[image: image1.png]
	oneM2M
Technical Specification

	Document Number
	0.3.2

	Document Name:
	HTTP Protocol Binding Technical Specification

	Date:
	2014-June-18

	Abstract:
	HTTP Protocol binding TS

This Specification is provided for future development work within oneM2M only. The Partners accept no liability for any use of this Specification.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

No part of this document may be reproduced, in an electronic retrieval system or otherwise, except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

© 2013, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC).

All rights reserved.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
4
2
References
4
2.1
Normative references
4
2.2
Informative references
4
3
Definitions, symbols, abbreviations and acronyms
4
3.1
Definitions
4
3.2
Symbols
5
3.3
Abbreviations & Acronyms
5
4
Conventions
5
5
Overview
5
5.1
Actors
6
5.2
Basic Flow (Blocking Request)
6
5.3
Basic Flow (Non-Blocking Request)
7
5.4
Notification using WebSocket
8
5.5
Authentication on HTTP Request Message
9
5.6
Overview of HTTP binding
9
6
High Level Mapping
10
6.1
HTTP Method Mapping
10
6.2
Status Code Mapping
10
8
Security Consideration
11
Proforma copyright release text block
11
Annexes
11
Annex <y>: Bibliography
12
History
12

1
Scope

The specification will cover the protocol specific part of communication protocol used by oneM2M compliant systems as ‘RESTful HTTP binding’.

The scope of this Work Item includes (not limited to as shown below):

-
Binding oneM2M Protocol primitive types to HTTP method

-
Binding oneM2M response codes (successful/unsuccessful) to HTTP resopnse codes

-
Binding oneM2M RESTful resources to HTTP resources

This specification is depending on Core API protocol specification (TS-0008) for data types.
EXAMPLE:
The present document provides the necessary adaptions to the endorsed document.
The Scope shall not contain requirements.

2
References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

[1]
 RFC2617: “HTTP Authentication: Basic and Digest Access Authentication”, IETF, June 1999
[2]
RFC6750: “The OAuth 2.0 Authorization Framework: Bearer Token Usage”, IETF, October 2012.
[3]
RFC6455:“The WebSocket Protocol”, IETF, December 2011.
[4]
IETF RFC2616 Hypertext Transfer Protocol - HTTP/1.1
[5]
oneM2M TS-0001: Architecture TS

[6]
oneM2M TS-0004: Core Protocol TS

2.2
Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
oneM2M Drafting Rules (http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc)
3
Definitions, symbols, abbreviations and acronyms
Delete from the above heading the word(s) which is/are not applicable.
3.1
Definitions

Clause numbering depends on applicability.

· A definition shall not take the form of, or contain, a requirement.

· The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below).

· The terms and definitions shall be presented in alphabetical order.
For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply:

Definition format

<defined term>: <definition>

If a definition is taken from an external source, use the format below where [N] identifies the external document which must be listed in Section 2 References.
<defined term>[N]: <definition>

example 1: text used to clarify abstract rules by applying them literally

NOTE:
This may contain additional information.

3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations & Acronyms
For the purposes of the present document, the following abbreviations and acronyms apply:

HTTP

Hyper Text Transfer Protocol
4
Conventions

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
Overview
This clause describes fundamental procedures which are required to a CSE, when it processes requests for performing CRUD+N operations against the resource[5], using HTTP-REST binding.The CSE implements the mechanism to accept Notification messages on behalf of the AE. This mechanism is enabled with AE Registration(clause 10.2.1.1 in [5]) at the begging of the system use.

The Registrar CSE also works to guard of the oneM2M system against unauthorized access from AEs, such as DoS attacks. The CSE will heck the identity of an AE, and should allow the request to operate upon only from successfully registered AE.

The issued request on HTTP-REST binding should be processed in one of two ways. There is Blocking Request and Non-Blocking Request(clause 8.2 in [5]). The Hosting CSEshould return a final result for Blocking Request as an HTTP responses, and it should not return a final result for Non-Blocking Request. In case of Non-blocking Request , the Hosting CSE should return a response only if the request is accepted (e.g. 202 Accepted status) or not, then Originator should fetch the final result of the request when the request were completed.
5.1
Basic Flow (Blocking Request)
The basic communication flow for ‘Blocking Request’ case between HTTP Client and HTTP Server, is shown below.

[image: image2.emf]HTTP ClientHTTP Server1. Connect to Server2. Establish TLS session3. Issue Request-14. Receive Response for Request-15. Issue Request-N6. Receive Response for Request-N7. DisconnectProcess Request-1Process Request-N

Figure 5.1-1 Basic Flow (Blocking Request)
In ‘Blocking Request’ case, the HTTP Client will receive final result(s) of request(s) from HTTP Server.
The Basic Flow is performed by following steps:

1. [Step 1] The HTTP Client connects to the targeted HTTP Server.

2. [Step 2] The TLS session between HTTP Client and HTTP Server is optionally established.
Note: Applying TLS on HTTP transport is strongly recommended.

3. [Step 3] The HTTP Client issues a HTTP request to targeted HTTP Server.

4. [Step 4] The HTTP Client should wait for a response from HTTP Server.

5. [Step 5] The HTTP Client may issue further HTTP Requests one by one, if those Requests is targeted on same HTTP Server.

6. [Step 6] The HTTP Client should wait for HTTP Server’s response until all issued requests are processed.
7. [Step 7] When HTTP Client receives all responses for issued request, HTTP Client can disconnect the connection to the HTTP Server.
5.2
Basic Flow (Non-Blocking Request)

The basic communication flow for ‘Non-Blocking Request’ case between HTTP Client and HTTP Server, is shown below.

[image: image3.emf]HTTP ClientHTTP Server1. Connect to Server2. Establish TLS session3. Issue Request-14. Receive Intermediate Response for Request-15. Issue Request-N6. Receive Intermediate Response for Request-N7. DisconnectAccept Request-1Accept Request-N

Figure 5.2-1 Basic Flow (Non-Blocking Request)

For ‘Non-Blocking Request’ case, the HTTP Client will not receive final result(s) of request(s) from HTTP Server. Instead, if the request was determined as acceptable, the status code ‘202 Accepted’ will be returned.

The Basic Flow is performed by following steps:

1. [Step 1] The HTTP Client connects to the targeted HTTP Server.
2. [Step 2] The TLS session between HTTP Client and HTTP Server is optionally established.
Note: Applying TLS on HTTP transport is strongly recommended.

3. [Step 3] The HTTP Client issues a HTTP request to targeted HTTP Server.

4. [Step 4] The HTTP Client should wait for a response (‘202 Accepted’) from HTTP Server.

5. [Step 5] The HTTP Client may issue further HTTP Requests one by one, if those Requests is targeted on same HTTP Server.

6. [Step 6] The HTTP Client should wait for HTTP Server’s response to confirm acceptance of non-blocking request(s).

7. [Step 7] When HTTP Client receives all responses for issued request, HTTP Client can disconnect the connection to the HTTP Server.

Note that the HTTP Client does not need to specify the request to be processed as non-blocking manner. When the Server determined the result of request cannot be return in short time period, the Server may returns ‘202 Accepted’ to let Client know the final response has to be retrieved by separate request. The HTTP Client may request the operation as ‘non-blocking request’ explicitly, but the HTTP Server may reject the request to avoid abuse of ‘non-blocking request’.
When the request was accepted by HTTP Server with ‘202 Accepted’ status code. The HTTP Client can get final result of non-blocking request(s) by ‘Non-Blocking Result Retrieval’.

[image: image4.emf]HTTP ClientHTTP Server1. Connect to Server2. (re)Establish TLS session3. issue request for getting result for Request-14. Receive status of Request-1 as response5. Issue request for getting result for Request-16. Receive final response for Request-17. DisconnectCheck status of Request-1Prepare result data

Figure 5.2-2 Basic Flow (Non-Blocking Result Retrieval)

The current status, or final result of ‘accepted non-blocking Request’ is performed by following steps:

1. [Step 1] The HTTP Client connects to the targeted HTTP Server.
2. [Step 2] The TLS session between HTTP Client and HTTP Server is optionally established.
Note: Non-expired TLS session may be reused.

3. [Step 3] The HTTP Client issues a HTTP request to targeted HTTP Server.

4. [Step 4] The HTTP Client should wait for a response (i.e. current status of request) from HTTP Server.

5. [Step 5] The HTTP Client may issue further HTTP Request to retrieve final result of non-blocking request from the HTTP Server.

6. [Step 6] The HTTP Client should wait for HTTP Server’s response to receive final result data for non-blocking request.
Note: If the Request was still on processing, ‘503 Service Unavailable’ should be returned.

7. [Step 7] When HTTP Client receives all responses for issued request, HTTP Client can disconnect the connection to the HTTP Server. [Step 7]
 5.3
Notification using WebSocket
WebSocket as described in RFC6455 can be used for transporting notifications to an AE/CSE. This can be useful when AE/CSE sent a notification which is not server-capable or cannot be reachable for delivery of unsolicited requests ..

The entity which is not server-capable (Receiver of notification message) shall provide reachability information for implementing retargeting mechanism as detailed in the Architecture TS.

Any CSE may provide the optional feature called ‘Notification using WebSocket described in this sub-clause. When the Notification using Web Scoket is provided, the AE will receive information to configure their own PoA.
An AE may establish a WebSocket a connection to notification hosting CSE, when AE needs to receive a notification message from the CSE.

When the new notification message has arrived, the notification event message will be sent to the AE as the data frame of WebSocket.

Editor’s Note: definition and data format of ‘notification event message’ is FFS.
Editor:s Note: Applicability of this solution to be considered in later in stage 3.
5.4
Authentication on HTTP Request Message
When sending the credential to be checked by Registrar CSE, “Proxy-Authorization” header should be used as specified in HTTP/1.1 (see RFC2617).
When sending the credential to be checked by Hosting CSE, ‘Authorization’ header should be used as specified in HTTP/1.1.

When the credential to be checked by Hosting CSE was the access_token which is compatible with OAuth 2.0 framework, the authentication schema ‘Bearer’ shall be used as specified in RFC6750.

5.5
Overview of HTTP binding

5.5.1
HTTP Version

HTTP 1.1 shall be supported by the present document.

5.5.2
HTTP REST Resource

5.5.2.1
Resource Representation
Each oneM2M resource shall be represented as an XML data structure within the Content field of a HTTP request or response.

Editor’s Note: Support for JSON resource representations is strongly recommended and currently under consideration for Release 1.
oneM2M resource representations shall be transported within the HTTP Content fields of CREATE (POST), UPDATE (PUT), and NOTIFY (POST) requests as well as successful RETRIEVE (GET) responses. oneM2M resource representations may also be transported in CREATE (POST) and UPDATE (PUT) responses for cases where the hosting CSE modifies one or more resource attributes of the representation transported in the request. No oneM2M resource representations shall be transported in DELETE requests or responses.

For any requests involving partial addressing and their corresponding responses, a partial oneM2M resource representation containing only the addressed attribute (or partial attribute) shall be transported.
5.5.3
Caching

5.5.4
Header Fields

Editor’s Note: Some HTTP header fields are to be added, sub-clauses below are provisional.
Editor’s Note: Binding of oneM2M Response Parameters (e.g. to, from, ot, rset, cs, ra) to oneM2M newly specified HTTP header fields is FFS.
5.5.4.1
Accept
An Originator shall use the Accept Header in requests to indicate which resource representation type it supports with respect to the request. The current release of this document supports application/xml content MIME type.

Editor’s Note: Support for application/json content MIME type is strongly recommended and currently under consideration for Release 1.

5.5.4.1
Content-Encoding

5.5.4.2
Content-Location
5.5.4.3
Location
A response to a CREATE method (POST) that contains a resource representation of the created resource shall include a Location header containing the URI of the created resource. A Location header shall not be present in any other requests or responses.
5.5.4.4
Content-Length
Any request or response containing Content shall also include a Content-Length header field containing the length of the Content in octets (8-bit bytes).

5.5.4.5
Content-Type
Any request or response containing Content shall also include a Content-Type header field containing the MIME type of the content (e.g. application/xml).

5.5.4.6
From

All requests shall include a From header field containing the oneM2M specified ID of the Originator (e.g. CSE-ID or AE-ID).
5.5.4.7
ETag

For responses containing a oneM2M resource representation an ETag header field should be included by the CSE. It is recommended that a CSE uses the e-tag mechanism defined in RFC 2616 [TBD] when assigning ETag values.

E-tags facilitate the use of conditional requests (i.e. using the if-match and if-none-match HTTP headers).
If a CSE supports including ETag headers, then the CSE shall support conditional requests.
5.5.4.8
X-M2M-RI

All requests and responses shall include a oneM2M defined header field called X-M2M-RI containing the M2M-Request-ID.
5.5.5
Request URI
All requests shall include a URI that contains the address of the targeted resource hosted on the targeted CSE.

5.5.6
Request URI Parameters
Requests may contain the following parameters passed within the URI query string.
Table 5.5.6-1: Request URI Parameters
	oneM2M Request Parameter
	HTTP Request URI Parameters

	Name (nm)
	nm

	Resource Type (ty)
	ty

	Originating Timestamp (ot)
	ot

	Request Expiration Timestamp (rqet)
	rqet

	Result Expiration Timestamp (rset)
	rset

	Operational Execution Time (oet)
	oet

	Response Type (rt)
	rt

	Result Content (rc)
	(rc)

	Event Category (ec)
	(ec)

	Delivery Aggregation (da)
	(da)

	Group Request Identifier (gid)
	(gid)

	Filter Criteria (fc)
	(fc)

	Discovery Result Type (Disrestype)
	(drt)

Editor’s Note: The set of supported Request URI parameters is FFS.

6
High Level Mapping
6.1
HTTP Method Mapping of Request Operations
The oneM2M operations shall be mapped as follows.
Table 6.1-1: HTTP Method Mapping

	oneM2M Operation
	HTTP Method

	Create
	POST

	Retrieve
	GET

	Update
	PUT

	Delete
	DELETE

	Notify
	TBD

Editor’s Note: Method mapping for Notify operation is FFS.

6.2
Status Code Mapping
6.2.1
Successful Status Codes

Table 6.2.1-1: Successful Status Code Mapping
	oneM2M Status Codes
	HTTP Status Codes

	STATUS_OK
	200

	STATUS_CREATED
	201

	STATUS_ACCEPTED
	202

	STATUS_DELETED
	TBD

	STATUS_CHANGED
	204

	STATUS_CONTENT
	205

Editor’s Note: contents in the table is FFS.

6.2.2
Un-successful Status Codes

Table 6.2.2-1: Un-successful Status Code Mapping
	oneM2M Status Codes
	HTTP Status Codes

	STATUS_BAD_REQUEST
	400

	STATUS_UNAUTHORIZED
	401

	STATUS_FORBIDDEN
	403

	STATUS_NOT_FOUND
	404

	STATUS_METHOD_NOT_ALLOWED
	405

	STATUS_NOT_ACCEPTABLE
	406

	STATUS_REQUEST_TIMEOUT
	408

	STATUS_REQUEST_ENTITY_TOO_LARGE
	413

	STATUS_UNSUPPORTED_MEDIA_TYPE
	415

	STATUS_INTERNAL_SERVER_ERROR
	500

	STATUS_NOT_IMPLEMENTED
	501

Editor’s Note: contents in the table is FFS.

Editor’s Note: the set of status codes will be considered to add/delete on Core Protocol TS.

Editor’s: futher detailed to be described in this protocol binding TS as FFS.
6.3 Common Operation Mapping

6.3.1 Compose Request Primitive (Originator AE/CSE)

The originator AE or CSE, shall compose a Request message for HTTP-REST protocol mapping.

6.3.1.1 Setting Standard Headers and Parameters

The Originator shall compose Request message as specified in HTTP/1.1(RFC2616)[(ref-RFC2616)] unless further requirements in use of oneM2M compliant M2M System described below.

6.3.1.1.1 Request-URI

The Request-URI parameter shall be set with the equivalent of the address for to parameter.

6.3.1.1.2 From

The From parameter shall be set with the Originator’s either AE-ID or CSE-ID which is applicable.

The Host parameter shall be set with the hostname or IP address with port number to communicate with the next-hop CSE.

6.3.1.1.3 Query String

The use of query string is described in clause (TBD).
Editor’s Note: Actual use of query string is FFS

6.3.1.1.4 Media Type

The Media Type shall be set with ‘application/onem2m-resource+xml’ or ‘application/onem2m-resource+json’ when oneM2M Resource Type is transferred.

6.3.1.2 Setting Private Extended Headers and Parameters

Editor’s Note: This clause shall be added if needed.

6.3.1.3 Setting Resource Content

Editor’s Note: detailed specification is FFS.

6.3.2 Send a Request to the Receiver CSE (Originator AE/CSE)

The originator AE or CSE, shall send a composed Request message for HTTP-REST protocol mapping following section 6 of HTTP/1.1(see details in section 6 ‘Connections’ of RFC2616[(ref-rfc2616)]) .

[image: image5.emf]IN-AE

IN-CSE

Step 1: IN-AE creates <AE> resource at IN-CSE

Method: POST

URI: http://cse01.m2m.sp1.com/CSE01Base

URI Query String: ?rt=AE&nm=ae01

From: http://ae01.m2m.sp1.com

X-M2M-RI:0001

Content-Type: application/xml

Content-Length: length of Content

Content: <AE> representation to create

Step 3: Response

Status: Created

Location: http://cse01.m2m.sp1.com/CSE01Base/ae01

Content-Type: application/xml

Content-Length: length of Content

ETag: “7845739”

X-M2M-RI:0001

Content: <AE> representation created

Step 2: Check access

controls, process request

and Create <AE> resource

for IN-AE

Figure 6.3-2 oneM2M HTTP Binding Example – AE-CSE Registration

8
Security Consideration
<Text>

Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, oneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex <A> (Informative/Normative):Remove Informative or Normative as appropriatTitle of annex (style H9)
<Text>

<PAGE BREAK>

Annex (Informative/Normative): Remove Informative or Normative as appropriateTitle of annex (style H9)
<Text>

B.1
First clause of the annex (style H1)
<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
The following text is to be used when appropriate:

Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself
It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	V1.1.1
	<dd-Mmm-yyyy>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	v.0.1.0
	2014-Jan-10
	Initial version of the TS

	v.0.1.1
	2014-Mar-04
	The first baseline TS with table of contents agreed with:
1. PRO-2014-0107R01-HTTP Binding TS TOC

	v.0.2.0
	2014-Apr-22
	Includes an agreed contribution at PRO#9.3 meeting:

1. PRO-2014-0125R01-HTTP_Basic_Flows

Includes agreed contributions at PRO#10 F2F meeting:
1. PRO-2014-0131R03-HTTP-REST Overview
2. PRO-2014-0147-HTTP_binding_TS_clause2_clause3
3. PRO-2014-0148R01-HTTP_binding_TS_clause5
4. PRO-2014-0149R02-HTTP_binding_TS_clause6_clause7
5. PRO-2014-0159R03-HTTP Authentication
6. PRO-2014-0160R03-WebSocket based Notification
Includes Rapporteur’s input:

1. Re-numbering clause numbers, figure numbers in clause 5 and a table number in clause 6.1

	v0.3.2
	2014-Jun-18
	Includes agreed contribution at PRO#10.6 and PRO#10.7 meetings:
1. PRO-2014-0201R02-CRUD_mapping_on_HTTP
2. PRO-2014-0207-more_mapping_of_HTTP_status_codes
Includes agreed contributions at PRO#11 meeting:

1. PRO-2014-0226R01-Send_Request_in_HTTP
2. PRO-2014-0240-TS-0009 cleanup

	
	
	

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC)
Page 14 of 17
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

_1467211881.vsd
Drag the side handles to change the width of the text block.

Text

Work In Progress

IN-AE

IN-CSE

MN-CSE

ADN-AE

Phase 3 - De-Announce – HTTP Binding

Work In Progress

IN-AE

IN-CSE

MN-CSE

ADN-AE

Phase 4 - Resource Discovery – HTTP Binding

IN-AE

Phase 1 - CSE Registration – HTTP Binding

IN-CSE

MN-CSE

ADN-AE

CSE Registration

Step 1: MN-CSE creates <remoteCSE> resource at IN-CSE
Method: POST
URI: http://cse01.m2m.sp1.com/CSE01Base
URI Query String: ?rt=remoteCSE&nm=remoteCSE02
From: http://cse02.m2m.sp1.com
X-M2M-RI:0001
Content-Type: application/xml
Content-Length: length of Content
Content: <remoteCSE> representation

IN-AE

IN-CSE

MN-CSE

ADN-AE

Container Retrieve

Phase 1 - Container Retrieve – HTTP Binding

Step 1: IN-AE retrieves <container> resource at IN-CSE
Method: GET
URI: http://cse01.m2m.sp1.com/CSE01Base/ae01/c01
From: http://ae01.m2m.sp1.com
X-M2M-RI:0001

Work In Progress

IN-AE

IN-CSE

MN-CSE

ADN-AE

Phase 2 - Subscription – HTTP Binding

Work In Progress

IN-AE

IN-CSE

MN-CSE

ADN-AE

Phase 2 - Notification – HTTP Binding

IN-AE

Announce / De-Announce of Resources

Subscriptions

Planned Phases for Interoperability Testing

IN-CSE

Phase 3 Testing (Oct)

Access Controls

Phase 4 Testing (Nov)

Notifications

Resource Discovery

MN-CSE

ADN-AE

AE Registration/De-Registration

AE Registration/De-Registration

CSE Registration/De-Registration

Phase 1 Testing (August)

AE Container & ContentInstance

Phase 2 Testing (Sept)

IN-AE

IN-CSE

Step 1: IN-AE creates <AE> resource at IN-CSE
Method: POST
URI: http://cse01.m2m.sp1.com/CSE01Base
URI Query String: ?rt=AE&nm=ae01
From: http://ae01.m2m.sp1.com
X-M2M-RI:0001
Content-Type: application/xml
Content-Length: length of Content
Content: <AE> representation to create

IN-AE

IN-CSE

MN-CSE

ADN-AE

Container Update

Phase 1 - Container Update – HTTP Binding

Step 1: IN-AE updates <container> resource at IN-CSE
Method: PUT
URI: http://cse01.m2m.sp1.com/CSE01Base/ae01/c01
From: http://ae01.m2m.sp1.com
X-M2M-RI:0001
Content-Type: application/xml
Content-Length: length of Content
Content: <container> representation to update

Phase 1 - Container Delete – HTTP Binding

IN-AE

IN-CSE

MN-CSE

ADN-AE

Container Delete

Step 1: IN-AE deletes <container> resource at IN-CSE
Method: DELETE
URI: http://cse01.m2m.sp1.com/CSE01Base/ae01/c01
From: http://ae01.m2m.sp1.com
X-M2M-RI:0001

IN-AE

IN-CSE

MN-CSE

ADN-AE

Work In Progress

Phase 3 - Announce – HTTP Binding

IN-AE

IN-CSE

MN-CSE

ADN-AE

Container Creation

Phase 1 - Container Create – HTTP Binding

Step 1: IN-AE creates <container> resource at IN-CSE
Method: POST
URI: http://cse01.m2m.sp1.com/CSE01Base/ae01
URI Query String: ?rt=container&nm=c01
From: http://ae01.m2m.sp1.com
X-M2M-RI:0001
Content-Type: application/xml
Content-Length: length of Content
Content: <container> representation to create

IN-AE

Phase 1 - CSE De-Registration – HTTP Binding

IN-CSE

MN-CSE

ADN-AE

CSE De-Registration

Step 1: MN-CSE deletes <remoteCSE> resource at IN-CSE
Method: DELETE
URI: http://cse01.m2m.sp1.com/CSE01Base/remoteCSE02
From: http://cse02.m2m.sp1.com
X-M2M-RI:0001

Phase 1 - AE De-Registration – HTTP Binding

IN-AE

IN-CSE

MN-CSE

ADN-AE

AE Registration

Step 1: IN-AE deletes <AE> resource at IN-CSE
Method: DELETE
URI: http://cse01.m2m.sp1.com/CSE01Base/ae01
From: http://ae01.m2m.sp1.com
X-M2M-RI:0001

IN-AE

IN-CSE

MN-CSE

ADN-AE

ContentInstance Creation

Phase 1 - ContentInstance Create – HTTP Binding

Step 1: IN-AE creates <contentInstance> resource at IN-CSE
Method: POST
URI: http://cse01.m2m.sp1.com/CSE01Base/ae01/c01
URI Query String: ?rt=contentInstance&nm=ci01
From: http://ae01.m2m.sp1.com
X-M2M-RI:0001
Content-Type: application/xml
Content-Length: length of Content
Content: <contentInstance> representation to create

IN-AE

IN-CSE

MN-CSE

ADN-AE

ContentInstance Retrieve

Phase 1 - ContentInstance Retrieve – HTTP Binding

Step 1: IN-AE retrieves <contentInstance> resource at IN-CSE
Method: GET
URI: http://cse01.m2m.sp1.com/CSE01Base/ae01/c01/ci01
From: http://ae01.m2m.sp1.com
X-M2M-RI:0001

Phase 1 - ContentInstance Delete – HTTP Binding

IN-AE

IN-CSE

MN-CSE

ADN-AE

contentInstance Delete

Step 1: IN-AE deletes <contentInstance> resource at IN-CSE
Method: DELETE
URI: http://cse01.m2m.sp1.com/CSE01Base/ae01/c01/ci01
From: http://ae01.m2m.sp1.com
X-M2M-RI:0001

Work In Progress

IN-AE

IN-CSE

MN-CSE

ADN-AE

Phase 3 – Access Controls – HTTP Binding

