	PRO-2014-0108-MQTT_protocol_binding_sections_5_and_6
	[image: image5.png]

	INPUT CONTRIBUTION

	Group Name:*
	PRO WG

	Title:*
	MQTT protocol binding TS baseline – v 0.1.0 sections 5 and 6

	Source:*
	MQTT protocol binding TS rapporteur

	Contact:
	Peter Niblett, peter_niblett@uk.ibm.com

	Date:*
	2014-02-19

	Abstract:*
	This proposes some content for TS-0010, the oneM2M MQTT protocol binding.

	Agenda Item:*
	TBD

	Work item(s):
	WI 0014 – MQTT Protocol Binding

	Document(s)

Impacted*
	TS-0010 MQTT Protocol Binding Technical Specification

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	Agree to make the attached v0.1.0 draft as the oneM2M MQTT binding TS baseline.

oneM2M IPR STATEMENT

Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by all provisions of IPR policy of the admitting Partner Type 1 and permission that all communications and statements, oral or written, or other information disclosed or presented, and any translation or derivative thereof, may without compensation, and to the extent such participant or attendee may legally and freely grant such copyright rights, be distributed, published, and posted on oneM2M’s web site, in whole or in part, on a non-exclusive basis by oneM2M or oneM2M Partners Type 1 or their licensees or assignees, or as oneM2M SC directs.
5.1
Use of MQTT

This clause profiles the way that the MQTT protocol is used by the Binding. For more information on MQTT itself see Appendix A or refer to the MQTT specification [1].
MQTT includes reliability features which allow recovery from loss of network connectivity without requiring explicit involvement of the applications that are using it, however to do this it requires an
MQTT requires an underlying network protocol that provides ordered, lossless, bi-directional connections, but the MQTT specification [1] does not mandate a particular underlying protocol. For the purposes of the current specification, we restrict the underlying protocol to be one of the following:

· Raw TCP/IP [3]

· TCP/IP with Transport Level Security (TLS) [4]

· WebSocket [5] – either with or without the use of TLS

The binding makes use of MQTT to provide reliable two-way communications between two parties (AEs and CSEs). It uses the following features of MQTT:
· Durable Sessions, providing Store and Forward in cases where network connectivity is not available

· MQTT’s “QoS 1” message reliability level

· NAT traversal (neither of the two parties is required to have prior knowledge of the other party’s IP address)
It does not use the following features:
· One-to-many publish/subscribe

· Retained Messages

· Will Messages

· QoS 0 or QoS 2 message reliability levels
5.2 Binding overview

The MQTT protocol binding specifies how the Mca or Mcc request and response messages are transported across the MQTT protocol. Both communicating parties (AEs and CSEs) typically make use of an MQTT client library, and the communications are mediated via the MQTT server. There is no need for the client libraries or the server to be provided by the same supplier, since the protocol they use to talk to each other is defined by the MQTT specification [1].

Furthermore, the binding does not assume that the MQTT client libraries or server implementations are necessarily aware that they are being used to carry Mca, Mcc or any other oneM2M-defined primitives.

The binding is defined in terms of the MQTT protocol flows that take place between the client libraries and the MQTT server in order to effect the transport of an Mca or Mcc message
The next three sections show the three configurations in which the MQTT binding can be used
Note: Other configurations are possible, but they are currently out of scope (this is FFS).
5.2.1

AE to MN
This configuration, illustrated in Figure 5.1 allows an AE to connect to an MN or IN via MQTT.

[image: image1.emf]MN CSE or IN CSE

ADN AE

Mca request and response

messages transported over

MQTT

MQTT Server

MQTT client

library

MQTT client

library

Figure 5.1 Mca using MQTT

The MQTT server is co-located with the MN or IN CSE and allows connection of the ADN-AEs (typically devices). It can store and forward messages if there’s a gap in the connectivity with the devices.

Note that the AEs each establish their own separate TCP/IP connection with the MQTT server. Thus the server must have an accessible IP address, but AEs need not have.
·
·
·
·

5.2.2

AE to MN

This configuration, illustrated in Figure 5.2, allows an MN to connect to an IN via MQTT.

[image: image3.emf]MQTT client

library

ADN AE

Mca using a non-MQTT protocol

Mcc transported over MQTT

MN CSE

Field Domain

IN CSE

MQTT Server

MQTT client

library

Infrastructure Domain

Figure 5.2 Mcc using MQTT between MN and IN

The MQTT server is co-located with the IN CSE and allows connection of the MNs (typically in-field gateway boxes). It can store and forward messages if there’s a gap in the connectivity with the gateways. Note that the MNs each establish their own separate TCP/IP connection with the MQTT server. Thus the server must have an accessible IP address, but MNs need not have.

5.2.2

AE to MN to IN

This configuration, illustrated in Figure 5.3, is a combination of the previous two.

[image: image4.emf]MQTT client library

ADN AE

Mca transported over MQTT

Mcc transported over MQTT

MN CSE

Field Domain

IN CSE

MQTT Server

MQTT client

library

Infrastructure Domain

MQTT client

library

MQTT Server

Figure 5.3 Mca and Mcc using MQTT

6
Protocol Binding

In this section we define the key elements of the binding:

1. How a CSE or AE connects to MQTT

2. How an Originator (CSE or AE) formulates a Request as an MQTT message, and transmits it to its intended Receiver

3. How a Receiver listens for incoming Requests, and how it formulates and transmits a Response

4. How the Mca and Mcc CRUD operations map to MQTT messages
6.1 Connecting to MQTT

In order to communicate, the two client parties (AE and CSE or CSE and CSE) must connect to a common MQTT server or to distinct MQTT servers that are bridged together. The MQTT server will be hosted in one of the two nodes, following one of the configuration patterns shown in clause 5.2
·
·
·
·
NOTE: Other configuration patterns are FFS.

Once each party has located the address of the MQTT server, it then connects to it using the standard MQTT Connect protocol packet. The following additional considerations apply:

· The Connect packet contains a Client Id as described in section A.3.2. The Client Ids must be unique at least among all clients that connect to a given MQTT server instance. This condition will be satisfied if an AE uses its App-Inst-ID and a CSE uses its CSE-ID. See Clause 7 of TS-0001 [2] for a discussion of these Identifiers. The prefix A:: or C:: will be added to the ID to show whether it is an App-Inst-ID or a CSE-ID as these ID spaces are not distinct.
· A client must set the “Clean Session” flag in the Connect Packet to false. This means that Session state related to that client will be retained by the MQTT Server in the event of a disconnection (deliberate or otherwise) of that client.

· A client must not set the “Will Flag”, so Will Messages are not enabled

· A client may choose to provide an MQTT KeepAlive value of 10 seconds or more, or to provide a KeepAlive of 0 (this disables the MQTT KeepAlive)

· The MQTT server may require that a client provides a User Name and a password (or other credential). For more information see Section 7 .

NOTE: We might want to use the Will Message to allow a client’s connection status to be tracked. This is FFS.

Also FFS is a discussion of connection strategy, for example a client might choose to keep the MQTT connection open permanently (restarting it as soon as possible after any unforeseen connection loss), it might choose to connect only when it wants to act as an Originator, or it might choose to connect on some kind of schedule.

Once a client has connected to the MQTT server it can then communicate (subject to authorisation policies) with any other client connected to (or bridged to) its server. There is no need for it to create another connection if it wants to communicate with a different counter-party.

When a client determines that it no longer wishes to participate in a Session with its MQTT Server it must perform the following steps:

· Disconnect from that server, if it is currently connected

· Reconnect with the clean Session flag set to true

· Disconnect again

These steps delete any state that the server might be holding on behalf of the client.

6.2 Sending and Receiving Messages

6.2.1
Request and Response Messages

MQTT does not have a data model to describe or constrain the content of its Application Message payloads (to that extent it is similar to a TCP socket). Mca and Mcc request messages will be serialized into XML following the serialization process defined in the Core Protocol specification [3].

Since oneM2M messages are idempotent, they should be sent with QoS 1. This provides reliability without incurring the overhead implied by QoS 2.

Note: MQTT messages are subjected to a theoretical maximum message size of 256M, but it is good practice not to send messages that are bigger than a few Megabytes. If a larger amount of data needs to be sent, it should be segmented into multiple messages. This is FFS and is something that might need to be addressed in the Core Protocol specification

6.2.2
Sending a Request

A request is transmitted by sending it as an MQTT Publish protocol packet to the MQTT Server. It uses a Topic that identifies the Receiver of the request. The precise structure of this Topic is FFS, but an initial suggestion is:

/oneM2M/req/<to>
· “oneM2M” is a literal string identifying the topic as being used by oneM2M

· <to> is the URI of the target resource (it is assumed that this includes the AE or CSE id)

· “req” is a literal string identifying this as a request.

NOTE: It might be useful to include some other components in the topic name, such as the Operation type. In particular it might be useful to include a <fr> field for security purposes. This is FFS

6.2.3
Listening for and responding to a Request

A Receiver listens for requests arriving via MQTT by subscribing to its Topic (as described in the previous section).
When it receives a request, the receiver must check the request expiration timestamp (if any) contained in the request, since it is possible that that time might have passed while the message was being stored by MQTT.

It then transmits a response by sending an MQTT Publish packet to a response topic. This takes the form

/oneM2M/resp/<to>
· “oneM2M” is a literal string identifying the topic as being used by oneM2M

· <to> is the URI of the originator of the request (or the rd information from the request)

· “resp” is a literal string identifying this as a response.

The originator (or other interested party) must subscribe to this topic if it is to see the response.

6.2.2 Mapping the CRUD operations

Each MQTT message bearing a oneM2M Request will contain the <op> parameter to indicate whether it is a Create, Read, Update or Delete. The topic used indicates target resource ID. In the case or Read, Update or Delete this is straightforward, as there should be a resource already in existence. In the case of Create, the Originator will publish to a topic that hasn’t previously been used, so in order to see that (and thus be able to process the Create), the CSE will subscribe using the wildcarded topic filter /oneM2M/req/# .

MN CSE or IN CSE

 MQTT Server

OneM2M native AE

Mca primitives transported over MQTT

Mca primitives transported over MQTT

 MQTT client library

 MQTT client library

© 2014 oneM2M Partners

Page 1 (of 6)

