[image: image18.png]
	oneM2M
Technical Specification

	Document Number
	oneM2M-TS-0010-MQTT Protocol Binding-V-0.1.2

	Document Name:
	MQTT Protocol Binding Technical Specification

	Date:
	2014-Apr-11

	Abstract:
	 This specification will cover the protocol specific part of communication protocol used by oneM2M compliant systems as ‘MQTT binding’

This Specification is provided for future development work within oneM2M only. The Partners accept no liability for any use of this Specification.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

No part of this document may be reproduced, in an electronic retrieval system or otherwise, except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

© 2014, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC).

All rights reserved.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
4
2
References
4
2.1
Normative references
4
2.2
Informative references
4
3
Definitions, symbols, abbreviations and acronyms
5
3.1
Definitions
5
3.2
Symbols
5
3.3
Abbreviations
5
3.4
Acronyms
6
4
Conventions
6
5
Introduction
6
5.1
Use of MQTT
6
5.2
Binding overview
6
6
Protocol Binding
6
7
Security
7
Annex A (Informative): Overview of MQTT
8
A.1
MQTT features
8
A.2
MQTT implementations
8
A.3
MQTT Details
9
A.3.1
Addressing a message – Topics and Subscriptions
9
A.3.2
Reliability
10
A.3.3
Retained Messages
10
Annex <y>: Bibliography
10
History
11

1
Scope

The present document specifies the binding of Mca and Mcc primitives (message flows) onto the MQTT protocol. It specifies
1. How a CSE or AE connects to MQTT
2. How an Originator (CSE or AE) formulates a Request as an MQTT message, and transmits it to its intended Receiver
3. How a Receiver listens for incoming Requests

4. How that Receiver can formulate and transmit a Response
The Scope shall not contain requirements.

2
References

The following text block applies.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

Clause 2.1 only shall contain normative (essential) references which are cited in the document itself. These references have to be publicly available and in English.
The following referenced documents are necessary for the application of the present document.
· Use the EX style, enclose the number in square brackets and separate it from the title with a tab (you may use sequence fields for automatically numbering references, see clause A.4: "Sequence numbering") (see example).

[1]
MQTT Version 3.1.1. Edited by Andrew Banks and Rahul Gupta. 12 December 2013. OASIS Committee Specification Draft 01 / Public Review Draft 01. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd01/mqtt-v3.1.1-csprd01.html.
[2]
oneM2M TS-0001: Architecture TS 0.3.1
[3]
oneM2M TS-0004: Core Protocol Specification (on going work)

[4]
IETF RFC 793. Postel, J. Transmission Control Protocol. September 1981. http://www.ietf.org/rfc/rfc793.txt

[5]
IETF RFC 5246. Dierks, T. The Transport Layer Security (TLS) Protocol V1.2, August 2008 http://tools.ietf.org/html/rfc5246
[6]
IETF RFC 6455. Fette, I. The WebSocket Protocol, December 2011 http://tools.ietf.org/html/rfc6455

2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
· Use the EX style, add the letter "i" (for informative) before the number (which shall be in square brackets) and separate this from the title with a tab (you may use sequence fields for automatically numbering references).
 [i.1]
oneM2M Drafting Rules (http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc)
3
Definitions, symbols, abbreviations and acronyms
Delete from the above heading the word(s) which is/are not applicable.
3.1
Definitions

Clause numbering depends on applicability.

· A definition shall not take the form of, or contain, a requirement.

· The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below).

· The terms and definitions shall be presented in alphabetical order.
For the purposes of the present document, the following terms and definitions apply:

Originator [2]: The actor that initiates a Request. An Originator can either be an Application or a CSE.
Receiver [2]: The actor that receives the Request. A Receiver can be a CSE or an Application.
Resource [2]: A uniquely addressable entity in oneM2M System such as by the use of a Universal Resource Identifier (URI). A resource can be accessed and manipulated by using the specified procedures.
3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the following abbreviations given in [2] apply:
ADN
Application Dedicated Node
ADN-AE
AE which resides in the Application Dedicated Node

AE
Application Entity

ASN
Application Service Node

ASE-AE
Application Entity that is registered with the CSE in the Application Service Node

ASN-CSE
CSE which resides in the Application Service Node

CSE
Common Service Entity

CSF
Common Service Function

EF
Enabler Function

IN
Infrastructure Node

IN-AE
Application Entity that is registered with the CSE in the Infrastructure Node
IN-CSE
CSE which resides in the Infrastructure Node
MN
Middle Node

MN-CSE
CSE which resides in the Middle Node

NSE
Network Service Entity

In addition the following abbreviations apply:
TLS
Transport Level Security
Abbreviation format

<ABREVIATION1>
<Explanation>

<ABREVIATION2>
<Explanation>

<ABREVIATION3>
<Explanation>

3.4
Acronyms

Acronyms should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Acronym format

<ACRONYM1>
<Explanation>

<ACRONYM2>
<Explanation>

<ACRONYM3>
<Explanation>

4
Conventions

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
Introduction
5.1
Use of MQTT
This clause profiles the way that the MQTT protocol is used by the Binding. For more information on MQTT itself see Appendix A or refer to the MQTT specification [1].

MQTT includes reliability features which allow recovery from loss of network connectivity without requiring explicit involvement of the applications that are using it, however to do this it requires an

MQTT requires an underlying network protocol that provides ordered, lossless, bi-directional connections, but the MQTT specification [1] does not mandate a particular underlying protocol. For the purposes of the current specification, we restrict the choice of underlying protocol: it shall be one of the following:

· Raw TCP/IP [3]

· TCP/IP with Transport Level Security (TLS) [4]

· WebSocket [5] – either with or without the use of TLS

The binding makes use of MQTT to provide reliable two-way communications between two parties (AEs and CSEs). It uses the following features of MQTT:

· Durable Sessions, providing Store and Forward in cases where network connectivity is not available

· MQTT’s “QoS 1” message reliability level. This provides reliability without incurring the overhead implied by QoS 2.

· NAT traversal (neither of the two parties is required to have prior knowledge of the other party’s IP address)

· Dynamic topic creation and wild-carded subscription filters

It does not use the following features:

· One-to-many publish/subscribe

· Retained Messages

· Will Messages

· QoS 0 or QoS 2 message reliability levels

5.2 Binding overview
5.3 5.2.1 Introduction
The MQTT protocol binding specifies how the Mca or Mcc request and response messages are transported across the MQTT protocol. Both communicating parties (AEs and CSEs) typically make use of an MQTT client library, and the communications are mediated via the MQTT server. There is no need for the client libraries or the server to be provided by the same supplier, since the protocol they use to talk to each other is defined by the MQTT specification [1].

Furthermore, the binding does not assume that the MQTT client libraries or server implementations are necessarily aware that they are being used to carry Mca, Mcc or any other oneM2M-defined primitives.

The binding is defined in terms of the MQTT protocol flows that take place between the client libraries and the MQTT server in order to effect the transport of an Mca or Mcc message.
There are two scenarios depending on the location of MQTT server: MQTT server co-located within a node, and MQTT server located independently from nodes.

5.3.1 5.2.2 Scenarios

5.3.2 5.2.2.1 MQTT server co-located within a node

[image: image2]

Figure 5.2.2.1-1 MQTT server co-located scenario
Figure 5.2.2.1-1 shows a protocol segment view of the MQTT server co-located scenario. In this scenario, all oneM2M nodes (ADN, ASN, MN, IN) include a MQTT client. MQTT servers are provided within MN and IN.

In this scenario, the protocol segments are illustrated as follows:

	Protocol Segment
	oneM2M Message Transported
	MQTT Interaction

	PS1
	Mca (AE of ADN to CSE of IN)
	Client in ADN to Server in IN

	PS2
	Mca (AE of ADN to CSE of MN)
	Client in ADN to Server in MN

	PS3
	Mcc (CSE of ASN to CSE of MN)
	Client in ASN to Server in MN

	PS4
	Mcc (CSE of ASN to CSE of IN)
	Client in ASN to Server in IN

	PS5
	Mcc (CSE of MN to CSE of MN)
	Client in MN to Server in MN

	PS6
	Mcc (CSE of MN to CSE of IN)
	Client in MN to Server in IN

	PS7
	Mcc’ (CSE of IN to CSE of IN)
	Client in IN to Server in IN

5.3.3 5.2.2.2 MQTT server located independently from nodes

[image: image3]

Figure 5.2.2.2-1 MQTT server independently located scenario
Figure 5.2.2.2-1 shows a protocol segment view in which the MQTT server is located independently from the oneM2M nodes. In this scenario, all oneM2M nodes (ADN, ASN, MN, IN) include a MQTT client. MQTT servers exists independently, which means the servers are located outside of the nodes.
In this scenario, the protocol segments are illustrated as follows:

	Protocol Segment
	oneM2M Message Transported
	MQTT Interaction

	PS1
	Mca (AE of ADN to CSE of IN)
	Client in ADN to Server

	PS2
	Mca (AE of ADN to CSE of MN)
	Client in ADN to Server

	PS3
	Mcc (CSE of ASN to CSE of MN)
	Client in ASN to Server

	PS4
	Mcc (CSE of ASN to CSE of IN)
	Client in ASN to Server

	PS5
	Mcc (CSE of MN to CSE of MN)
Mcc (CSE of MN to CSE of ASN)
Mca (CSE of MN to AE of ADN)
	Client in MN to Server

	PS6
	Mcc (CSE of MN to CSE of MN)
	Client in MN to Server

	PS7
	Mcc (CSE of IN to CSE of MN)
Mcc (CSE of IN to CSE of ASN)

Mca (CSE of IN to AE of ADN)
	Client in IN to Server

	PS8
	Mcc’ (CSE of IN to CSE of IN)
	Client in IN to Server

The next four sections show the four configurations in which the MQTT binding can be used in the co-located scenario, followed by similar configurations in the independently-located scenario.
Note: Other configurations are possible, but they are currently out of scope (this is FFS).
5.2.3 Configurations
5.2.3.1

AE to IN

This configuration, illustrated in Figure 5.2.3.1-1, allows an AE to connect to an IN via MQTT.

[image: image4.emf]IN-CSE

ADN-AE or IN-AE

Mcarequestand response

messages transportedover MQTT

MQTT Server

MQTT client

library

MQTT client

library

Figure 5.2.3.1-1 Using MQTT between AE and IN-CSE

The MQTT server is co-located with the IN-CSE and allows connection of the ADN-AEs (typically devices) and/or IN-AEs. It can store and forward messages if there’s a gap in the connectivity with the devices. Note that the AEs each establish their own separate TCP/IP connection with the MQTT server. Thus the server must have an accessible IP address, but AEs need not have.

5.2.3.2

AE to MN

This configuration, illustrated in Figure 5.2.3.2-1, allows an ADN-AE to connect to an IN via MQTT.

[image: image5.emf]ADN-AE

Mcatransportedover MQTT

Mccusinga non-MQTT protocol

MN-CSE

Field Domain

IN-CSE

Infrastructure Domain

MQTT client

library

MQTT Server

MQTT client

library

Figure 5.2.3.2-1 Using MQTT between AE and MN-CSE

This configuration is very similar to the AE-IN configuration shown in 5.2.3.1, except that the MQTT server is hosted on the MN rather than the IN. Onwards connection to the IN-CSE is via a different transport protocol.

5.2.3.3

MN to IN

This configuration, illustrated in Figure 5.2.3.3-1, allows an MN to connect to an IN via MQTT.

[image: image6.emf]MQTT client

library

ADN-AE

Mcausinga non-MQTT protocol

Mcctransportedover MQTT

MN-CSE

Field Domain

IN-CSE

MQTT Server

MQTT client

library

Infrastructure Domain

Figure 5.2.3.3-1 Mcc using MQTT between MN and IN

The MQTT server is co-located with the IN-CSE and allows connection of the MNs (typically in-field gateway boxes). It can store and forward messages if there’s a gap in the connectivity with the gateways. Note that the MNs each establish their own separate TCP/IP connections with the MQTT server. Thus the server must have an accessible IP address, but MNs need not have.

5.2.3.4

AE to MN to IN

This configuration, illustrated in Figure 5.2.3.4-1, is a combination of the previous two.

[image: image7.emf]MQTT client library

ADN-AE

Mcatransportedover MQTT

Mcctransportedover MQTT

MN-CSE

Field Domain

IN-CSE

MQTT Server

MQTT client

library

Infrastructure Domain

MQTT client

library

MQTT Server

Figure 5.2.3.4-1 Mca and Mcc both using MQTT

In this configuration the two MQTT servers are independent from each other (that is to say they don’t have a shared topic space). Any interactions between the ADN-AE and the IN-CSE are mediated by the MN-CSE.

5.2.3.5

AE to IN (Independent scenario)
This configuration, illustrated in Figure 5.2.3.5-1, allows an AE to connect to an IN via MQTT.

[image: image8]

Figure 5.2.3.5-1 Using MQTT between AE and IN-CSE

The MQTT server is an independent entity, located outside of the nodes. In order to deliver Mca messages, MQTT clients within ADN-AE/IN-AE and IN-CSE connect to the MQTT server. After the clients establish TCP/IP connection with the MQTT server, Mca messages between ADN-AE/IN-AE and IN-CSE can be transported via the MQTT server.
5.2.3.6

AE to MN (Independent scenario)
This configuration, illustrated in Figure 5.2.3.6-1, allows an ADN-AE to connect to an IN via MQTT.

[image: image9]

Figure 5.2.3.6-1 Using MQTT between AE and MN-CSE

In this configuration, the MQTT server is an independent entity, located outside of the nodes. MQTT clients within ADN-AE and MN-CSE are connected to the MQTT server, and the MQTT server stores and forwards the Mca messages between ADN-AE and MN-CSE. In addition, this figure shows that the onwards connection to the IN-CSE is via a different transport protocol.

5.2.3.7

MN to IN (Independent scenario)
This configuration, illustrated in Figure 5.2.3.7-1, allows an MN to connect to an IN via MQTT.

[image: image10]

Figure 5.2.3.7-1 Mcc using MQTT between MN and IN

In this configuration, the MQTT server is an independent entity, located outside of nodes. Mcc message delivery between MN-CSE and IN-CSE are performed via the independently located MQTT server. As introduced in the previous sections, in order to send messages, each MQTT client within MN-CSE and IN-CSE connects to the MQTT server and Mcc messages are transported via MQTT server.
5.2.3.8

AE to MN to IN (Independent scenario)
This configuration, illustrated in Figure 5.2.3.8-1, is a combination of the previous two.

[image: image11]

Figure 5.2.3.8-1 Mca and Mcc both using MQTT

In this configuration, the MQTT clients of ADN-AE and MN-CSE and IN-CSE connect to the independently located MQTT server. Any interactions such as Mca or Mcc message delivery among the ADN-AE and the MN-CSE and the IN-CSE are mediated by the MQTT server.

6
Protocol Binding

In this section we define the key elements of the binding:

1. How a CSE or AE connects to MQTT

2. How an Originator (CSE or AE) formulates a Request as an MQTT message, and transmits it to its intended Receiver

3. How a Receiver listens for incoming Requests, and how it formulates and transmits a Response

4. How the Mca and Mcc CRUD operations map to MQTT messages

6.1 Connecting to MQTT

· In order to communicate, the two client parties (AE and CSE or CSE and CSE) shall connect to a common MQTT server. The MQTT server shall be hosted in one of the two nodes, following one of the configuration patterns shown in clause 5.2

NOTE: Other configuration patterns are FFS.

Once each party has located the address of the MQTT server, it then connects to it using the standard MQTT Connect protocol packet. The following additional considerations apply:

· The Connect packet contains a Client Id as described in section A.3.2. The Client Ids have to be unique at least among all clients that connect to a given MQTT server instance (this is a requirement imposed by the MQTT protocol). This condition will be satisfied if an AE uses its App-Inst-ID and a CSE uses its CSE-ID. See Clause 7 of TS-0001 [2] for a discussion of these Identifiers. The prefix A:: or C:: shall be added to the ID to show whether it is an App-Inst-ID or a CSE-ID as these ID spaces are not distinct.

· A client shall set the “Clean Session” flag in the Connect Packet to false. This means that MQTT Session state related to that client will be retained by the MQTT Server in the event of a disconnection (deliberate or otherwise) of that client.

· A client shall not set the “Will Flag”, so Will Messages are not enabled

· A client may choose to provide a non-zero MQTT KeepAlive value or to provide a KeepAlive of 0 (this disables the MQTT KeepAlive)

NOTE: An Infrastructure Provider might wish to specify and enforce a policy that sets a lower bound on the KeepAlive that can be used on portions of its network. The mechanisms for this are FFS.

· The MQTT server may require that a client provides a User Name and a password (or other credential). For more information see Clause 7.

NOTE: We might want to use the Will Message to allow a client’s connection status to be tracked. This is FFS.

NOTE: Also FFS is a discussion of connection strategy, for example a client might choose to keep the MQTT connection open permanently (restarting it as soon as possible after any unforeseen connection loss), it might choose to connect only when it wants to act as an Originator, or it might choose to connect on some kind of schedule.

Once a client has connected to the MQTT server it can then communicate (subject to authorisation policies) with any other client connected to its server. There is no need for it to create another connection if it wants to communicate with a different counter-party.

When a client determines that it no longer wishes to participate in an MQTT Session with its MQTT Server it shall perform the following steps:

· Disconnect from that server, if it is currently connected

· Reconnect with the cleanSession flag set to true

· Disconnect again

These steps delete any state that the MQTT server might be holding on behalf of the client.

6.2 Sending and Receiving Messages

6.2.1
Request and Response Messages

MQTT does not have a data model to describe or constrain the content of its Application Message payloads (to that extent it is similar to a TCP socket). Mca and Mcc request messages shall be serialized into XML following the serialization process defined in the Core Protocol specification [3].

Since oneM2M messages are idempotent, they should be sent with MQTT QoS 1.

Note: MQTT messages are subjected to a theoretical maximum message size of 256M, but it is good practice not to send messages that are bigger than a few Megabytes. If a larger amount of data needs to be sent, it should be segmented into multiple messages.

NOTE: This is FFS and is something that might need to be addressed in the Core Protocol specification

6.2.2
Sending a Request

A request is transmitted by sending it as an MQTT Publish protocol packet to the MQTT Server. It uses a Topic that identifies the Receiver of the request. The precise structure of this Topic is FFS, but an initial suggestion is:

/oneM2M/req/<to>

· “oneM2M” is a literal string identifying the topic as being used by oneM2M

· <to> is the URI of the target resource (it is assumed that this includes the AE or CSE id)

· “req” is a literal string identifying this as a request.

NOTE: It might be useful to include some other components in the topic name, such as the Operation type. In particular it might be useful to include a <fr> field for security purposes. This is FFS

6.2.3
Listening for and responding to a Request

A Receiver listens for requests arriving via MQTT by subscribing to its Topic (as described in the previous section).

When it receives a request, the receiver shall check the request expiration timestamp (if any) contained in the request, since it is possible that that time might have passed while the message was being stored by MQTT.

It then transmits a response by sending an MQTT Publish packet to a response topic. This takes the form

/oneM2M/resp/<to>

· “oneM2M” is a literal string identifying the topic as being used by oneM2M

· <to> is the URI of the originator of the request (or the rd information from the request)

· “resp” is a literal string identifying this as a response.

The originator (or other interested party) must subscribe to this topic if it is to see the response.

6.2.2 Mapping the CRUD operations

Each MQTT message bearing a oneM2M Request shall contain the <op> parameter to indicate whether it is a Create, Read, Update or Delete. The topic used indicates target resource ID. In the case or Read, Update or Delete this is straightforward, as there should be a resource already in existence. In the case of Create, the Originator will publish to a topic that hasn’t previously been used, so in order to see that (and thus be able to process the Create), the CSE will subscribe using the wildcarded topic filter /oneM2M/req/#.
7
Security

This clause lists MQTT-specific security considerations
<PAGE BREAK>
Annex A (Informative): Overview of MQTT
This annex provides some background information on MQTT that might by useful to a reader of the normative clauses of this TS. See reference [1] for the definitive source of information about the protocol itself.
A.1
MQTT features

MQTT is a light weight publish/subscribe messaging transport protocol, particularly well suited to event-oriented interactions. It was specifically designed for constrained environments such as those found in Machine to Machine (M2M) and Internet Of Things (IoT) contexts where a small code footprint is required and/or network bandwidth is at a premium.

MQTT includes reliability features which allow recovery from loss of network connectivity without requiring explicit involvement of the applications that are using it, however it does require an underlying network protocol that provides ordered, lossless, bi-directional connections.

The features of MQTT include:

· The use of the publish/subscribe message pattern which provides one-to-many message distribution and decoupling of applications. This is described further in Section 5.1.1.

· Bidirectional communications. An entity can subscribe to receive messages without having a reliable IP address. This could be used to allow unsolicited requests to be sent to a Receiver, or an asynchronous response to be sent to an Originator, where the Originator or Receiver does not have an externally accessible IP address. It thus eliminates the need for long polling and can reduce the need for triggering.

· A messaging transport that is agnostic to the content of the payload. The message payload can be text or binary.

· A Session concept that can survive loss of network connectivity and can persist across multiple consecutive network connections. Messages can be stored and subsequently forwarded when connectivity is restored.

· Three levels of reliability (referred to as “qualities of service”) for message delivery within a Session:

· "At most once", where messages are delivered according to the best efforts of the operating environment. Message loss can occur. This level could be used, for example, with ambient sensor data where it does not matter if an individual reading is lost as the next one will be published soon after.

· "At least once", where messages are assured to arrive but duplicates might occur. This is best suited to messages which have idempotent semantics

· "Exactly once", where message are assured to arrive exactly once. This level could be used, for example, with billing systems where duplicate or lost messages could lead to incorrect charges being applied.

· A small transport overhead and protocol exchanges designed to minimize network traffic, with consequent additional savings on battery power when compared to HTTP.

· A Retained Message option, allowing new subscribers to get the last message to have been published on a topic prior to their subscription.

· A mechanism to notify interested parties when an abnormal disconnection occurs.

A.2
MQTT implementations

Like HTTP, the MQTT protocol is asymmetric in that it distinguishes between two different roles: client and server.

In MQTT terms, a Client is a program or device that uses MQTT. It always establishes the Network Connection to the Server. A Client can

•
Publish application messages that other Clients might be interested in.

•
Subscribe to request application messages that it is interested in receiving.

•
Unsubscribe to remove a request for application messages.

•
Disconnect from the Server.

An MQTT Server is an entity that accepts connections from Clients. Unlike HTTP it generally does not run any application logic, instead an MQTT Server acts as an intermediary between Clients publishing application messages and the Clients which have subscribed to receive them.

The MQTT specification [1] recommends the use of IANA registered ports 1883 (MQTT over raw TCP/IP) and 8883 (MQTT running over TLS).

Although the MQTT protocol is relatively simple to implement, applications normally make use of pre-built implementations:

· The applications themselves link to libraries that provide the MQTT client functionality. Libraries are available for a variety of programming languages and operating environments

· The MQTT server functionality can be provided by a standalone software process (possibly running on a server that is remote from the clients), a hardware appliance or a cloud-hosted MQTT service.

The Eclipse foundation through their M2M working group, provides open source MQTT client code via its Paho Project, and an open source server implementation via its Mosquitto project. Other open source and commercial implementations are also available.

A.3
MQTT Details

This clause discusses some aspects of MQTT in greater detail
A.3.1
Addressing a message – Topics and Subscriptions

The MQTT protocol is based on the principle of publishing messages and subscribing to topics, or "pub/sub". Multiple clients connect to an MQTT server and subscribe to topics that they are interested in by sending an MQTT request protocol packet to the server. Clients also connect to the server and publish messages to the server, each message being associated with a topic. Many clients can subscribe to the same topics. The combination of the MQTT protocol and its server provides a simple, common interface for clients to connect to. A publisher can publish a message once and it be received by multiple subscribers.
[image: image12.png]
Figure 5.1 MQTT publish-subscribe messaging
A Message in MQTT is associated with a topic when it is published. Topics are structured into topic trees, which are treated as hierarchies, using a forward slash (/) as a separator. This allows arrangement of common themes to be created. Topics and topic trees can be created administratively, although its more common for a server to create a topic on-demand (subject to security policies) when a client first attempts to publish or subscribe to it.

A client registers its interest in topics by providing one or more topics filters. A topic filter can be a simple topic name, or it can contain special “wildcard” characters, which allow clients to subscribe to multiple topics at once, within a single level or within multiple levels in a topic tree.

A.3.2
Reliability

MQTT defines three levels of Quality of Service (QoS). The QoS defines how hard the server & client will try to ensure that a message is received. Messages can be sent at any QoS level, and this affects the way the message is transmitted from the client to the server. When a client requests a subscription, it requests the maximum QoS at which it wants to receive messages on that subscription. This controls the way that messages matching that subscription are transmitted from the server to that client. The QoS used to transmit a message from the server is always less than or equal to the QoS used to transmit it to the server. For example, if a message is published at QoS 2 and a client is subscribed with QoS 0, the message will be delivered to that client with QoS 0. If a second client is also subscribed to the same topic, but with QoS 2, then it will receive the same message but with QoS 2. For a second example, if a client is subscribed with QoS 2 and a message is published on QoS 0, the client will receive it on QoS 0.

QoS 0 messages are the least reliable. They are sent from client to server (or server to client) with no acknowledgement flowing in the opposite direction. A server is free to discard such messages.

QoS 1 is intended for idempotent messages. These messages are transmitted with a short packet ID. When a client (or server) receives such a message it sends an acknowledgement packet back to the message sender. The sender is required to save a copy of that message until it receives the acknowledgement, and if there is a loss of network connectivity before it receives that acknowledgement it is required to resend the message when connectivity is restored.

QoS 2 provides exactly once delivery. It uses a two-step acknowledgement protocol, in which both steps can be repeated an arbitrary number of times (if there’s a loss of connectivity) without causing duplication of the original application message. Both client and server are required to save a copy of the message during this process.

In summary, the higher levels of QoS are more reliable, but involve higher latency and have higher bandwidth requirements.

In order to be able to continue with the QoS1 or QoS2 delivery protocols after a network reconnection, the server needs to have a way of distinguishing the individual clients that connect to it. It does this by means of an identifier called a Client Id. A client provides this Id when it first connects and the server records it and uses it as a key to any server-side state (such as the status of incomplete message delivery) associated with that client. When the the client reconnects it presents the same Id, and that allows message delivery to complete. The client Id in effect represents the Id of the MQTT Session that is maintained between the client and the server.

A.3.3
Retained Messages
When a client publishes a message it can request that the message be retained. This means that the server will keep the message even after sending it to all current subscribers. If a new subscription is made that matches the topic of the retained message, then the message will be sent to the client. At most one such message is retained for any single topic. This is useful as a "last known good" mechanism. If a topic is only updated infrequently (such as for “report by exception”), then without a retained message, a newly subscribed client might have to wait a long time to receive an update. With a retained message, the client will receive an instant update.
<PAGE BREAK>
The following text is to be used when appropriate:

Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself
It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	V1.1.1
	<dd-Mmm-yyyy>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V.0.1.0
	2014-02-19
	Rapporteur input - Initial Draft Skeleton

	
	
	

	
	
	

	
	
	

	
	
	

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC)
Page 2 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

[image: image1.png][image: image13.png][image: image14.png][image: image15.png][image: image16.png][image: image17.png]