PRO-2014-0142R02-XML_Schema_Change_Request

[image: image1.png]

	CHANGE REQUEST

	Group Name:*

	WG3

	Source:*

	IBM

	Format:*

	TP10

	Date:*

	2014-04-09

	Contact:*

	 Peter Niblett (peter_niblett@uk.ibm.com);

	Reason for Change/s:*

	Add more details on XML Schemas for Resources

	Clause/Sub Clause

Affected*

	6

	Agenda Item:*

	Contribution

	Work item(s):

	
	Document(s)

Impacted*

	oneM2M-TS 0004 Protocol v 0 3 1

	Intended purpose of

document:*

	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*

	Agree to incorporate this into the TS (oneM2M-TS-0004)

	

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
Proposal

Make the following modifications and additions to Clause 6.
These changes include

· Additional rules describing the process of creating XML Schemas for Resource Types

· Additional oneM2M-defined datatypes for general use in oneM2M
· Additional oneM2M-defined datatypes to model the attributes that are Common to multiple resource types

· An example Schema

· Some editorial changes to existing text
· Modifications to the list of common attributes, reflecting recent changes in TR0001

· Clarifications of what it means if common attribute values are absent
======================== START 1ST CHANGE ===========================

6 oneM2M Protocols / API Overview
6.1. Introduction

This technical specification describes message formats and procedures to communicate with oneM2M compliant M2M Platform System.

This specification describes:

· Data representation for communication protocol messages

· Normal and exceptional procedure

· Status codes

· Guidelines for drafting APIs
6.2. Data Types and Definitions
For wide acceptance by industrial markets, this specification describes structured and non-structured data for oneM2M Protocol using XML Schema Language (aka XSD)[3].

Note that the actual data format is depends on chosen Protocol Bindings. Each protocol binding specification will specify the mapping rule between XSD version of data definitions and its native data format.
Any Data Types and XML elements defined for use in oneM2M protocols shall use the namespace
http://www.onem2m.org/xml/protocols.
This TS, and any XML or XML Schema Documents produced by oneM2M shall use the prefix m2m: to refer to that namespace.
6.2.1. Simple Data Types incorporated from XML Schema
Following ‘built-in data types’ are incorporated from XML Schema definition [3].

Note that name space identifier for ‘http://www.w3.org/2001/XMLSchema' shall be described as ‘xs:’ in this specification.

	Data Type
	Description
	Notes

	xs:string
	The string datatype represents character strings in XML
	

	xs:boolean
	boolean represents the values of two-valued logic.
	

	xs:decimal
	decimal represents a subset of the real numbers, which can be represented by decimal numerals. The ·value space· of decimal is the set of numbers that can be obtained by dividing an integer by a non-negative power of ten, i.e., expressible as i / 10n where i and n are integers and n ≥ 0. Precision is not reflected in this value space; the number 2.0 is not distinct from the number 2.00. The order relation on decimal is the order relation on real numbers, restricted to this subset.
	

	xs:float
	The float datatype is patterned after the IEEE single-precision 32-bit floating point datatype IEEE 754-2008 ([8]). Its value space is a subset of the rational numbers. Floating point numbers are often used to approximate arbitrary real numbers.
	

	xs:double
	The double datatype is patterned after the IEEE double-precision 64-bit floating point datatype IEEE 754-2008 ([8]). Each floating point datatype has a value space that is a subset of the rational numbers. Floating point numbers are often used to approximate arbitrary real numbers.
	

	xs:duration
	duration is a datatype that represents durations of time.
	

	xs:dateTime
	dateTime represents instants of time, optionally marked with a particular time zone offset. Values representing the same instant but having different time zone offsets are equal but not identical.
	

	xs:time
	time represents instants of time that recur at the same point in each calendar day, or that occur in some arbitrary calendar day.
	

	xs:date
	date represents top-open intervals of exactly one day in length on the timelines of dateTime, beginning on the beginning moment of each day, up to but not including the beginning moment of the next day). For non-timezoned values, the top-open intervals disjointly cover the non-timezoned timeline, one per day. For timezoned values, the intervals begin at every minute and therefore overlap.
	

	xs:hexBinary
	hexBinary represents arbitrary hex-encoded binary data.
	

	xs:base64Binary
	base64Binary represents arbitrary Base64-encoded binary data. For base64Binary data the entire binary stream is encoded using the Base64 Encoding defined in RFC 3548([9]), which is derived from the encoding described in RFC 2045([10]).
	

	xs:anyURI
	anyURI represents an Internationalized Resource Identifier Reference (IRI). An anyURI value can be absolute or relative, and may have an optional fragment identifier (i.e., it may be an IRI Reference). This type should be used when the value fulfills the role of an IRI, as defined in RFC 3987([11]) or its successor(s) in the IETF Standards Track.
	

	xs:normalizedString
	normalizedString represents white space normalized strings. The ·value space· of normalizedString is the set of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters. The ·lexical space· of normalizedString is the set of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters. The ·base type· of normalizedString is string.
	

	xs:token
	token represents tokenized strings. The ·value space· of token is the set of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no internal sequences of two or more spaces. The ·lexical space· of token is the set of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no internal sequences of two or more spaces. The ·base type· of token is normalizedString.
	

	xs:language
	language represents formal natural language identifiers, as defined by BCP 47([12]).
	

	xs:integer
	integer is ·derived· from decimal by fixing the value of ·fractionDigits· to be 0 and disallowing the trailing decimal point. This results in the standard mathematical concept of the integer numbers. The ·value space· of integer is the infinite set {...,-2,-1,0,1,2,...}. The ·base type· of integer is decimal.
	

	xs:nonNegativeInteger
	nonNegativeInteger has a lexical representation consisting of an optional sign followed by a non-empty finite-length sequence of decimal digits (#x30-#x39). If the sign is omitted, the positive sign ('+') is assumed. If the sign is present, it must be "+" except for lexical forms denoting zero, which may be preceded by a positive ('+') or a negative ('-') sign. For example: 1, 0, 12678967543233, +100000.
	

	xs:positiveInteger
	positiveInteger is ·derived· from nonNegativeInteger by setting the value of ·minInclusive· to be 1. This results in the standard mathematical concept of the positive integer numbers. The ·value space· of positiveInteger is the infinite set {1,2,...}. The ·base type· of positiveInteger is nonNegativeInteger.
	

	xs:unsignedLong
	unsignedLong is derived· from nonNegativeInteger by setting the value of ·maxInclusive· to be 18446744073709551615. The ·base type· of unsignedLong is nonNegativeInteger.
	

	xs:unsignedInt
	unsignedInt is ·derived· from unsignedLong by setting the value of ·maxInclusive· to be 4294967295. The ·base type· of unsignedInt is unsignedLong.
	

	xs:unsignedShort
	unsignedShort is ·derived· from unsignedInt by setting the value of ·maxInclusive· to be 65535. The ·base type· of unsignedShort is unsignedInt.
	

	xs:dateTimeStamp
	The dateTimeStamp datatype is derived· from dateTime by giving the value required to its explicitTimezone facet. The result is that all values of dateTimeStamp are required to have explicit time zone offsets and the datatype is totally ordered.
	

6.2.2. Additional Data Types used in oneM2M

This specification define standard set of information as data types used are shown in Table 1
Editor’s Note: We should consider how best to add references to the namespaces
Table 1
Data types used

	Data Type
	Type Name

	Where defined
	Notes

	ca:civicAddr
	Civic Address
	[1]
	

	gml:Point
	Point
	[4]
	A point consists of a <Point> element with a child <coords> element. Within <coords> the latitude and longitude values are separated by a space.

	m2m:nonEmptyString
	Non-empty string
	oneM2M
	A string having at least one character.

Defined as xs:string [3] with restriction of minLength = 1

	m2m:id
	Generic ID
	oneM2M
	Used to represent generic IDs generated and used within oneM2M

	m2m:nodeId
	Node ID
	oneM2M
	Used for Node IDs. The constraints on this type are different from those on Generic IDs

	m2m:requestId
	Request ID
	oneM2M
	Used for Request IDs. This type includes the ID of the target CSE as well as a part that varies for each ID

	m2m:externalId
	External ID
	oneM2M
	Used for External IDs. This type includes the ID of the underlying network provider as well as a part that varies for each ID

	m2m:acpType
	ACP Type
	oneM2M
	Used to represent an AccessControlPolicy identifier. This can be either a URI or an opaque token

	m2m:nhURI
	Non-hierarchical URI
	oneM2M
	This is used to indicate that the URI cannot be interpreted in an hierarchical manner

	m2m:resourceCode
	Resource Code
	oneM2M
	A 2 capital letter code as defined in [7]. It is defined as an xs:string enumeration.

	Xpath
	Xpath
	[5]
	Path to and including the target element or attribute.

	xs:integer enumeration
	Integer with enumeration restriction
	[3]
	Restricted integer values.

	xs:string enumeration
	String with enumeration restriction
	[3]
	Restricted string values.

Editor’s Note: The data types listed in the table are examples and FFS.
6.2.3. Resource Attributes specificied in oneM2M

All resource attributes used are listed within the following sub-clauses.
6.2.3.1. Resource-common attributes

Resource attributes, which are widely used in resources, are specified in Table 2.
Table 3 Resource common attributes

	Attribute

Name
	Data Type
	Default
	Value restrictions
	Notes

	accessControlPolicyID
	m2m:acpType
	Policy is inherited from the parent resource
	
	

	parentID
	m2m:nhURI
	Not applicable
	Must be a non-hierarchical URI
	

	creator
	xs:anyURI
	NONE
	
	

	creationTime
	xs:dateTime
	Not applicable
	
	

	expirationTime
	xs:dateTime
	Absence of the attribute means that the resource has no explicit expirationTime
	
	

	filterCriteria
	xs:string
	
	
	

	lastModifiedTime
	xs:dateTime
	Not applicable
	
	

	resourceType
	m2m:resourceCode
	In the absence of this attribute, the resource type can be inferred from the root element
	
	

	labels
	list of xs:token
	Absence of this attribute means there are no labels
	
	

	stateTag
	xs:nonNegativeInteger
	Not applicable
	
	

	link
	xs:anyURI
	Not applicable
	
	

	announceTo
	list of xs:anyURI
	Not applicable
	
	

	announcedAttribute
	list of xs:token
	Not applicable
	
	

Note: The common attributes above are described in [6]

1. Editor’s Note: The attributes listed in the table are examples and FFS.
Editor's Note: How to choose the local time zone at timestamp is FFS.
6.2.3.2. Resource-specific attributes
Resource attributes, which are specific to certain resources, are specified in Table 3.

Table 3 Resource-specific attributes

	Attribute Name
	Data Type
	Default
	Value restrictions
	Notes

	 dayOfWeek
	xs:nonNegativeInteger
	0
	0 = "everyday", 1 = "Monday", 2 = "Tuesday", 3 = "Wednesday", 4 = Thursday", 5 = "Friday", 6 = "Saturday", 7 = "Sunday", 8 = “weekday”, 9 = “weekend”
	

Editor’s Note: The attributes listed in the table are examples and FFS.

6.2.4. oneM2M Resource Data Types

This specification defines common set of structured data as ‘Common Data Types’.

oneM2M Resource Data Types are defined in XSD, and they are supplied as separate documents. The source of XSD file can be Resource definition in Architecture TS [7].
Although XSD files are managed independent from the Architecture TS, they shall conform to the following rules:

1) Each Resource Type will be defined in a separate XSD file. The name of that file should be prefixed with ‘CDT-‘ and followed by the resource type name, version of the Core Protocol TS, and date of update. Each Resource Type file will contain a single Global Element Declaration whose name is the name of the Resource Type as defined in Architecture TS[7]. This means that the root element of a Resource (when represented in XML) contains an m2m: (or equivalent) namespace prefix.
2) The root element of each resource shall have an attribute called “name” which gives an identifier for that particular resource instance. A URI to the resource instance can be constructed by taking the URI of its parent and appending /<name> where <name> is the value of the name attribute.
3) Each resource attribute is represented as a child element of the top level element, and shall not have any child elements. It shall be declared as an element that is local to the resource that contains it, and so does not have a namespace prefix in any XML representation of the resource.
4) Each child resource may be represented as a child element of the top level element (in which case the resource schema should refer to the child’s resource type definition using ‘ref’ attribute) or it may be referenced via a URI. The designer of the resource schema should decide, on a case by case basis, whether it is appropriate to include the child element inline (via the first approach) or to reference it via a URI (the second approach) or whether to permit either.
5) Each attribute should be declared to use either one of the simple data types listed in section 6.2.1, or 6.2.2 or a data type derived by restriction from one of the types listed in 6.2,1 or 6.2.2.
6) Common ‘Simple types’ are collected as dedicated XSD file, which is named ‘ CDT-simple_types-<version>-<date>.xsd’
7) With the exception of CSEBase, all Resource types will extend one of the XML complex types defined in the file CDT-commonTypes-v1_0<date>.xsd
8) The resource-specific attributes and child resources shall appear as an XSD sequence, with their order being detemined by the order shown in the tables in clause 9.6 of [7].
Table 1 List of oneM2M Resource Data Types
	Data Type ID
	File Name
	Where defined
	Notes

	Simple Types
	CDT-simpleType-v1_0_0-<date>.xsd
	6.2.1.1.1
	

	CommonTypes
	CDT-commonTypes-v1_0_0-<date>.xsd
	
	

Editor’s Note: Actual data entries should be filled in
6.2.4.1. regularResourceType
Description
This type definition includes the common attributes used by the majority of M2M resources. It is included in CDT-commonTypes-v1_0_0-<date>.xsd
Reference
See Clause 9.6.1 of [7].
Usage Example

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace=http://www.onem2m.org/xml/protocols
 xmlns:m2m=http://www.onem2m.org/xml/protocols

elementFormDefault="unqualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="common_types-v1_0_0-20140409.xsd" />

<xs:include schemaLocation="CDT-instance-v1_0_0-20140409.xsd" />

<xs:include schemaLocation="CDT-subscription-v1_0_0-20140409.xsd" />

<xs:element name="container">

<xs:complexType>

<xs:complexContent>
 <!--
Inherit Common Attributes from regularResourceType -->

<xs:extension base="m2m:regularResourceType">

<xs:sequence>

 <!--

Resource Specific Attributes -->

<xs:element name="maxNrOfInstances" type="xs:nonNegativeInteger" minOccurs="0" />

<xs:element name="maxByteSize" type="xs:nonNegativeInteger" minOccurs="0" />

<xs:element name="maxInstanceAge" type="xs:nonNegativeInteger"
minOccurs="0" />

<xs:element name="currentNrOfInstances" type="xs:nonNegativeInteger" />

<xs:element name="currentByteSize" type="xs:nonNegativeInteger" />

<xs:element name="latest" type="xs:anyURI" minOccurs="0" />

<xs:element name="locationID" type="xs:anyURI" minOccurs="0" />

<xs:element name="ontologyRef" type="xs:anyURI" minOccurs="0" />

<!--

Child Resources -->

<!-- Instances are included inline in the parent -->

<xs:element ref="m2m:instance" minOccurs = "0" maxOccurs="unbounded"/>

<!-- Subscriptions can either be included inline or referenced by URI -->

<xs:choice>

 <xs:element ref="m2m:subscription" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="subscription" type="xs:anyURI" minOccurs="0"

 maxOccurs="unbounded"/>

</xs:choice>

<!-- Containers are always referenced by URI -->

 <xs:element name="container" type="xs:anyURI" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:element>
</xs:schema>

Editor’s Note: This is example of description for each Common Data Type, and remove this sub clause when actual entries are added.
6.2.4.2. announceableResourceType

Description
This type definition includes the common attributes used by M2M resource types that are capable of being announced. In addition to the attributes of a regularResource, It includes (as optional) the common attributes that are used by the announcement mechanism.
It is included in CDT-commonTypes-v1_0_0-<date>.xsd
Reference
See Clause 9.6.1 of [7].

Usage Example

6.2.4.3. subordinateResourceType

Description
This type definition includes the common attributes used by M2M resource types that are subordinate children over other resource types (for example the Instance child of a container). It excludes attributes like expirationTime, which aren’t defined for such resources.

It is included in CDT-commonTypes-v1_0_0-<date>.xsd
Reference
See Clause 9.6.1 of [7].

Usage Example

�What are these names used for?

�Do we need this?

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC)
Page 7 of 10

