MAS-2018-0096R01-TriggeringInitiating_Continuous_Reasoning_Process
[bookmark: page2]

	Input Contribution

	Meeting ID*
	MAS 36

	Title:*
	Procedure for triggeringinitiating a continuous semantic reasoning process

	Source:*
	Xu Li, Convida, li.xu@convidawireless.com
Chonggang Wang, Convida, wang.chonggang@convidawireless.com

	Date:*
	2018-07-06

	Input related to*
	TR-0033-Study on Enhanced Semantic Enablement

	Intended purpose of
document:*
	|X| Decision
|_| Discussion
|_| Information
|_| Other <specify>

	Impacted other TS/TR(s)
	n/a

	Decision requested or recommendation:*
	The content is to be included in clause 8.7.4 of TR-0033

	Template Version: January 2017 (Do not modify)

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

[bookmark: _Toc338862360]
Introduction
On TP 35, MAS-2018-0054R01 focused on how to enable oneM2M users to directly interact with the Semantic Reasoning Function (SRF) in order to trigger an “individual” semantic reasoning process (i.e., one-time reasoning process).
As a step further, this contribution focuses on how to trigger a “continuous” semantic reasoning process, which is also needed for supporting many applications in reality. An example about heart attack risk monitoring is also presented, which illustrates how to use the procedure as proposed in this contribution for triggeringinitiating a continuous reasoning process.
R01:
1. As suggested, replace the word “triggering” with “initiating”.
2. Re-draw the step 9 in Figure 8.7.4.4-1 to make it consistent with the text.

[bookmark: _Toc504071094]-----------------------Start of change 1---
[bookmark: _Toc504071095]
8.7.4	Initiating A Continuous Semantic Reasoning Process
This clause introduces the detailed descriptions on how to enable a continuous semantic reasoning process.

8.7.4.4	Procedure for initiating a continuous semantic reasoning process
In certain scenarios, a RI may need to initiate a “continuous” reasoning process over the interested inputFS and RS. The reason is that sometimes the inputFS and RS may get changed/updated over time, and accordingly the previously- inferred facts may not be valid anymore and a new reasoning operation shall be executed over the latest inputFS and RS to generate up-to-date inferred knowledge. Figure 8.7.4.4-1 illustrates the procedure for initiating a continuous semantic reasoning process. For easy illustration, in Figure 8.7.4.4-1, the logical roles as defined in clause 8.7.4.1 are taken by different entities. The following steps are performed:

[bookmark: _GoBack]

Figure 8.7.4.4-1: Procedure for Initiating a Continuous Semantic Reasoning Process
Pre-condition: Through resource discovery, RI-1 has identified an interested FS-1 on FH-1 (this FS is denoted as “initial inputFS”) and RS-1 on RH-1 (this RS is denoted as “initial RS”).
Step 1: RI-1 intends to use FS-1 and RS-1 as inputs to trigger a “continuous” reasoning process at SR-1 for discovering new knowledge.
Step 2: RI-1 sends a semantic reasoning request to SR-1, along with the information about FS-1 and RS-1 (e.g. their URIs). In the meantime, RI-1 also indicates that it would like to initiate a continuous reasoning process, instead of a one-time reasoning process (as introduced in clause 8.7.4.2).
Step 3: Based on the information sent from RI-1, SR-1 retrieves FS-1 from FH-1 and RS-1 from RH-1, respectively. In the meantime, SR-1 also makes subscriptions on FS-1 and RS-1 in order to receive notifications about their future changes.
Step 4: In addition to the inputs provided by RI-1, optionally SR-1 may also decide whether additional FS and/or RS can be used. For example, the reasoning request sent from RI-1 can indicate that whether SR-1 could incorporate additional FS/RS if needed.
Step 5: SR-1 retrieves an additional FS (i.e., FS-2) from FH-2 and an additional RS (i.e., RS-2) from RH-2. Similarly, SR-1 also makes subscriptions on FS-2 and RS-2 in order to receive notifications about their future changes.

Step 6: SR-1 creates a reasoning job (denoted as RJ-1), which includes all the involved inputFS and RS. Then, RJ-1 will be executed and yield the reasoning result for the first time. After that, as long as any of inputFS and RS is changed, SR-1 will initiate a new reasoning process for RJ-1 in order to generate the new reasoning result (i.e., the new inferred facts) based on the latest inputFS and RS.
Step 7: SR-1 sends the reasoning result back to RI-1. As an alternative solution, a new reasoning process for RJ-1 may also be initiated by RI-1 itself. In this alternative, SR-1 is not necessarily to make subscriptions on the involved inputFS and RS. Instead, RI-1 may proactively send initiating requests to SR-1, which includes the job ID of RJ-1. Accordingly, every time SR-1 receives such a request from RI-1, SR-1 shall check the involved inputFS and RS of RJ-1 to see if there is an update (if so, a new reasoning process will be triggered.).
Any future changes on inputFS and RS will trigger a new reasoning process of RJ-1 (Steps 8-10 is an example)
Step 8: FH-1 sends a notification about a change on FS-1.
Step 9: SR-1 retrieves the latest FS-1 and executes a new reasoning process for RJ-1 to generate new reasoning result.
Step 10: SR-1 sends back the new reasoning result to RI-1.
The semantic reasoning processes of RJ-1 will continue as long as RJ-1 is a valid semantic reasoning job.

8.7.4.5	Examples usage of procedure for initiating a continuous semantic reasoning process
In this clause, a real example shows how the procedure introduced in clause 8.7.4.4 can be used. In particular, a heart attack risk monitoring example as illustrated in clause 8.7.3 is a nice application scenario where the proposed procedure for initiating a continuous semantic reasoning process can be applied.
In this example, the heart attack risk monitoring application (as an oneM2M AE) can ask SRF to perform semantic reasoning process over the real-time vital data (such as blood pressure, breathing rate, heartbeat, etc.) collected from a specific patient A. In particular, the vital data of patient A will be the input FS while the RS to be used is a specific heart-attack diagnosis/prediction reasoning rule. Note that, such a reasoning rule can be highly customized based on patient A’s own health profile and his/her past heart-attack history. Since the vital data of patient A may change from time to time (due to the different daily activities such as walking, sleeping, etc.), the reasoning processes needs to be conducted constantly based on the latest vital data of patient A, in order to evaluate patient A’s current heart-attack risk (which is the reasoning result).
It is assumed that the heart attack risk monitoring application (as RI-1) has identified two medical devices associated with patient A, i.e. a blood pressure monitor (represented by <BloodPressureMonitor-1>, which is a <AE> type of resource) and a breathing rate monitor (represented by <BreathingMonitor-1> resource). The real-time readings of those two devices are stored in two oneM2M <container> resources respectively, and each of them have a <semanticDescriptor> child resources as their semantic annotations. In particular, in each of those <semanticDescriptor> child resources, there is one RDF triple (as a fact) that describes the latest reading of those two devices (and every time a new reading is received, this corresponding RDF triples will also be updated accordingly to reflect the latest reading):
· RDF Triple #1 (as Fact-1): BloodPressureMonitor-1 hasLastestReading “Systolic: 130 Diastolic: 85”
· RDF Triple #2 (as Fact-2): BreathingMonitor-1 hasLastestReading “Breath rate/min: 16”

In the meantime, the heart attack risk monitoring application has also identified a customized semantic reasoning Rule-1, which is specifically designed for evaluating whether patient A currently has a high risk for a heart attack:
· Rule-1: IF Systolic > 154 and Diastolic > 94 AND BreathingRate > 22, THEN “Patent-A is-in high-risk-for heart-attack ”

The Rule-1 basically describes a domain knowledge that is specifically holds for patient A, i.e., if patient A’s systolic reading is larger than 154, the diastolic reading is larger than 94, and the breathing rate is larger than 22 per minute, then it is inferred that patient A now has a high risk for heart attack.

The procedure proposed in Figure 8.7.4.4-1 will have the following actions for this application (the steps shown below are as same as the steps shown in Figure 8.7.4.4-1):
Pre-condition: Through resource discovery, RI-1 (i.e., the heart attack risk monitoring application) has identified an interested FS-1 (which includes two facts/triples that respectively describe the latest readings of a blood pressure monitor and a breathing monitor associated with patient A) and RS-1 (which is a reasoning rule that can evaluate whether patient A currently has a high risk for heart-attack based on his/her blood pressure and breathing rate).
Step 1: The heart attack risk monitoring application intends to use FS-1 (including Fact-1 and Fact-2) and RS-1 (including Rule-1) as inputs to trigger a continuous reasoning process at SR-1 in order to consistently evaluate the heart attack risk of patient A (In other words, this application can provide 7×24 remote heart attack monitoring service for patient A).
Step 2: RI-1 sends a reasoning request to SR-1, along with the information about the storing locations of Fact-1, Fact-2, and Rule-1.
Step 3: Based on the information sent from RI-1, SR-1 retrieves Fact-1, Fact-2, and Rule-1. In the meantime, SR-1 also make subscriptions on them. For example, a <subscription> child resource will be created respectively for each of the two <container> resources that store the readings of those two medical devices.
In this example, no additional FS and RS is needed, so Steps 4 and 5 are omitted.

Step 6: SR-1 creates a reasoning job (denoted as RJ-1), which corresponds to the specific 7×24 remote heart attack monitoring service for patient A. Then, RJ-1 will be executed and based on the current information described in Fact-1 and Fact-2. It is inferred that patient A now is not in a high risk for heart attack using Rule-1.
Step 7: SR-1 sends the reasoning result back to heart attack risk monitoring application. Since patient A now is not in a high risk for heart attack, no further action will be triggered.
Any future changes on patient A’s vital data will trigger a new reasoning process of RJ-1 (Steps 8-10 is an example)
Step 8: SR-1 receives notifications about the changes on Fact-1 and Fact-2, e.g., a new blood pressure or a new breathing rate reading just becomes available.
Step 9: SR-1 retrieves the new reading(s) and executes a new reasoning process for RJ-1 in order to re-evaluate the heart attack risk of patient-A.
Step 10: SR-1 sends back the new reasoning result to the heart attack risk monitoring application. For example, if this time the reasoning result is that patient A is now in a high risk for heart attack, the heart attack risk monitoring application will automatically send an alarm to the family doctor of patient A or call 911 for an ambulance if needed.

-----------------------End of change 1---

image1.emf
Rule Host-2

(RH-2)

Rule Host-2

(RH-2)

Fact Host-2

(FH-2)

Fact Host-2

(FH-2)

Step 2: RI-1 sends a reasoning

request to SR-1, along with the

information about FS-1 and RS-1.

Step 7: SR-1 sends back the

reasoning result to RI-1, along with

the job ID of RJ-1.

Reasoning Initiator -1

(RI-1)

Reasoning Initiator -1

(RI-1)

Semantic Reasoner -1

(SR-1)

Semantic Reasoner -1

(SR-1)

Fact Host-1

(FH-1)

Fact Host-1

(FH-1)

Rule Host-1

(RH-1)

Rule Host-1

(RH-1)

Step 1: RI-1 intends to use FS-1 and RS-1

as inputs to Initiate a ͞continuous͟�

reasoning process at SR-1.

Step 4: SR-1 may also decide whether

additional FS and/or RS can be utilized.

Step 5: SR-1 retrieves an additional FS-2 from FH-2 and/or an additional RS-2 from RH-2. Similarly, SR-1 also makes

subscriptions on each of them.

Step 6: SR-1 creates a reasoning job (denoted as RJ-1),

which includes all the involved inputFS and RS. Then,

RJ-1 will be executed and yield the reasoning result.

Pre-condition: RI-1 has identified FS-1 on FH-1 and RS-1 on RH-1 through oneM2M resource discovery.

Step 3: SR-1 not only retrieves FS-1 from FH-1 and RS-1 from RH-1 respectively, but also makes subscriptions on each of them.

Step 10: SR-1 sends back the new

reasoning result to RI-1.

Step 8: FH-1 sends a notification

about the changes on FS-1.

Step 9: SR-1 retrieves the latest FS-1 and executes a new

reasoning process for RJ-1 to generate new reasoning result.

The semantic reasoning processes of RJ-1 will continue as long as RJ-1 is a valid semantic reasoning job.

Any changes on inputFS and RS will trigger a new reasoning process of RJ-1

(Steps 8-10 is an example)

Microsoft_Visio_Drawing.vsdx

Rule Host-2
(RH-2)

Fact Host-2
(FH-2)
Step 2: RI-1 sends a reasoning request to SR-1, along with the information about FS-1 and RS-1.
Step 7: SR-1 sends back the reasoning result to RI-1, along with the job ID of RJ-1.

Reasoning Initiator -1
(RI-1)

Semantic Reasoner -1
(SR-1)

Fact Host-1
(FH-1)

Rule Host-1
(RH-1)
Step 1: RI-1 intends to use FS-1 and RS-1 as inputs to Initiate a “continuous” reasoning process at SR-1.
Step 4: SR-1 may also decide whether additional FS and/or RS can be utilized.
Step 5: SR-1 retrieves an additional FS-2 from FH-2 and/or an additional RS-2 from RH-2. Similarly, SR-1 also makes subscriptions on each of them.
Step 6: SR-1 creates a reasoning job (denoted as RJ-1), which includes all the involved inputFS and RS. Then, RJ-1 will be executed and yield the reasoning result.
Pre-condition: RI-1 has identified FS-1 on FH-1 and RS-1 on RH-1 through oneM2M resource discovery.
Step 3: SR-1 not only retrieves FS-1 from FH-1 and RS-1 from RH-1 respectively, but also makes subscriptions on each of them.

Step 10: SR-1 sends back the new reasoning result to RI-1.
Step 8: FH-1 sends a notification about the changes on FS-1.
Step 9: SR-1 retrieves the latest FS-1 and executes a new reasoning process for RJ-1 to generate new reasoning result.
The semantic reasoning processes of RJ-1 will continue as long as RJ-1 is a valid semantic reasoning job.
Any changes on inputFS and RS will trigger a new reasoning process of RJ-1 (Steps 8-10 is an example)

