Doc# oneM2M-Template-Input-Contribution.doc

	INPUT CONTRIBUTION

	Group Name:*
	WG3

	Title:*
	TR-50 Protocol Description

	Source:*
	Mihai Voicu, ILS Technology, mvoicu@ilstechnology.com

	Contact:
	Mihai Voicu, ILS Technology, mvoicu@ilstechnology.com

	Date:*
	2014-06-03

	Abstract:*
	Description of the TR-50 protocol to be included in the Protocol TR

	Agenda Item:*
	Contribution

	Work item(s):
	TR-0009

	Document(s)

Impacted*
	PRO-2014-0233R01

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	This contribution will fulfill the needs for the TR-50 protocol details in the TR-0009

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
Below are samples of the styles to be used in this document
>>>>>>>>>>>>>>>>>> START <<<<<<<<<<<<<<<<<<<<<
6.3
TIA TR-50 Protocol

6.3.1
Background

TR50 Protocol has been designed for easy to use. The protocol is based on a simple architecture that emphases on the connection between the entities rather than forcing a specific architecture.

The intent of the protocol was to be a binding protocol not a transport protocol. In the current architecture of the protocol, the interconnectivity between different nodes can be achieved in two way:

1. Direct connection – in this case devices and applications (node) connect one to each other directly.

2. Using a hub and spoke configuration – in this case devices and applications (nodes) connect to a broker.

In both case, the connections are established using a transport protocol (e.g. MQTT, HTTP) and can use TLS to secure the communication. The TR50 protocol is using these, established, connections to exchange information. The transport protocol incorporates the TR50 protocol in the payload. The TR50 is based on JSON format for easy to understand and debug during the implementation.
6.3.2
Status

The TIA TR-50 Protocol has been published by the TIA TR-50 Smart Device Communication engineering committee in December 2012.
6.3.3
Category and Architectural Style

TR-50 is an M2M binding protocol. The protocol is session oriented and authentication credentials must be supplied every time a command is executed.

The protocol consist of 2 grouped commands are:

· Basic Commands

· Security Commands

The architecture includes:

· One or more host nodes

· One or more intermediate nodes

· One or more devices

· An Authentication/Authorization/Accounting node

6.3.4
Intended use

The protocol is designed to be used in conjunction with one of the common publisher/subscriber transport protocol like MQTT or it can be used in conjunction with a simple transport protocol like HTTP. Since the protocol is based on JSON, it can be used with any session oriented transport protocols.

6.3.5
Deployment Trend

The TR-50 protocol is the key feature for horizontal platforms delivering powerful, scalable and reliable architectures.

6.3.6
Key features

The TR-50 key features are:

· Flexible to the use of JSON format

· Extensible – commands/methods can be added on the core protocol or can be added specific per implementation

· Flexible architecture – protocol takes advantage of the flexible architecture to allow simple or complex implementations.

· Protocol can used any data format due to the on-demand definitions.

· Text-based protocol that can be implemented by simple devices as well as complex applications.

6.3.7
Protocol Stack

The TIA TR-50 Protocol is based on a frame that is flexible to provide extensions for further enhancements and/or improvements.
6.3.7.1
Frame Details

The communication is based on:

· Requests

· Responses

6.3.7.2
Request Frame Details

The M2M request frames are based on a JSON structure and consist of two major clauses:

· Authentication – this is the place where the entire authentication items are placed.

· Command(s) – this is the place where the commands items are placed

Below is the structure of the OneM2M frame:

{

"auth": {

"applicationToken": "<application token>",

"sessionId": "<session token>"

},

"ref": {

"command": "<command keyword>",

"params": []

}

}

In order to minimize the traffic, it is possible to have M2M frames with multiple commands:

"ref1": {

"command": "<first command>",

"params": []

},

"ref2": {

"command": "<second command>",

"params": []

}

The description of the fields is presented in Table 6.3.1 below

	Name
	Description
	Type
	Mandatory

	auth
	Keyword. Identifies the authentication stanza in the M2M request frame
	String
	Yes

	applicationToken
	Keyword. Identifies the application making the request
	String
	Yes

	sessionId
	Keyword. Unique ID received after the use of the authentication services. Identifies the current session between the two entities
	String
	Yes

	ref1, ref2, ref3
	Identifies the commands that are in the request. Can be simple identifiers. They are not keyword. It is expected that the response will contain them.
	String
	Yes

	command
	Keyword. Identifies a known command that can be executed
	String
	Yes

	params
	Keyword. Identifies the parameters required by the command. The field must exist, but it can be empty.
	String
	Yes

Table 6.3.1 Request Frame Field Descriptions

6.3.7.3
Response Frame Details

The response frame is based on the JSON format and it has the following structure:

{

 "ref1": {

"success": true,

"params": []

 },

 "ref2": {

"success": false,

"errorCodes":

[

<errorCode1>,

<errorCode2>

]

"errorMessages":

[

<errorMessage>,

<errorMessage>

]

 },

}

· “ref1” response is an example for a positive return of a request

· “ref2” response is an example for an negative or error return of a request

The description of the fields is presented Table 6.3.2 below

	Name
	Description
	Type
	Mandatory

	ref1,ref2, ref3
	Identifies the request commands.
	String
	Yes

	success
	Keyword. Identifies the response. Can be true or false
	String
	Yes

	errorCodes
	Keyword. Identifies the error codes .
	
	

	errorMessages
	Keyword. Identifies the error message.
	String
	No

	params
	Keyword. Identifies the response parameters. Can be empty.
	String
	Yes

Table 6.3.2: Response Frame Field Descriptions

6.3.8
Data Model

>>> Data Model … types… inherited model…

Common data has been published which includes data types as:

· INT1, INT2, INT4, INT8, UINT1,

· UINT2, UINT4, UINT8, FLOAT4,

· FLOAT8, STRING, BOOL, BINARY (Base64 Encoded)
6.3.9
Security

The security of the protocol depends one two major factors:

1. The security of the transport protocol

2. The availability of intrinsic security commands/methods like:

· api.authenticate

· api.deauthenticate

· api.authorize

· api.deauthorize

6.3.10
Dependencies

TR50 Protocol depends on a transport protocols like HTTP or MQTT. The protocol can be used using direct socket communications via TCP or UDP.
The protocol uses the transport protocol to guarantee the delivery of the data between the nodes.

The protocol includes session oriented features to guarantee the proper functionality during the exchange of the information.
6.3.11
Benefits and Constraints

6.3.11.1
Benefits

· Text-based protocol – ability to be compressed over cellular networks

· JSON-based protocol – simple to understand and debug during the development phase

· Extensible – methods / commands can be added on demand

· Based on very loose architecture

· Suitable for publishing / subscribing architectures

6.3.11.2
Constraints

· TR-50 is not a transport protocol

· Dependent on a transport protocol

6.3.12
Support of oneM2M requirements

Support of oneM2M Requirements [i.2] by <protocol x> is shown in the following clauses:

NOTE: Many requirements from TS-0002 depend on the architecture of overall M2M system and TIA-TR50 TIA-4940-020 comprises one aspect of this system. To specifically compare with each requirement, one would need to take several assumptions about system components, and compliance would vary depending on behaviour of those other components. Thus, only a subset of the requirements are highlighted here.

6.3.12.1
Fully Supported Requirements

OSR-001,OSR-002,OSR-003,OSR-004, OSR-007,OSR-009,OSR-010, OSR-012,OSR-013,OSR-014,OSR-015,

OSR-017,OSR-019,OSR-020, OSR-021,OSR-022,OSR-023,OSR-024,OSR-025, OSR-027,OSR-029,OSR-030,

OSR-034,OSR-035,OSR-036,OSR-037, OSR-041,OSR-044,OSR-046,OSR-047,OSR-049,OSR-050, OSR-053,

OSR-054,OSR-055,OSR-056,OSR-057,OSR-059, OSR-064,OSR-065,OSR-066,OSR-067, OSR-071,OSR-072

6.3.12.2
Partially Supported Requirements

OSR-005, OSR-006, OSR-018, OSR-026, OSR-069, OSR-016, OSR-032, OSR-070

6.3.12.3
Disallowed Requirements

OSR-011,OSR-062,OSR-063,OSR-069, OSR-031,OSR-043,OSR-033,OSR-040,OSR-045,OSR-048,OSR-060, OSR-061, OSR-038,OSR-039,OSR-042, OSR-051, OSR-052

>>>>>>>>>>>>>>>>>> END <<<<<<<<<<<<<<<<<<<<<<<
© 2014 oneM2M Partners

Page 7 (of 7)

