it looks for the associated actuator and action within the rule body. The rules module returns the actuator along with associated actions from the rule. The communication module of the smart service; reads the actuators status from the local history about the actuator. If the actuator status is different than the suggested actuator’s status then the communication module communicates the new status to the actuators middleware where the middleware change the set the new status of the actuator.
[image: image24.png]SensorWeb

o

Smart Service

Read
Sensors

XML
Parsing

Read
Actuators

Extract
Rules

Send Message
to Actuator

Tl verston=-Y.67 encoding- T o
“Rudess
Rule>
SensorIo15000008</Senzor 1ot

A.14. Service composition toolbox in IoT app server
The rules configuration module is shown in figure A.15. The user will load the registered sensors and registered actuators to configure new rules. When the sensors and actuators are loaded to the sensor and actuator controls, the user will be able to configure a new rule. When the user configures a new rule, a message will be displayed to the user about the confirmation of rule configuration.
[image: image25.png]] Rules for Actuator Control
Actuator Control Rules Configuration
SensorlD1 Sensoramel _Coperstorl _Threshold]_Loperstor _SensorlD2__Sensorliame? _Copertor2
> Sensoril|> 10) SD00001[Sensori01 |«
SDO0002 [Sensori2 > 2 A SD0002[Sensori02__|<
SensorID ‘SensorName Condition Threshold *
IF v v
tocaion [Y]
THEN | v v
Load Sensors || Load Actustors Add Rude Cose

A.15. Rules configuration for smart control
The actuator emulator shown in figure A.16 is the fan emulator. This actuator is given the id DS00001 which is controlled by our smart control system. The actuator is dependent on the temperature of the room, if the temperature of the room exceeds certain threshold, then our smart control turn on the fan based on the defined rules in the system as shown in figure 25.
[image: image26.png]J £ sensorweb based < x \ € IPv6 based building x \ [IEEE Xplore Downlo X V') wwwipso-aliance. x \ [IEEE Xplore Downlo X \ [35 IEEE Xplore Downlo: X ¥ [') https://waw.iab.or X \|

IPSO - Google Searc x V[IPSO Aliance | Enal: x [White Papers |IPSO X ¥ [wwwipso-aliance.c X

> C

htps://www.iab.org/wp-content/IAB-uploads/2011/03/Hummen.pdf

‘ £ Amobile phone bas...pdf |~

A Security Protocol Adaptation Layer for the
IP-based Internet of Things

René Hummen, Tobias Heer, and Klaus Wehrle
Communication and Distributed Systems
RWTH Aachen University
German

Device ID:

Wind Level State:
Wind Level Control:

Power State:

Detween the IoT domain and the Internet by means of a security protocol adaptation layer.

2 Secure Interconnection between the IoT and Internet domains

‘The fundamental differences between the IoT domain and the Internet domain can be classified by the
‘st and network capabilities as well as the respective network topology. Each dimension thereby shows
challenges for standard IP security protocols to perform in the ToT domain:

1. Device capabilities: Tnternet hosts and IoT devices differ strongly regarding their available hard-
ware resources. While Internet hosts are typically equipped with CPUs in the GHz range and
several GBs of memory, embedded devices in the IoT domain are limited to CPUs in the MHz
range and several KBs of memory. Recent IP security protocols cater for these differences of
host capabilities by means of cryptographic agility concepts allowing for various ciphers for peer
authentication. However, as the capabilities of a single Internet host compare to the capabilities
of multiple ToT hosts, Internet hosts can mount attacks against IoT devices that are similarly
effective to today’s distributed Denial of Service attacks. DoS protection mechanisms built into

B Asecuriy protocola.pdf |~

) 1PSO white paper- wepdf

B SNAIL- an p based opdf |~

Clipboard

[8019 | aambcene aasbcene [AaBbC: AaB aaBbCcDe

[& 2 || vomat oo [nessing | resamaz e subite sustee.

AaBbCCDC

Emphasis

Intense ..

AaBbCDC
Strong

AaBbCCDC
Quote

Intense Q...

Paragraph Styles

"= =

5 = Pl IED

=RVl

1011 AM
17772014

RIS

Control Message Routing in IoT system for indoor environment control

Message Format
The section describes the message format of the control message in the 10T system for Indoor
environment control. The message consists of 4 fields. The first field is specified as the message code
which is two characters wide. The description of each message code is presented in table 1. The next
field in the message format is the Message type. Message type is a string value describing the type of
activity intended by the message. Device ID field indicates the identifier of the device for which the
message is intended and command field contains the actual control command for the thing ie. (Power
on/off etc.). The details of message types and commands are left out intentionally to avoid extra details.

Device ID Command

Message Code

Message Type

Table 1 below describes the codes for messages exchanged in the control message routing
implementation. The ‘00’ code indicates that itis a connection related message so it should be handled
by the device registration module to establish or terminate a connection. ‘01" indicates a message
intended to update the mapping table. These messages are exchanged to let the provider layer be
aware of the things being connected or disconnected at the middleware layer of the system. ‘10’
indicates a control message which can either be a requestto execute acommand on some device (thing)
ora response after the execution of the command by the device. ‘11 indicates a message regarding the
state of the device.

Message Code Description
00 Connection message

o1 Mapping table management message
10 Control message

1 Multi-step state message

Given below are some example messages from the implementation of the message routingin the 1o for
indoor environment control. The first example shows a connection message indicated by the code field.
The message type field indicates that the message is intended for the establishment of connection and

A.16. Resulted actuator simulator
Rule Set

© 2014 oneM2M Partners
 Page 1 (of 18)

_1476518456

_1476518457

