	Doc# oneM2M-PRO-2013-0066R01-DDS_Protocol_Analysis
Input Contribution
	[image: image3.png]

	INPUT CONTRIBUTION

	Group Name:*
	PRO WG3

	Title:*
	Analysis of DDS

	Source:*
	Cisco System Inc. Philip Jacobs, Gary Berger

	Contact:
	phjacobs@cisco.com, gaberger@cisco.com

	Date:*
	2013-10-18

	Abstract:*
	This contribution provides and overview of, and an analysis of, DDS.
This revision adds editor’s notes from discussions during PRO#7.1

	Agenda Item:*
	tbd

	Work item(s):
	WI0008

	Document(s)

Impacted*
	oneM2M Protocol Analysis TR-0009

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 FORMCHECKBOX
 Information

 FORMCHECKBOX
 Other <specify>

	Decision requested or recommendation:*
	Incorporate in the oneM2M Protocol Analysis Technical Report

oneM2M IPR STATEMENT

Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by all provisions of IPR policy of the admitting Partner Type 1 and permission that all communications and statements, oral or written, or other information disclosed or presented, and any translation or derivative thereof, may without compensation, and to the extent such participant or attendee may legally and freely grant such copyright rights, be distributed, published, and posted on oneM2M’s web site, in whole or in part, on a non-exclusive basis by oneM2M or oneM2M Partners Type 1 or their licensees or assignees, or as oneM2M SC directs.

Proposal - Add the following clause 7.x.
--------------------------------starts here--------------------------
7.x Data Distribution Service for Real-Time Systems (DDS)
Data Distribution Service for Real-Time Systems is a peer-to-peer publish/subscribe communications service for real-time and non-real-time data. DDS is comprised of a standardized application API known as Data Centric Publish Subscribe (DCPS) and a standardized wire protocol called Real Time Publish Subscribe (RTPS). The standardized interfaces provide for both vendor and platform independent middleware implementations. In order to be more concise we shall be using the term DDS all of these protocols and interfaces and be specific about DCPS, RTPS when appropriate.
7.x.1 Background
DDS is a data oriented middleware architecture standardized and managed by the Object Management Group (OMG).
· Data Distribution Service for Real-time Systems (DDS) Version 1.2, adopted October 2006
· The Real-time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol Specification (DDSI), Version 2.1, adopted June 2008
In addition there are several activities for expanding the extensibility, security and development support.
· Extensible and Dynamic Topic Types for DDS (DDS X-Types)
· This standardizes how DDS manages data-types and how an application designer can define and use those types. Specifically the standard covers:
· Type System. Specifies a model for the types that can be legally defined and associated with Topics.

· Language Binding. Specifies the alternative programming-language mechanisms an application can use to construct and introspect types as well as objects of those types. These mechanisms include in part a Dynamic API that allows an application to interact with types and data without compile-time knowledge of the type.

· Type Representation. Specifies the ways in which a type definition can be externalized so that it may be stored in a file or communicated over the network.

· Data Representation. Specifies the ways in which a data sample of a given type can be externalized so that it can be stored in a file or communicated over the network. This is also commonly referred as “data serialization” or “data marshaling”.
· Web-Enabled DDS (WEB-DDS)
· Standardizes how web client applications can participate in the DDS global data space in a way that is portable across implementations. The specification includes (1) a platform-independent Abstract Interaction Model of how web- clients should access a DDS System and (2) a set of mappings to specific web platforms that realize the PIM in terms of standard web technologies and protocols. These mappings include a RESTful mapping of DDS entities to HTTP REST resources. This specification also defines an XML document format to represent DDS Domains and DDS Entities.
· RPC over DDS, Currently under RFP process, revised submission May 20, 2013
· Specification to provide request/response communications pattern for remote procedure calls. Provide auto-generation of client/server code, request/reply topic, and development environment. Similar approach to Apache Thrift but easier to use and configurable QOS.
· DDS Security, Currently under RFP process, revised submission June 13, 2013
· Specification defines the Security Model and Service Plugin Interface (SPI) architecture for compliant DDS implementations. The DDS Security Model is enforced by the invocation of these SPIs by the DDS implementation

[image: image1.png]« Jova 5 DDS PSM
« Simple, Safe, Effcient,
‘Elegani and Ergonomic API

oosies :EW&ED ﬁ
Interoperable *

Wire Profocol

Figure 1 http://www.slideshare.net/Angelo.Corsaro/the-present-and-future-of-dds
There are currently 9+ implementations of the DDS standard with participants from PrismTech, RTI, TwinOaks Computing and Gallium Visual Systems.

7.x.2 Status

Data Distribution Service for Real-Time Systems was adopted in June 2003 and finalized in June 2004. Revisions followed in 2005, 2006 with the final 1.2 specification delivered June 2007. DDSI-RTPS was adopted in July 2006, revised in 2007 for release 2.1. The OMG is currently working on several proposals related to security and RPC.
7.x.3 Category and Architectural Style
DDS is specific to a “Data Centric” style of distributed communications, which leverages a publish/subscribe communications model to connect anonymous information producers with information consumers. The overall distributed application is composed of processes called “participants,” each running in a separate global data space, possibly on different computers. DDS handles all transport functions including: addressing, data serialization, reliable delivery, flow control in a platform independent way.

DDS defines a bi-directional communications relationship between publishers and subscribers. The unit of information exchanged between publishers and subscribers is called a Topic. The communications are decoupled in space (nodes can be anywhere), time (nodes and topics can start, join, or leave in any order at any time), and flow (delivery may be “best effort”, reliable, or at controlled bandwidth).

DDS provides an expressive service level specification via QoS (Quality of Service) that can act upon participants, properties and topics.

To increase scalability, topics may contain multiple independent data channels identified by “keys.” This allows nodes to subscribe to many, possibly thousands, of similar data streams with a single subscription. When the data arrives, the middleware can sort it by the key and deliver it for efficient processing.

DDS also provides a “state propagation” model. This model allows nodes to treat DDS-provided data structures like distributed shared-memory objects, with local caches efficiently updated only when the underlying data changes. There are facilities to ensure coherent and ordered state updates.

DDS is fundamentally designed to work over unreliable transports, such as UDP or wireless networks. No facilities require central servers or special nodes. Efficient, direct, peer-to-peer communications, or even multicasting, can implement every part of the model.

7.x.4 Intended use
The following details the various types of use cases that are addressed by the use of DDS in real-time M2M systems.

DDS is highly suitable for direct Device2Device (D2D) communications when there is a need for distributing data to a large fan-out of consumers with real-time requirements. DDS allows for implementers to choose the most appropriate trade-offs to meet their application objectives through configurable reliability, multicast support, transport priority and pervasive redundancy. By leveraging the finely controlled QoS, designers can provide integration of complex systems with modules that require differing update rates, reliability, and bandwidth control. These controls are available on a per- node, or per-stream basis.
With the standardization of RPC over DDS alternative communications pattern such as command/response can also be beneficial to M2M and can provide some of the same control characteristics, which make XMPP a good fit.
Editor’s Note: reword the above sentence to avoid comparison to XMPP
Because of the Global Data Space DDS systems can easily share information to tie together complex applications.
For example, a ship control system that includes high-bandwidth data sources and sinks, slowly updated graphical user interfaces (GUIs), and long-term logging facilities will make good use of the DDS QoS parameters. While the control system is updated at high rates, the GUI can subscribe at a reduced rate to display the latest state of the system. The logger receives every update reliably, although perhaps with greater latency, to save a complete record of the system operation.

7.x.5 Deployment Trend

DDS can be found in applications ranging from large navy ships to single embedded sensor applications. It is deployed in healthcare devices, unmanned systems such as UAV’s, financial banking applications, asset tracking solutions, remote diagnostic monitoring for power substations and many other types of applications. The typical type of application using DDS today is one where low latency, highly deterministic communications is desired between devices.
7.x.6 Key features
7.x.6.1 Platform and Language Independence

DDS decouples the platform independent model from the platform specific model from the system allowing it to run over multiple transports, on large and small (embedded). There are currently DDS API bindings for a host of languages including Ada, C, C++, C#, Java, Scala, Lua, Ruby and Node.js.
DDS can run over multiple transports including switch fabrics, UDP, TCP or shared memory. By leveraging a datagram service like UDP one can also take advantage of bandwidth optimizations such as multicast. This allows DDS to handle everything from command/control systems to video distribution. DDS also handles varied networks well, from sporadic wireless connections to high- performance switched fabrics. Systems that include some nodes with fast connections, some with slower connections, and even some with intermittent (e.g. wireless) connections will find DDS provides facilities to manage the resulting uneven delivery characteristics.

7.x.6.3 Entity Discovery
Entities in DDS are: Participants, Publishers, Subscribers, DataWriters and DataReaders. These entities are discovered and connected to automatically based on a discovery service built into DDS. This discovery service is implemented upon built-in topics that communicate which applications want to participate within a given domain and for each Participant, which topics they want to write and read (publish / subscribe). DDS does all the work of matching up like writers and readers to enable a fully flexible system that can be started up in any order, thus decoupling temporal attributes such as starting every node up at the same time. DDS however does not have a method of discovering new devices although there are several implementations that provide such functionality but are not standardized.
7.x.6.4 Quality of Service
QoS attributes can be applied for each individual Topic, Reader or Writer.
Quality of Service attributes:
	ATTRIBUTE
	REFERENCE
	DESCRIPTION

	User Data
	7.1.3.1
	The purpose of this QoS is to allow the application to attach additional information to the created Entity objects such that when a remote application discovers their existence it can access that information and use it for its own purposes

	Topic Data
	7.1.3.2
	The purpose of this QoS is to allow the application to attach additional information to the created Topic such that when a remote application discovers their existence it can examine the information and use it in an application-defined way

	Group Data
	7.1.3.3
	The purpose of this QoS is to allow the application to attach additional information an be used by an application combination with the DataReaderListener and DataWriterListener to implement matching policies similar to those of the PARTITION QoS except the decision can be made based on an application- defined policy.

	Durability
	7.1.3.4
	This QoS policy controls whether the Service will actually make data available to late-joining readers.

	Presentation
	7.1.3.5
	This QoS policy controls the extent to which changes to data-instances can be made dependent on each other and also the kind of dependencies that can be propagated and maintained by the Service.

	Deadline
	7.1.3.7
	This policy is useful for cases where a Topic is expected to have each instance updated periodically. On the publishing side this setting establishes a contract that the application must meet. On the subscribing side the setting establishes a minimum requirement for the remote publishers that are expected to supply the data values.

	Latency Budget
	7.1.3.8
	This policy provides a means for the application to indicate to the middleware the “urgency” of the data-communication. By having a non-zero duration the Service can optimize its internal operation.

	Ownership
	7.1.3.9
	This policy controls whether the Service allows multiple DataWriter objects to update the same instance (identified by Topic + key) of a data-object.

	Liveliness
	7.1.3.11
	This policy controls the mechanism and parameters used by the Service to ensure that particular entities on the network are still “alive.” The liveliness can also affect the ownership of a particular instance, as determined by the OWNERSHIP QoS policy.

	Time_Based_Filter
	7.1.3.12
	This policy allows a DataReader to indicate that it does not necessarily want to see all values of each instance published under the Topic. Rather, it wants to see at most one change every minimum_separation period.

	Partition
	7.1.3.13
	This policy allows the introduction of a logical partition concept inside the ‘physical’ partition induced by a domain.

	 Reliability
	7.1.3.14
	This policy indicates the level of reliability requested by a DataReader or offered by a DataWriter. These levels are ordered, BEST_EFFORT being lower than RELIABLE. A DataWriter offering a level is implicitly offering all levels below.

	Transport Priority
	7.1.3.15
	The purpose of this QoS is to allow the application to take advantage of transports capable of sending messages with different priorities.

	Lifespan
	7.1.3.16
	The purpose of this QoS is to avoid delivering “stale” data to the application.

	Destination Order
	7.1.3.17
	This policy controls how each subscriber resolves the final value of a data instance that is written by multiple DataWriter objects (which may be associated with different Publisher objects) running on different nodes.

	History
	7.1.3.18
	This policy controls the behavior of the Service when the value of an instance changes before it is finally communicated to some of its existing DataReader entities.

	Resource Limits
	7.1.3.19
	This policy controls the resources that the Service can use in order to meet the requirements imposed by the application and other QoS settings.

Editor’s Note: In the second column of the above table, refer to to the external document reference
7.x.6.5 Enhanced Data Typing
In addition to primitive types, DDS also provides support for Arrays, Multi-dimensional Arrays, Variable length Sequences, Enumerations, Unions, Value Types, Structure nesting and Opaque Byte arrays. By leveraging the ability to support multiple instances per data type by leveraging a Key, DDS allows for a more scalable system since multiple instances can be subscribed through a single topic. With the ratification of X-Types, DDS provides for extensible and mutable dynamic types allowing for data models to evolve while still preserving backward compatibility.

7.x.7
Protocol Stack
RTPS (Real-Time Publish Subscribe) defines the wire-format protocol for interoperable systems. It can be implemented over a transport service such as UDP or TCP.

 +---------------------------------+

 | DDS DCPS API |

 +---------------------------------+

 | Middleware |

 +---------------------------------+

 | DDSI-RTPS Wire Protocol |

 +---------------------------------+

 | Transport |

 +---------------------------------+

Editor’s Note: clarify what is meant by Transport in the above figure
7.x.7 Data Model

Data within DDS can be as strictly defined or loosely defined as needed by the applications. A strict data model where each field is known to the middleware, enables the middleware to perform content-based filtering without the need for any application level programming to perform the filtering. In fact, in some implementations of DDS, these filters are discoverable and actuated on the publishing side so that only data that is relevant is pushed on to the network. For a loosely defined data model, there is the achievement of a very flexible architecture but at the cost of more data on the network to describe the data with schema.

7.x.8 Security

The OMG is currently in the process of creating a full Security specification for DDS that encompasses Authentication, Access Control, Encryption, Key Management and Auditing to be enforceable at a finer grain level of individual topics defined in the system. Different implementations provide various security features such as SSL encryption , X509 certificates and third party products help to implement policy and assurance.
7.x.9 Dependencies

DDS can be implemented on any underlying protocol as it provides all the necessary reliable communications as needed. Therefore it is common to have DDS run on UDP / TCP and other transports such as Serial links or even Shared Memory for communications between applications on the same node.

7.x.10 Benefits and Constraints
7.x.10.1 Benefits

The OMG Data Distribution Service for Real-Time Systems is the only open standard for messaging that supports the unique Quality of Service (QoS) requirements of both enterprise and real-time systems. It can deliver in excess of 50x the performance of non-real-time standards such as JMS, AMQP and Web Services. As a result, it often provides the only standards-compliant alternative to proprietary or custom integration. DDS direct peering model allows devices to be data-aware and in control of elements such as filtering while being robust enough to deal with non-deterministic nature of communications.
Editor’s Note: Replace subjective terms above with objective benefits.
Editor’s Note: Add text indicating DDS relationship/applicability to SOA.
Editor’s Note: Interaction with LTE should be added
7.x.10.1 Constraints
Editor’s Note: To be completed
7.x.11 Support of oneM2M requirements

Support of oneM2M Requirements [i.2] by DDS is shown in the following clauses:
7.x.12.1
Fully Supported Requirements

Editor’s Note: To be reviewed and completed in alignment with Approved oneM2M Requirements

7.x.12.2
Partially Supported Requirements

Editor’s Note: To be completed

7.x.12.3
Disallowed Requirements

Editor’s Note: To be completed

--------------------------------ends here--------------------------
[image: image2.png]

© 2013 oneM2M Partners
 Page 1 (of 2)

[image: image3.png]