	Doc# oneM2M-PRO-2013-0023-MQTT_Analysis.doc
Input Contribution
	[image: image2.png]






	INPUT CONTRIBUTION

	Group Name:*
	PRO WG3

	Title:*
	Analysis of MQTT

	Source:*
	Cisco System Inc.

	Contact:
	phjacobs@cisco.com

	Date:*
	2013-07-26

	Abstract:*
	This contribution provides and overview of, and an analysis of, MQTT

	Agenda Item:*
	tbd

	Work item(s):
	WI0008

	Document(s) 
Impacted*
	M2M Protocol Analysis Technical Report


	Intended purpose of
document:*
	 Decision
 FORMCHECKBOX 
 Discussion
 Information
 Other <specify>

	Decision requested or recommendation:*
	Incorporate in the M2M Protocol Analysis Technical Report


oneM2M IPR STATEMENT
Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by all provisions of IPR policy of the admitting Partner Type 1 and permission that all communications and statements, oral or written, or other information disclosed or presented, and any translation or derivative thereof, may without compensation, and to the extent such participant or attendee may legally and freely grant such copyright rights, be distributed, published, and posted on oneM2M’s web site, in whole or in part, on a non-exclusive basis by oneM2M or oneM2M Partners Type 1 or their licensees or assignees, or as oneM2M SC directs.
Background

Message Queue Telemetry Transport (MQTT) is an open message protocol for M2M communications that enables the transfer of data in the form of messages from devices, along high latency or constrained networks, to a server. Based on the MQTT v3.1 specifications an OASIS standardization process was started in March 2013, driven by IBM, to make MQTT an open, simple and lightweight standard protocol for M2M telemetry data communication. MQTT is deployed in the Energy Industry Segment (petroleum pipeline), and the Healthcare Industry Segment (remote monitoring), among other places.
Proposal - Add the following clause 7.x.
--------------------------------starts here--------------------------
7.x   Message Queue Telemetry Transport (MQTT)
7.x.1 Background
MQTT was invented by IBM, and Arcom (now Eurotech), in 1999. It was designed for low-bandwidth, high latency networks. As a result, the designers made a number of key choices which influenced the way it “looks and feels”. 

1. Simplicity, simplicity, simplicity! Don't add too many “bells and whistles” but provide a solid building block which can easily be integrated into other solutions. Be simple to implement.

2. Publish/subscribe messaging. Useful for most sensor applications, and enables devices to come online and publish “stuff” that hasn't been previously known about or predefined.

3. Zero administration (or as close as possible). Behave sensibly in response to unexpected actions and enable applications to “just work” e.g. dynamically create topics when needed.

4. Minimise the on-the-wire footprint. Add an absolute minimum of data overhead to any message. Be lightweight and bandwidth efficient.

5. Expect and cater for frequent network disruption (for low bandwidth, high latency, unreliable, high cost-to-run networks)… → Last Will and Testament

6. Continuous session awareness → Last Will and Testament

7. Expect that client applications may have very limited processing resources available. 

8. Provide traditional messaging qualities of service where the environment allows. Provide “quality of service” 

9. Data agnostic. Don't mandate content formats, remain flexible.
MQTT v3.1 was published by IBM in Aug 2010 under a royalty free license. Further pre-OASIS information is available at mqtt.org/
7.x.2 Status

Based on the pre-standard MQTT v3.1 specifications [i.1] there is an OASIS standardization process which started in March 2013 to make MQTT an open, simple and lightweight standard protocol for M2M telemetry data communication. The target for completion is March 2014.
The OASIS MQTT TC is producing a standard for the Message Queuing Telemetry Transport Protocol compatible with MQTT V3.1, together with requirements for enhancements, documented usage examples, best practices, and guidance for use of MQTT topics with commonly available registry and discovery mechanisms. It operates under the Non-Assertion Mode of the OASIS IPR Policy. Changes to the input document, other than editorial changes and other points of clarification, will be limited to the Connect command, and should be backward compatible with implementations of previous versions of the specification such that a client coded to speak an older version of the protocol will be able to connect to, and successfully use, a server that implements a newer version of the protocol. Candidates for enhancements include message priority and expiry, message payload typing, request/reply, and subscription expiry.
The Eclipse foundation through their M2M working group, is providing open source MQTT client code via their Paho Project. 
7.x.3 Category and Architectural Style
MQTT is an M2M/Internet of Things (IoT) connectivity protocol. It is connection session reliant. It supports 14 command messages; the message format includes a fixed and variable header plus the payload. The grouped commands are:
· Client requests a connection to a server, Acknowledge connection request & Disconnect notification
· Publish message & Publish acknowledgment

· Assured publish received (part 1), Assured publish release (part 2) & Assured publish complete (part 3)

· Subscribe to named topics & Subscription acknowledgement

· Unsubscribe from named topics & Unsubscribe acknowledgment

· Ping request & Ping response
7.x.4 Intended use

MQTT is designed to support messaging transport from remote locations/devices involving small code footprints (e.g., 8-bit, 256KB ram controllers), low power, low bandwidth, high-cost connections, high latency, variable availability, and negotiated delivery guarantees. For example, MQTT is being used in sensors communicating to a server / broker via satellite links, SCADA, over occasional dial-up connections with healthcare providers (medical devices), and in a range of home automation and small device scenarios. MQTT is also a fit for mobile applications because of its small size, minimized data packets, and efficient distribution of information to one or many receivers (subscribers).
7.x.5 Deployment Trend

MQTT is estimated to be running on 250k devices. It is deployed in the Healthcare Industry Segment  (hospitals use the protocol to communicate with pacemakers and other medical devices) and in the Energy Industry Segment (oil and gas companies use MQTT to monitor thousands of miles of oil pipelines). It is also used in Facebook’s Messenger application.
It is not deployed in the largest message queue based telemetry projects. 
7.x.6 Key features
The key features of MQTT are: 
· Publish/Subscribe - to provide one-to-many message distribution and decoupling of applications
· Topics/Subscriptions – to categorise messages into channels for delivery to subscribers
· Quality of Service – to provide different assurances of message delivery

· Retained messages – to provide past published messages to new subscribers

· Clean session / Durable connections – to choose whether a client’s state is to be stored between connection sessions
· Wills – to send messages after a client disconnects unexpectedly

7.x.6.1 Publish/Subscribe

The MQTT protocol is based on the principle of publishing messages and subscribing to topics, or "pub/sub". Multiple clients connect to a server / broker and subscribe to topics that they are interested in. Clients also connect to the broker and publish messages to topics. Many clients may subscribe to the same topics. The server / broker and MQTT act as a simple, common interface for clients to connect to. A publisher may publish a message once and be received by multiple subscribers.
[image: image2.png][image: image3.png]Publisher




7.x.6.2 Topics/Subscriptions

Messages in MQTT are published on topics. Topics are structured into topic trees, which are treated as hierarchies, using a forward slash (/) as a separator. This allows arrangement of common themes to be created. Topic trees and topics are created by using publish messages.
A subscription may contain special characters, which allow clients to subscribe to multiple topics at once, within a single level or within multiple levels in a topic tree.
7.x.6.3 Quality of Service

MQTT defines three levels of Quality of Service (QoS). The QoS defines how hard the broker & client will try to ensure that a message is received. Messages may be sent at any QoS level, and clients may attempt to subscribe to topics at any QoS level. This means that the client chooses the maximum QoS it will receive. For example, if a message is published at QoS 2 and a client is subscribed with QoS 0, the message will be delivered to that client with QoS 0. If a second client is also subscribed to the same topic, but with QoS 2, then it will receive the same message but with QoS 2. For a second example, if a client is subscribed with QoS 2 and a message is published on QoS 0, the client will receive it on QoS 0.
Higher levels of QoS are more reliable, but involve higher latency and have higher bandwidth requirements.

0. The server / broker & client will deliver the message once, according to the best efforts of the underlying TCP/IP network, with no confirmation. The message arrives at the server either once or not at all.
1. The server / broker & client will deliver the message at least once, with confirmation required. If there is an identified failure of either the communications link or the sending device, or the acknowledgement message is not received after a specified period of time, the sender resends the message
2. The server / broker & client will deliver the message exactly once by using additional protocol flows.
7.x.6.4 Retained Messages
Publish messages may be set to be retained. This means that the server / broker will keep the message even after sending it to all current subscribers. If a new subscription is made that matches the topic of the retained message, then the message will be sent to the client. This is useful as a "last known good" mechanism. If a topic is only updated infrequently (such as for “report by exception”), then without a retained message, a newly subscribed client may have to wait a long time to receive an update. With a retained message, the client will receive an instant update.

7.x.6.5 Clean session / Durable connections

MQTT clients choose whether to use clean or durable connection session. If a clean connection is used then the server / broker discards any previously maintained information about the client, the client needs to re-subscribe to topics of interest, and the server / broker discards any state when the client disconnects.

If a durable connection is used, then when the client disconnects, any subscriptions it has will remain and any subsequent QoS 1 or 2 messages will be stored until it connects again.
7.x.6.6 Wills

When a client connects to a broker, it may inform the broker that it has a Will. This is a message that it wishes the broker to send to interested parties when the client disconnects abnormally. The Will message has a topic, QoS and retain status just the same as any other message. Abnormal disconnection occurs when either an I/O error is encountered by the server / broker during communication with the client, or the client fails to communicate within the Keep Alive timer schedule.
7.x.7 Data Model
No formal data model has been published. The data elements included in the version 3.1 specification include: topic trees, user name and password, connection state, subscriptions, retained messages, and message headers (fixed and variable).

7.x.8 Security

MQTT supports user names and passwords in connection requests. Connections can be refused due to a bad user name or password.

7.x.9 Dependencies

MQTT uses the TCP/IP layer to provide basic network connectivity.
7.x.10 Benefits and Constraints
· Protocol compressed into bit-wise headers and variable length fields. Typical message header size is 6 bytes.
· MQTT has been implemented in devices with less than 64kb of RAM

· In comparison to HTTPS, MQTT tested faster throughput, required less battery, and less network overhead.
· The simple user name and password scheme is insufficient to support comprehensive access control 
· MQTT does not permit fragmentation of messages, making it difficult to transmit large messages to constrained memory devices

· MQTT does not support transactions; it does support basic acknowledgments.

· MQTT does not address connection security
· MQTT does not support discovery of clients or servers
· MQTT is not extensible, requiring a new protocol revision to evolve capabilities
7.x.11 Support of oneM2M requirements

The oneM2M Requirements [i.2] that can be either fully or partially met by MQTT includes:
OSR-001, OSR-002, OSR-003, OSR-008, OSR-009, OSR-012, OSR-20, OSR-21, OSR-24, OSR-25, OSR-29, OSR-30, OSR-32, OSR-39, SMR-001, SMR-002, SMR-004, SER-002, SER-008, SER-011, and SER-025
--------------------------------ends here--------------------------
[image: image1.png]



Figure � STYLEREF 0 \s �7.x.6.1.��� SEQ Figure \* ARABIC \s 0 �1� MQTT publish subscribe messaging








© 2013 oneM2M Partners
                                                                                                     Page 7 (of 7)


