	Doc# oneM2M-Template-Input-Contribution-2013.doc
Input Contribution
	[image: image2.png]

	INPUT CONTRIBUTION

	Group Name:*
	WG3 - Protocols

	Title:*
	XMPP Analysis - An Update

	Source:*
	Cisco Systems: Mukesh Taneja

	Contact:
	

	Date:*
	<2013-09-29>

	Abstract:*
	Updates to XMPP Analysis for Section 7 of the Protocol Analysis document

	Agenda Item:*
	Protocol Analysis

	Work item(s):
	

	Document(s)

Impacted*
	M2M Protocol Analysis Technical Report

	Intended purpose of

document:*
	xx Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	Updates to XMPP section in the M2M Protocol Analysis Technical Report

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
This contribution extends oneM2M-PRO-2013-0051-XMPP_Analysis by providing an update to the protocol stack section. Proposal is to add this to Section 7 of the M2M Protocol Analysis Technical report.
Note: Text from oneM2M-PRO-2013-0051-XMPP_Analysis is not shown here (i.e. only the new text is shown here).
7.x
XMPP: eXtensible Messaging and Presence Protocol
7.x.1
Background
7.x.2
Status
7.x.3
Category and Architectural Style
7.x.4
Intended use
7.x.5
Deployment Trend
7.x.6
Key Features
7.x.7
Protocol Stack
XEP-0323 describes framework for sensor data exchange in an XMPP based sensor network (SN). Specific support of XMPP SN feature is indicated by including “urn”xmpp:sn” in the service discovery procedure. An example is given below:
<iq type=’get’

 from=’xyz@domainname.com’

 to=’iotdevice@domainname.com’

 id=’iotrequest’ >

 <query xmlns=’http://jabber.org/protocol/disco#info’ />

</iq>

<iq type=’result’

 from=’iotdevice@domainname.com’

 to=’xyz@domainname.com’

 id=’iotrequest’ >
 <query xmlns=’http://jabber.org/protocol/disco#info’ />

 <feature var=’urn:xmpp:sn’ />

 </query>

 </iq>

Field is defined to be an item of sensor data and it contains information about Node, Field Name, Value, Precision Unit, Value Type, Timestamp, Localization information etc. A sensor device, an actuator or a gateway is an example of a node in a sensor network. Field Name is name of a field of sensor data (e.g. pressure or vibration level). Possible values of Field Type include the following: momentary value, calculated value, peak value, status value, historical value etc. A Concentrator is a device that handles multiple nodes (e.g. a node handling multiple sensors) behind it. If device is not a concentrator, use of node element is not necessary. An example to read momentary value from a sensor is shown below:

<iq type=’get’

 from=’xyz@domainname.com’

 to=’iotdevice@domainname.com’

 id=’1’ >

 <req xmlns=’urn:xmpp:sn’ seqnr=’1’ momentary=’true’ />

</iq>

IoT device accepts the request and indicates that as below:

<iq type=’result’

 from=’iotdevice@domainname.com’

 to=’xyz@domainname.com’

 id=’1’ >
 <accepted xmlns=’urn:xmpp:sn’ seqnr=’1’ />

 </iq>

IoT device provides information as below:
<message from=’iotdevice@domainname.com’

 to=’xyz@domainname.com’>

 <fields xmlns=’urn”xmpp:sn’ seqnr=’1’ done=’true’ >

 <node nodeId = ‘iotdevice” >

 <numeric name=’WaterLevel’ momentary=’true’ value=’20’ unit=’ft’ >

 </node>

 </fields>

</message>

XEP-0325 specifies mechanisms to control actuators in an XMPP based sensor network. <message> or <iq> stanzas can be used for this purpose. Response from device is suppressed when using <message> stanza but <iq> stanza can be used if an acknowledgement is needed from the actuator. Operation “Set” and the xmlns “urn:xmpp:sn:control” are used for this purpose in the message stanza as shown below.
<message from=’iotgateway@domainname.com’

 to=’actuatorxyz@domainname.com’ >

 <set xmlns=’urn:xmpp:sn:control’ >

 <boolean name=’SwitchOffAC’ value=’true’ />

<date name=’StartDate’ value = ‘2013-10-12’ />

<time name=’StartTime’ value=’05:23:12’ />

 </set>

</message>

A control form can also be used to set values for various fields at the actuator. Actuators behind a concentrator can be controlled by specifying node elements for those actuators.
XEP-0326 deals with IoT Concentrators. A concentrator is defined to be a device that concentrates management of a subset of devices (of a sensor network) at a point. A concentrator can be small (e.g. a PLC managing a set of sensors and actuators), medium (e.g. a branch of a network using a different communication protocol), large (e.g. a sub-system managed by a partner organization) or massive. A concentrator works with multiple data sources where a data source is defined to contain a collection of nodes. There are three types of data sources: Singular, Flat and Tree. There is only one node object in a singular data source while a flat data source contains list of node objects. Nodes are represented in a tree structure in a tree data source. Asynchronous events are sent from a concentrator to each client that has subscribed to these using message stanzas. A concentrator can also store data from sensors locally (or at a remote server but controlled locally).

Node ids are not necessarily unique but uniqueness concept is defined using (Data source id, cache type and Node id). Nodes have unique id within a given cache type for a given data source. A cache type is used to uniquely identify a node in a data source where node id alone is not sufficient. A client that needs to communicate with a concentrator can get type of commands supported by getting capabilities of the concentrator. The xmlns ‘urn:xmpp:sn:concentrators’ is used for this purpose. An example is shown below:
<iq type=’get’

 from=’xyz@domainname.com’

 to=’iotgateway@domainname.com’

 id=’21’ >

 <getCapabilities xmlns=’urn:xmpp:sn:concentrator’ />

</iq>
In response, the concentrator provides list of commands supported by it that a client can use to interact with the concentrator. Some such commands are given below:

· Get all data sources managed by the concentrator,
· Get root data sources,
· Get child data sources (of a root data source),
· Given node id, check to see if a node is supported by a (given) concentrator,

· Get basic information about a node supported by a concentrator (e.g. is it readable? Is it configurable? what are the parameters supported by a node e.g. location of a meter? etc.)

· Change order of nodes in a tree (by moving nodes up or down among siblings),
· Get and set parameters of a node,
· Create or destroy a node,
· Get commands that are supported by a node,

· Subscribe to changes in data source by allowing devices to register for asynchronous events,

· Allow retrieval of historic events
XEP-0324, IoT provisioning, deals with access rights, user privileges and provisioning of services in a sensor network. This architecture uses distributed third parties that provide the following services:
· Control who can communicate with whom (i.e. control friendship)

· Control read access

· Control configure / write access

· Provide a user interface to set / update these policies
· Provide interoperability services (such as unit conversion)
A trust relationship is created between a device and a provisioning server using some mechanisms. A device, client or user can get a token from a provisioning server that it can use to validate access rights with the server. <iq> stanza with xmlns ‘urn:xmpp:sn:provisioning’ is used for this purpose. If a device supports provisioning feature, it advertises this feature in service discovery. An example is shown below:

<iq type=’get’

 from=’device1@domainname.com’

 to=’provisioningserver1@domainname.com’

 id=’provreq5’ >

 <query xmlns=’http://jabber.org/protocol/disco#info’ />

</iq>

<iq type=’result’

 from=’provisioningserver1@domainname.com’

 to=’device1@domainname.com’

 id=’provreq5’ >

 <query xmlns=’http://jabber.org/protocol/disco#info’ />

 <feature var=’urn:xmpp:sn:provisioning’ />

 </query>

</iq>

If there are multiple provisioning servers, device / client / user has one token from each of the provisioning server. While sending request to another entity (e.g. read or write some data), it includes all these tokens. As an IoT device gets a request to read or write some data, it contacts a provisioning server with the tokens provided in the request and validates access rights of the requesting entity (Figure 1). As an IoT device gets friendship request from a third party, it contacts provisioning server and checks whether or not to accept that request. A provisioning server can also delegate a secondary trust to a device by which that device can add its own friends.
[image: image1.jpg]user X loT device (e.g. sensor) Provisioningserver

Request to read or write
{along with all the tokens
that user has received from
provisioningservers earlier)

loT device checks access
rights of user X

< | Acceptorrejectthe
request of user X,
dependingonthe
access status provided
by the provisioning
server

Figure 1: Validation of access rights during a read or write request
7.x.8
Data Model
7.x.9
Security
7.x.10
Dependencies
7.x.11
Benefits and Constraints
7.x.11.1 Benefits
7.x.11.2 Constraints
7.x.12
Support of oneM2M requirements

Support of oneM2M Requirements [i.2] by XMPP is shown in the following clauses:

7.1.12.1 Fully Supported Requirements
Editor’s Note: To be completed

7.1.12.2 Partially Supported Requirements
Editor’s Note: To be completed

7.1.12.3
Disallowed Requirements
Editor’s Note: To be completed

© 2013 oneM2M Partners
 Page 2 (of 7)

[image: image2.png]