	PRO-2014-0354R01-TS-0009_cleanup
	[image: image7.png]

	INPUT CONTRIBUTION

	Group Name:*
	PRO # 12

	Title:*
	HTTP Binding TS cleanup

	Source:*
	LG Electronics

	Contact:
	Seungmyeong Jeong, seungmyeong.jeong@lge.com

	Date:*
	2014-07-21

	Abstract:*
	HTTP Binding TS cleanup

	Agenda Item:*
	TBD

	Work item(s):
	WI 0013

	Document(s)

Impacted*
	oneM2M-TS-0009 HTTP Binding TS

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	Incorporate the text into the TS.

oneM2M IPR STATEMENT

Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by all provisions of IPR policy of the admitting Partner Type 1 and permission that all communications and statements, oral or written, or other information disclosed or presented, and any translation or derivative thereof, may without compensation, and to the extent such participant or attendee may legally and freely grant such copyright rights, be distributed, published, and posted on oneM2M’s web site, in whole or in part, on a non-exclusive basis by oneM2M or oneM2M Partners Type 1 or their licensees or assignees, or as oneM2M SC directs.
Introduction
Change1: editorial changes for clause 1, 2 and 3.
Change2: re-structuring from clause 5.1 to clause 5.4

Change3: following re-structuring for clause 5 after clause 5.4

Other discussion point:

· Do we make clause 5, overview, as informative? then we need to modify some texts.
In R01: moved the text in clause 5 into informative annex, some of the text have been modified.
----------------------- Start of change 1 -----------------------
1
Scope

The specification will cover the protocol specific part of communication protocol used by oneM2M compliant systems as RESTful HTTP binding.

The scope of this specification is (not limited to as shown below):

-
Binding oneM2M Protocol primitive types to HTTP method

-
Binding oneM2M response status codes (successful/unsuccessful) to HTTP response codes

-
Binding oneM2M RESTful resources to HTTP resources

This specification is depending on Core Protocol Technical Specification (TS-0004) for data types.

2
References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

[1]
RFC2616: “Hypertext Transfer Protocol - HTTP/1.1”, IETF, June 1999.
[2]
oneM2M TS-0001: Architecture TS

[3]
oneM2M TS-0004: Core Protocol TS

2.2
Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
oneM2M Drafting Rules (http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc)
[i.2]
 RFC2617: “HTTP Authentication: Basic and Digest Access Authentication”, IETF, June 1999
[i.3]
RFC6750: “The OAuth 2.0 Authorization Framework: Bearer Token Usage”, IETF, October 2012.
[i.4]
RFC6455:“The WebSocket Protocol”, IETF, December 2011.
3
Definitions, symbols, abbreviations and acronyms

3.1
Definitions

·
·
·

3.2
Symbols

3.3
Abbreviations & Acronyms

For the purposes of the present document, the following abbreviations and acronyms apply:

HTTP

Hyper Text Transfer Protocol
----------------------- End of change 1 -----------------------
----------------------- Start of change 2 -----------------------
5
Overview

This clause describes what oneM2M primitive parameters can be mapped to HTTP request/response messages.

1.
2.
3.
4.
5.
6.
7.

1.
2.
3.
4.
5.
6.
7.

1.
2.
3.
4.
5.
6.
7.

·
·

----------------------- End of change 2 -----------------------
----------------------- Start of change 3 -----------------------
Annex A (Informative): Implementation Guidelines

A.1
Basic Flow (Blocking Request)
The basic communication flow for ‘Blocking Request’ case between HTTP Client and HTTP Server is shown below.

[image: image4.emf]HTTP Client HTTP Server

1. Connect to Server

2. Establish TLS session

3. Issue Request-1

4. Receive Response for

Request-1

5. Issue Request-N

6. Receive Response for

Request-N

7. Disconnect

Process Request-1

Process Request-N

Figure A.1-1 Basic Flow (Blocking Request)
In ‘Blocking Request’ case, the HTTP Client will receive final result(s) of request(s) from HTTP Server.
The Basic Flow is performed by following steps:

1. The HTTP Client connects to the targeted HTTP Server.

2. The TLS session between HTTP Client and HTTP Server is optionally established.
Note: Applying TLS on HTTP transport is strongly recommended.

3. The HTTP Client issues a HTTP request to targeted HTTP Server.

4. The HTTP Client waits for a response from HTTP Server.

5. The HTTP Client issues further HTTP Requests one by one, if those Requests are targeted on same HTTP Server.

6. The HTTP Client waits for HTTP Server’s response until all issued requests are processed.
7. When HTTP Client receives all responses for issued request, HTTP Client can disconnect the connection to the HTTP Server.
A.2
Basic Flow (Non-Blocking Request)

The basic communication flow for ‘Non-Blocking Request’ case between HTTP Client and HTTP Server is shown below.

[image: image5.emf]HTTP Client HTTP Server

1. Connect to Server

2. Establish TLS session

3. Issue Request-1

4. Receive Intermediate

Response for Request-1

5. Issue Request-N

6. Receive Intermediate

Response for Request-N

7. Disconnect

Accept Request-1

Accept Request-N

Figure A.2-1 Basic Flow (Non-Blocking Request)

For ‘Non-Blocking Request’ case, the HTTP Client will not receive final result(s) of request(s) from HTTP Server immediately. Instead, if the request was determined as acceptable, the status code ‘202 Accepted’ will be returned.

The Basic Flow is performed by following steps:

1. The HTTP Client connects to the targeted HTTP Server.
2. The TLS session between HTTP Client and HTTP Server is optionally established.
Note: Applying TLS on HTTP transport is strongly recommended.

3. The HTTP Client issues a HTTP request to targeted HTTP Server.

4. The HTTP Client waits for a response (‘202 Accepted’) from HTTP Server.

5. The HTTP Client issues further HTTP Requests one by one, if those Requests are targeted on same HTTP Server.

6. The HTTP Client waits for HTTP Server’s response to confirm acceptance of non-blocking request(s).

7. When HTTP Client receives all responses for issued request, HTTP Client can disconnect the connection to the HTTP Server.

Note that the Client can request the operation as ‘non-blocking request’ explicitly, but the HTTP Server can reject the request to avoid abuse of ‘non-blocking request’.
When the request was accepted by the HTTP Server with ‘202 Accepted’ status code, the HTTP Client can get final result of non-blocking request(s) by ‘Non-Blocking Result Retrieval’.

[image: image6.emf]HTTP Client HTTP Server

1. Connect to Server

2. (re)Establish TLS session

3. issue request for getting

result for Request-1

4. Receive status of

Request-1 as response

5. Issue request for getting result

for Request-1

6. Receive final response for

Request-1

7. Disconnect

Check status of

Request-1

Prepare result data

Figure A.2-2 Basic Flow (Non-Blocking Result Retrieval)

The retrieval of current status or final result of ‘accepted non-blocking Request’ is performed by following steps:

1. The HTTP Client connects to the targeted HTTP Server.
2. The TLS session between HTTP Client and HTTP Server is optionally established.
Note: Non-expired TLS session can be reused.

3. The HTTP Client issues a HTTP request to targeted HTTP Server.

4. The HTTP Client waits for a response (i.e. current status of request) from HTTP Server.

5. The HTTP Client issues further HTTP Request to retrieve final result of non-blocking request from the HTTP Server.

6. The HTTP Client waits for HTTP Server’s response to receive final result data for non-blocking request.
Note: If the Request was still on processing, ‘503 Service Unavailable’ is returned.

7. When HTTP Client receives all responses for issued request, HTTP Client can disconnect the connection to the HTTP Server.
A.3
Notification using WebSocket

WebSocket [3] can be used for transporting notifications to an AE/CSE. This can be useful for an AE/CSE which is not server-capable or cannot be reachable for delivery of unsolicited requests.
For example, when an AE needs to receive a notification message from the CSE,

the AE establishes a WebSocket connection to a CSE.
When a new notification message is generated, the notification will be sent to the AE as the data frame of the WebSocket.

A.4
Authentication on HTTP Request Message

When the credential in the request message needs to be checked by Registrar CSE, Proxy-Authorization header can be used [i.2].
When the credential in the request message needs to be checked by Hosting CSE, Authorization header can be used [1].
When an Access Token, which is compatible with OAuth 2.0 framework, in the request message needs to be checked by Hosting CSE was the, the Bearer authentication scheme will be used [i.3].
----------------------- End of change 3 -----------------------
© 2012 oneM2M Partners

Page 2 (of 12)

[image: image7.png]