	Doc# PRO-2014-0374-CMDH_procedures.doc
Input Contribution
	[image: image7.png]






	INPUT CONTRIBUTION

	Group Name:*
	PRO#12.0

	Title:*
	CMDH procedures

	Source:*
	QUALCOMM Incorporated (TIA)

	Contact:
	Josef Blanz, jblanz@qti.qualcomm.com
Nobu Uchida, nuchida@qti.qualcomm.com

	Date:*
	2014-07-24

	Abstract:*
	This contribution proposes CMDH procedures.

	Agenda Item:*
	Contribution

	Work item(s):
	WI 0009

	Document(s) 

Impacted*
	oneM2M-TS-0004 Protocol Specification

	Intended purpose of

document:*
	 FORMCHECKBOX 
 Decision

 FORMCHECKBOX 
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	Agree for inclusion in TS-0004


oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M.  Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
--------------------- Start of proposed modified text -------------------
I. Pre-Requisites

The scope of CMDH processing is to decide at which time and via which communication path to forward request or response messages from a receiver CSE to another CSE. A number of message parameters impact the CMDH processing. CMDH-related request message parameters are:

· ec: Event Category

· rqet: Request expiration time

· rset: Result expiration time

· oet: operation execution time

· rp: result persistence 

· da: delivery aggregation

CMDH-related response message parameters are:

· ec: Event Category
· This is missing in stage 2

· ‘ec’ is needed for response messages as well since response messages can go over multiple hops and CMDH needs to know how to handle them.
· rset: Result expiration time

· da: delivery aggregation

· This is missing in stage 2

· Two possible ways how to resolve that:

· ‘da’ may not need to travel with a response message since the CSE sending the response message as a reaction of a request message that was asking for an operation on that CSE will know the ‘da’ parameter value of the corresponding request message and can assume that the response message shall be treated the same: I.e. if the incoming request message was using ‘da’ = ON then the corresponding response can also be aggregated with other messages. 
· If ‘da’ is not provided with a response message, subsequent CSEs on Transit Node cannot know if it is OK to aggregate those response messages. Therefore, it would be much clearer if the ‘da’ is part of the response message as well.
The details on how those parameters impact the CMDH processing are described in the next clauses.

In the following description it is assumed that the CSE behavior for CMDH processing is governed by CMDH policies that are represented by [cmdhPolicy] resources and their child resources which are effective for the respective CSE. If legacy device management technologies are used to provision these policies, the information represented by the effective [cmdhPolicy] resources and their child resources may not be available as oneM2M defined resources on the field nodes hosting the respective CSE. This CMDH related policy information may only be available in form of managed objects specific to the used device management technology. In that case the mapping from oneM2M specified [cmdhPolicy] resources and their child resources to equivalent objects of the deployed legacy device management technology shall be used to substitute the respective information contained in [cmdhPolicy] resources and their child resources in the description below. Therefore, whenever reference to [cmdhPolicy] resources, child resources thereof or any attributes of [cmdhPolicy] resources and their children are used in the description of CMDH processing below, they shall be read as a placeholder for the equivalent objects provided by legacy device management technologies on field nodes that are provisioned with such legacy device management technologies.

For a CSE that is processing request or response messages in CMDH, exactly one set of policies represented by a [cmdhPolicy] resource shall be active, as defined by the [activeCmdhPolicy] child resource of the <node> resource that represents the node which hosts the respective CSE. In case of field nodes that are managed via legacy device management technologies, the active CMDH policy can be represented by management objects of that device management technology. For the sake of simplicity, the term ‘active [cmdhPolicy]’ is used in this and the following clauses to refer to the active CMDH policy information even if no oneM2M specified resources are used to represent CMDH policies. Before any provisioning of CMDH policies has occurred, the ‘active [cmdhPolicy]’ and its corresponding managed objetcs defined for legacy device management technologies shall contain the specified default values as described in the [cdmhPolicy] specific procedures and procedures specific for all its child resources. For that reason, it can be assumed that information for an ‘active [cmdhPolicy]’ is always present on a CMDH capable CSE.

II. CMDH Processing: Processing request or response messages requiring the Receiver CSE to forward information to another CSE
II.i Applicability of CMDH processing 
If a request or response message that is targeting an entity or a resource in the ‘to’ parameter that is not among any of

· the receiver CSE itself,

· an AE registered with the receiver CSE,

· a resource hosted on the receiver CSE,
and if the message is not a response message with an acknowledgement response code, the receiver CSE of that message needs to forward the message to another CSE via CMDH processing. For forwarding a message to the target CSE indicated by the ‘to’ parameter of the message, the receiver CSE shall determine to which CSE the message needs to be forwarded next. In the following clauses this CSE is referred to as the ‘next CSE’. CMDH processing shall be carried out as described in the following clauses.

The following flow chart describes the applicability of CMDH processing for received messages including a common validation step that shall be carried out for all incoming messages:


[image: image1.emf]New request or response 

message received

Message

is a response with

‘rs’= acknowledgement or

‘to’parameter of the message targets the 

receiver CSE itself, an AE registered

with the receiver CSE or a resource

hosted on the receiver

CSE ?

Local processing of 

the message in the 

Receiver CSE only

YES

CMDH processing of 

the message

NO

End

Common message validation

Successful

?

YES

Message Type

?

NO

Send unsuccessful 

response to 

Originator of the 

request

Request with

valid Originator

Ignore 

message

All others


II.ii Partitioning of CMDH processing

The CMDH processing consists of two parts:

A. CMDH message validation: This includes message parameter pre-processing, deciding on acceptance for transporting the message, and buffering of messages.
This procedure defines how incoming request or response messages that need to be forwarded to other CSE(s) shall be pre-processed, how a decision on acceptance of the message for forwarding to another CSE shall be derived and how the messages shall be queued up before the actual forwarding can happen. Details of CMDH validation are defined in clause II.iii.


B. CMDH message forwarding: This includes selecting buffered messages and communication path for forwarding the message to another CSE.
This procedure defines how to select among the messages buffered for forwarding to other CSEs the ones that need to be transported at a certain time and how to select an appropriate communication path for transporting the message(s). Details of CMDH message forwarding are defined in clause II.iv.

CMDH message validation (Part A) will be carried out for each incoming new message for which CMDH processing is applicable. 

If CMDH message validation is successful, the received message shall be queued up for the CMDH message forwarding process (Part B) including the associated ‘storagePriority’ value as defined in the applicable [cmdhBuffer] resource (see details in the CMDH message validation procedure).

If the queued message was a request message and it was done in non-blocking mode then create a <request> resource representing the pending non-blocking request and send an acknowledgement response message to the entity that sent the request message directly via Mca or Mcc to the receiver CSE indicating the acceptance of the request and providing a reference to the created <request> resource. After successful forwarding of such a request message, any incoming response message matching with the Request-ID and the Originator in the <request> resource shall be parsed to update the corresponding attributes of the <request> resource. In case a non-blocking synchronous request was forwarded successfully and an response with acknowledgement was received, it is the responsibility of the CSE that forwarded the message to periodically poll the status of the <request> resource created on the next CSE and update the locally created <request> resource accordingly. When the locally created <request> resource expires the hosting CSE can remove it. Details on <request> resource specific procedures are defined in clause XXXX. 

If the queued message was a request message and it was done in blocking mode then memorize the open blocking request by storing its Request-ID and set a timer for a timeout until which a matching response message with the same Request-ID shall be received by the CSE processing this message. If no matching response is received when the timeout expires, the receiver CSE shall send a response message to the Originator indicating unsuccessful processing of the request, unless the Receiver CSE and the Originator are the same. If Receiver CSE and Originator are the same, the Originator can decide internally whether to retry forwarding of the message.

If CMDH message validation is not successful, then the received message shall either get ignored – in case the received message is a response message – or a new unsuccessful response message shall be sent to the Originator – in case the received message is a request message and the Originator is not the Receiver CSE. If Receiver CSE and Originator are the same, the Originator can decide internally whether to create a new request message.

The CMDH message forwarding process (Part B) will handle all queued up messages that shall be forwarded to another CSE. This process shall always be carried out when messages are pending for forwarding to another CSE.

The flow of CMDH processing is depicted in the flowchart below:


[image: image2.emf]New request or response 

message for CMDH 

Processing received

CMDH message 

validation

Successful

?

Queue received 

message for CMDH 

message forwarding

YES

Message Type

?

Send unsuccessful 

response to 

Originator of the 

request

request

Ignore 

response

response

NO

non-blocking 

request

?

Send 

acknowledgement 

response to entity 

that sent the request 

via Mca or Mcc

YES

End

Create <request> 

resource

Message  Type

?

NO

response

request

Memorize Req-ID as 

open blocking 

request, set timer for 

timeout, wait for 

response to forward 

to Originator or send 

unsuccessful 

response when 

timeout occurs


II.iii CMDH message validation

In CMDH message validation, pre-processing of CMDH related parameters of a message for which CMDH-processing applies, deriving the decision on acceptance of a message and the buffering of that messages shall be carried out in line with the following steps. A summary of this processing is depicted in the flow chart at the end of this clause.

1. Filling in missing CMDH-related parameters:
1.1. Determine the value that shall be used for the ‘ec’ parameter of the processed message


1.1.1. If the message contains an ‘ec’ parameter: Use the value of the ‘ec’ parameter provided in the message.

1.1.2. If the message does not contain an ‘ec’ parameter:


1.1.2.1. Lookup all [cmdhDefEcValue] child resources of the [cmdhDefaults] resource that is a child resource of the provisioned active [cmdhPolicy] resource. 

1.1.2.2. If the message is a request message and any of the attributes ‘requestContext’, and ‘requestCharacteristics’ are present in the found  [cmdhDefEcValue] resources, discard all [cmdhDefEcValue] resources from the list of found items for which the context conditions or the request characteristics at time of processing the request message are not met, respectively.

1.1.2.3. Among the remaining found [cmdhDefEcValue] resources do the following selection:


1.1.2.3.1. If present, select the [cmdhDefEcValue] resource containing the AE-ID in the list defined by the ‘requestOrigin’ attribute which matches with the ’fr’ parameter in case of a request message or with the ‘to’ parameter in case of a response message. If multiple [cmdhDefEcValue] resources match, select the one with the lowest value in the ‘order’ attribute. Continue processing with step 1.1.2.4


1.1.2.3.2. If present, select the [cmdhDefEcValue] resource containing the App-ID in the list defined by the ‘requestOrigin’ attribute which matches with the ’fr’ parameter in case of a request message or with the ‘to’ parameter in case of a response message. If multiple [cmdhDefEcValue] resources match, select the one with the lowest value in the ‘order’ attribute. Continue processing with step 1.1.2.4


1.1.2.3.3. If present, select the [cmdhDefEcValue] resource containing the string ‘localAE’ in the list defined by the ‘requestOrigin’ attribute in case of processing a message where the ’fr’ parameter is the AE-ID of an AE registered with the CSE processing this message. If multiple [cmdhDefEcValue] resources match, select the one with the lowest value in the ‘order’ attribute. Continue processing with step 1.1.2.4


1.1.2.3.4. If present, select the [cmdhDefEcValue] resource containing the string ‘thisCSE’ in the list defined by the ‘requestOrigin’ attribute in case of processing a message where the ’fr’ parameter is the CSE-ID of the CSE processing this message. If multiple [cmdhDefEcValue] resources match, select the one with the lowest value in the ‘order’ attribute. Continue processing with step 1.1.2.4


1.1.2.3.5. Select the [cmdhDefEcValue] resource containing the string ‘default’ in the list defined by the ‘requestOrigin’ attribute in case of processing a message where no other matches were found. 


1.1.2.4. If a [cmdhDefEcValue] resource has been selected in steps 1.1.2.3.1 through 1.1.2.3.4: Use the value of the ‘defEcValue’ attribute of the selected [cmdhDefEcValue] resource as the value for the ‘ec’ parameter of the message. Else use the default value of ‘bestEffort’ for the ‘ec’ parameter of the message. 

1.2. Filling in values that shall be used for the remaining CMDH-related parameters of messages 


1.2.1. If the message contains any of the CMDH-related parameters ‘rqet’, ‘rset’, ‘oet’, ‘rp’: The provided values of the respective parameters in the message shall be used. No filling in is needed for those parameters. If any of the parameters ‘rqet’, ‘rset’, ‘oet’, ‘rp’ present in the message is represented with a duration, the receiving CSE shall translate the values of those parameters into absolute times by adding the duration to the originating timestamp in the ‘ot’ parameter of the message. This ‘ot’ parameter is an optional message parameter and in case it is not present in a message, it shall be filled in by the first receiving CSE of a message using the time when the message was received.  


1.2.2. If the message parameter ‘ec’ has a value of ‘bestEffort’, use the following values for any missing CMDH-related parameters: For a request message use ‘rqet’ =  ‘infinite’, ‘rset’ = ‘infinite’, ‘oet’ = ‘now’, ‘rp’ = ‘none’, ‘da’ = ON. For a response message use ‘rset’ = ‘infinite’, ‘da’ = ON. Continue with step 2.


1.2.3. If the message parameter ‘ec’ has a value of ‘immediate’, do not fill in any remaining missing CMDH-related parameters and continue with step 2.

1.2.4. For any of the missing CMDH-related parameters fill in values as follows: 


1.2.4.1. Lookup all [cmdhEcDefParamValues] child resources of the [cmdhDefaults] resource that is a child resource of the provisioned active [cmdhPolicy] resource. 


1.2.4.2. Among the found [cmdhEcDefParamValues]  resources do the following selection:


1.2.4.2.1. If present, select the [cmdhEcDefParamValues] resource containing the value of the ‘ec’ parameter of the message in the list defined by the ‘applicableEventCategory’ attribute. If a match is found, continue processing with step 1.2.4.1.3


1.2.4.2.2. Select the [cmdhEcDefParamValues] resource that contains the string ‘default’ in the list defined by the ‘applicableEventCategory’. 


1.2.4.3. Use the following attributes of the selected [cmdhEcDefParamValues] resource to fill in any missing CMDH-related message parameters: Fill in the value of the attribute ‘defaultRequestExpTime’ for the parameter ‘rqet’ if it is missing. Fill in the value of the attribute ‘defaultResultExpTime’ for the parameter ‘rset’ if it is missing. Fill in the value of the attribute ‘defaultOpExecTime’ for the parameter ‘oet’ if it is missing. Fill in the value of the attribute ‘defaultRespPersistence’ for the parameter ‘rp’ if it is missing. Fill in the value of the attribute ‘defaultDelAggregation’ for the parameter ‘da’ if it is missing. 


2. Compare CMDH parameters with allowed CMDH parameter limits:
Check if CMDH-related parameters effective for the message are with allowed limits.

2.1. Lookup all [cmdhLimits] child resources of the provisioned active [cmdhPolicy] resource.


2.2. If the message is a request message and any of the attributes ‘requestContext’, and ‘requestCharacteristics’ are present in the found  [cmdhLimits] resources, discard all [cmdhLimits] resources from the list of found items for which the context conditions or the request characteristics at time of processing the request message are not met, respectively.

2.3. Among the remaining found [cmdhLimits] resources do the following selection:


2.3.1. If present, select the [cmdhLimits] resource(s) containing the AE-ID in the list defined by the ‘requestOrigin’ attribute which matches with the ’fr’ parameter in case of a request message or with the ‘to’ parameter in case of a response message. If multiple [cmdhLimits] resources match, select the one with the lowest value in the ‘order’ attribute. Continue processing with step 2.4


2.3.2. If present, select the [cmdhLimits] resource(s) containing the App-ID in the list defined by the ‘requestOrigin’ attribute which matches with the ’fr’ parameter in case of a request message or with the ‘to’ parameter in case of a response message. If multiple [cmdhLimits] resources match, select the one with the lowest value in the ‘order’ attribute. Continue processing with step 2.4


2.3.3. If present, select the [cmdhLimits] resource(s) containing the string ‘localAE’ in the list defined by the ‘requestOrigin’ attribute in case of processing a message where the ’fr’ parameter is the AE-ID of an AE registered with the CSE processing this message. If multiple [cmdhLimits] resources match, select the one with the lowest value in the ‘order’ attribute. Continue processing with step 2.4




2.3.4. If present, select the [cmdhLimits] resource(s) containing the string ‘thisCSE’ in the list defined by the ‘requestOrigin’ attribute in case of processing a message where the ’fr’ parameter is the CSE-ID of the CSE processing this message. If multiple [cmdhLimits] resources match, select the one with the lowest value in the ‘order’ attribute. Continue processing with step 2.4 


2.3.5. Select the [cmdhLimits] resource containing the string ‘default’ in the list defined by the ‘requestOrigin’ attribute in case of processing a message where no other matches were found. 


2.4. Validate if ‘ec’ parameter is within allowed range:
If the ‘ec’ parameter of the message is not within the list defined by the ‘limitsEventCategory’ attribute of the selected [cmdhLimits] resource, mark CMDH message validation for this message as not successful and exit CMDH message validation.


2.5. Validate if ‘rqet’ parameter is within allowed range:
If the ‘rqet’ parameter is present in the message and if it is not within the range defined by the ‘limitsRequestExpTime’ attribute of the selected [cmdhLimits] resource, mark CMDH message validation for this message as not successful and exit CMDH message validation.


2.6. Validate if ‘rset’ parameter is within allowed range:
If the ‘rset’ parameter is present in the message and if it is not within the range defined by the ‘limitsResultExpTime’ attribute of the selected [cmdhLimits] resource, mark CMDH message validation for this message as not successful and exit CMDH message validation.


2.7. Validate if ‘oet’ parameter is within allowed range:
If the ‘oet’ parameter is present in the message and if it is not within the range defined by the ‘limitsOpExecTime’ attribute of the selected [cmdhLimits] resource, mark CMDH message validation for this message as not successful and exit CMDH message validation.


2.8. Validate if ‘rp’ parameter is within allowed range:
If the ‘rp’ parameter is present in the message and if it is not within the range defined by the ‘limitsRespPersistence’ attribute of the selected [cmdhLimits] resource, mark CMDH message validation for this message as not successful and exit CMDH message validation.


2.9. Validate if ‘da’ parameter is within allowed range:
If the ‘da’ parameter is present in the message and if it is not within the list of allowed values defined by the ‘limitsDelAggregation’ attribute of the selected [cmdhLimits] resource, mark CMDH message validation for this message as not successful and exit CMDH message validation.


3. Check if message complies with network access rules and buffer limits:


3.1. Check if ‘ec’ is ‘immediate’:
If the ‘ec’ parameter of the message is ‘immediate’ bypass any checks on buffering or access network usage rules. Mark the CMDH message validation for this message as successful and end CMDH message validation.

3.2. Check if delivering the message is possible within the boundaries of access network usage rules in CMDH policies:


3.2.1. Lookup all [cmdhNetworkAccessRules] child resources of the provisioned active [cmdhPolicy] resource.


3.2.2. Among the all found [cmdhNetworkAccessRules] resources do the following selection:


3.2.2.1. If present, select the [cmdhNetworkAccessRules] resource containing the value of the ‘ec’ parameter of the message in the list defined by the ‘applicableEventCategory’ attribute. If a match is found, continue processing with step 3.2.3


3.2.2.2. Select the [cmdhNetworkAccessRules] resource that contains the string ‘default’ in the list defined by the ‘applicableEventCategory’. 


3.2.3. Lookup all [cmdhNwAccessRule] child resources of the selected [cmdhNetworkAccessRules] resource 


3.2.4. Among the all found [cmdhNwAccessRule] resources find at least one for which the <schedule> child resource ‘allowedSchedule’ is allowing usage of the corresponding target network consistent with the ‘rqet’ parameter in case of a request message being processed or in line with the ‘rset’ parameter in case of a response message being processed. If no matching [cmdhNwAccessRule] resource is found, mark CMDH validation for this message as not successful due to lack of scheduling opportunities and end CMDH message validation. Otherwise continue.


3.3. Check if delivering the message is possible within the boundaries of buffer usage rules in CMDH policies:


3.3.1. Lookup all [cmdhBuffer] child resources of the provisioned active [cmdhPolicy] resource.


3.3.2. Among the all found [cmdhBuffer] resources do the following selection:


3.3.2.1. If present, select the [cmdhBuffer] resource containing the value of the ‘ec’ parameter of the message in the list defined by the ‘applicableEventCategory’ attribute. If a match is found, continue processing with step 3.3.3


3.3.2.2. Select the [cmdhBuffer] resource that contains the string ‘default’ in the list defined by the ‘applicableEventCategory’. 


3.3.3. Check if the amount of memory needed to buffer the message being validated in addition to the already buffered messages matching with the same buffer usage policy in the selected [cmdhBuffer] resource would exhaust the limit defined by the ‘maxBufferSize’ attribute of the selected [cmdhBuffer] resource or if the available memory for CMDH forwarding on the receiver CSE would get exhausted even when purging buffered messages with lower storage priority.


3.3.3.1. If the check is negative, mark the CMDH message validation for the message being validated as successful, assign the storage priority defined in the ‘storagePriority’ attribute of the selected [cmdhBuffer] resource to the validated message, and end CMDH message validation


3.3.3.2. If the check is positive, mark the CMDH message validation for the message being validated as not successful and end CMDH message validation.

[image: image3.emf]Filling in missing CMDH parameters (step 1. in II.iii)

New request or response 

message for CMDH message 

validation

Determine value to 

be used for ‘ec’

(step 1.1 in II.iii)

Determine remaining 

missing CMDH 

parameters as 

function of ‘ec’

(step 1.2 in II.iii)

Compare CMDH parameters with 

allowed CMDH parameter limits

(step 2. in II.iii)

Successful

?

Check if message complies with

network access rules and buffer limits

(step 3. in II.iii)

YES

Successful

?

NO

NO

YES

Mark CMDH message 

validation successful

Mark CMDH message 

validation not successful

End


II.iv CMDH message forwarding

The high-level sequence of processing steps for the CMDH message forwarding process is depicted in the flow chart below. Note that this flow chart only represents the reference flow for implementing a standard compliant behavior. Other standard compliant implementations may be possible as long as the events defined below will result in the same normative message exchanges via reference points.

Occurrence of the following events shall trigger processing in the CMDH message forwarding:

· One or more new message(s) get(s) queued up for CMDH message forwarding

· Any of the underlying networks becomes usable for message forwarding due to transition(s) in allowed schedule(s) or due to establishing of availability of connectivity (e.g. cable plugged-in, coverage established)

· Any of the underlying networks becomes unusable for message forwarding due to transition(s) in allowed schedule(s) or due to loss of  availability of connectivity (e.g. cable unplugged, coverage lost)

· Any message buffered for CMDH forwarding expires

[image: image4.emf]New message queued up for  

CMDH message forwarding

Buffer message for 

CMDH forwarding

(step 2.1. in II.iv)

‘ec’ = 

‘immediate’

?

Forward 

message asap 

to next CSE

(step 1. in II.iv)

YES

NO

Any underlying network 

becomes usable due to 

transition(s) in

allowed schedule or due to 

change(s) in connectivity

End

Evaluate if any message forwarding is 

currently allowed (step 2.2. in II.iv)

Setup Mcc communication 

connection(s) to next CSE

(step 2.3. in II.iv)

possible?

YES NO

Buffered message 

expired

Determine usage of delivery 

aggregation (step 1.3. in II.iv)

Use da

?

aggregated messages

other messages

Purge message and 

–in case of request 

message –create 

response (step YYY 

in II.iv)

Create <delivery> 

resource on next CSE 

(step 1.3.2. in II.iv)

Forward message(s) to 

next CSE 

(step 1.3.1. in II.iv)

Any underlying network 

becomes unusable due to 

transition(s) in

allowed schedule or due to 

change(s) in connectivity

If possible, 

complete ongoing 

message 

forwarding


When a new message is getting queued up for CMDH message forwarding, carry out the following:


1. If the ‘ec’ parameter of the messages has the value ‘immediate’:
Forward message as soon as possible to the next CSE. The processing in this situation is described by the flow chart in Figure 1 below.


1.1. If a Mcc communication connection to the next CSE for forwarding the message is already established, continue with step 1.3.


1.2. If no Mcc communication connection to the next CSE for forwarding the message is established pick one underlying network among all underlying networks that can provide communication to the next CSE and establish a Mcc communication connection to the next CSE in line with the rules outlined in clause II.v. If establishment of a Mcc communication connection to the next CSE was not successful before the message expires, continue with step 1.4.


1.3.  Determine whether delivery aggregation or forwarding of the message itself shall be used:


1.3.1. If the message contains a ‘da’ parameter set to the value ‘ON’, the Receiver CSE shall forward this message by creation of a <delivery> resource on the next CSE as outlined in clause XXXXX. The receiver CSE can combine the forwarded message in the same <delivery> resource with other messages for which the ‘da’ parameter set to ‘ON’ and which need to be forwarded to the same target CSE.


1.3.2. If the message is not forwarded using a <delivery> resource, the receiver CSE shall forward the message as is to the next CSE via the established Mcc communication connection. 


1.4. If the message could not be forwarded successfully to the next CSE before it expired (e.g. due to repeated unsuccessful attempts to establish a Mcc communication connection or due to the lack of usable underlying networks), the receiver CSE shall carry out the following:


1.4.1. If the message was a response message, ignore the message. End this cycle of CMDH message forwarding and wait for new triggering events.


1.4.2. If the message was a request message:


1.4.2.1. If the request was a blocking request:
Send a unsuccessful response to the pending blocking request with a matching Request-ID and Originator indicating the reason for failure and close the blocking request.  End this cycle of CMDH message forwarding and wait for new triggering events.


1.4.2.2. If the request was a non-blocking request:
Update the associated <request> resource with matching Request-ID and Originator using an unsuccessful response code indicating the reason for failure.  If the non-blocking request was made in asynchronous mode, send a notification with the unsuccessful response to the notification target(s) of the request.  End this cycle of CMDH message forwarding and wait for new triggering events.


1.5. Else, i.e. if the message was forwarded successfully to the next CSE:


1.5.1. If the message was a response and the Receiver CSE has an open blocking request context with a matching Request-ID and matching Originator, mark the open blocking request as closed, end this cycle of CMDH message forwarding and wait for new triggering events.


1.5.2. If the message was a request message:


1.5.2.1. If the request was a blocking request:
Keep the context of the pending blocking request with matching Request-ID and matching Originator open and wait for an incoming response message with the same Request-ID and Originator.  End this cycle of CMDH message forwarding and wait for new triggering events.


1.5.3. If the request was a non-blocking request:
Wait for a response to the forwarded request (e.g. response with acknowledgement or unsuccessful response). Update the associated <request> resource with the matching Request-ID and Originator using a response code that reflects the status of the forwarded request (e.g. accepted by next CSE, unsuccessful). If the next CSE responded with an unsuccessful response message and the request was in non-blocking asynchronous mode, send a notification request message to the Originator of the forwarded request containing the unsuccessful response of the next CSE. End this cycle of CMDH message forwarding and wait for new triggering events.



2. Else, i.e. when the ‘ec’ parameter of the messages does not have the value ‘immediate’:


2.1. Buffer the message to be forwarded in the CMDH forwarding buffer:
The processing in this situation is described by the flow chart in Figure 2
 below.


2.1.1. If the message is a request message and the ‘ec’ parameter of the messages has the value ‘latest’:


2.1.1.1. If the request message is a notification triggered by a subscription:


2.1.1.1.1. Find any buffered request message that is a notification triggered by a subscription with the same subscription reference.


2.1.1.2. Else, i.e. if the request message is not a notification triggered by a subscription:


2.1.1.2.1. Find any buffered request message that has the same values in the (‘fr’, ‘to’, ‘op’ ) parameters as the message being processed


2.1.1.3. If any request message was found in steps 2.1.1.1.1 or 2.1.1.2.1, purge the found message from the CMDH forwarding buffer.


2.1.2. If there is not enough memory available to buffer the message being processed in the CMDH forwarding buffer:


2.1.2.1. Find any buffered messages with storage priority values lower than the one assigned to the message being processed.


2.1.2.2. If any messages are found:
Purge enough messages among the found messages so that the message being processed can be buffered in the CMDH forwarding buffer. Messages which entered the buffer later shall be purged first. In case any request messages need to be purged, carry out the following:


2.1.2.2.1. In case of purging a non-blocking request messages:
Update the associated <request> resource with the same Request-ID as the purged request message with a status indicating unsuccessful completion. If the purged message was made in asynchronous mode, send a response to the notification target(s) of the pending non-blocking request


2.1.2.2.2. In case of purging a blocking request message:
Send a unsuccessful response to the open blocking request with the same Request-ID as in the purged request message and close the blocking request.


2.1.2.3. Due to the checking of sufficient memory in CMDH message forwarding buffer during CMDH message validation, there should be enough memory available to accommodate the message to be buffered at this point. If that is still not the case, then do the following:


2.1.2.3.1. In case the message to be buffered is a response message:
Ignore the message to be buffered. End this cycle of CMDH message forwarding and wait for new triggering events.


2.1.2.3.2. In case the message to be buffered is a non-blocking request message:
Update the associated <request> resource with the same Request-ID as the request message to be buffered with a status indicating unsuccessful completion. If the request message to be buffered was made in asynchronous mode, send a response to the notification target(s) of the pending non-blocking request. End this cycle of CMDH message forwarding and wait for new triggering events.


2.1.2.3.3. In case the message to be buffered is a blocking request message:
Respond with an unsuccessful response message to the open blocking request with the same Request-ID as in the request message to be buffered and close the blocking request. End this cycle of CMDH message forwarding and wait for new triggering events.


2.1.3. Store the message to be buffered with its assigned storage priority in the CMDH forwarding buffer. Include it in future evaluations for possible message forwarding.

2.2. Evaluate if any message forwarding is currently allowed:


2.2.1. For all buffered messages that are pending in CMDH message forwarding carry out the following evaluation steps:

2.2.1.1. Among all [cmdhNetworkAccessRules] child resources of the provisioned active [cmdhPolicy] resource do the following selection:


2.2.1.1.1. If present, select the [cmdhNetworkAccessRules] resource containing a value in the list defined by the ‘applicableEventCategory’ attribute that is equal to the value of the ‘ec’ parameter of the buffered message to be evaluated for forwarding. If a match is found, continue processing with step 2.2.1.2.


2.2.1.1.2. Select the [cmdhNetworkAccessRules] resource that contains the string ‘default’ in the list defined by the ‘applicableEventCategory’. 


2.2.1.2. Lookup all [cmdhNwAccessRule] child resources of the selected [cmdhNetworkAccessRules] resource 


2.2.1.3. If the attribute ‘otherConditions’ is present in any of the found  [cmdhNwAccessRule] resources, discard all [cmdhNwAccessRule] resources from the list of found items for which the conditions expressed by ‘otherConditions’ at time of evaluation of the message for forwarding are not met, respectively.

2.2.1.4. Among the all remaining found [cmdhNwAccessRule] resources find those for which 
   - the <schedule> child resource ‘allowedSchedule’ is currently allowing usage of the corresponding target network, and
   - for which the corresponding target network could be used to reach the next CSE for forwarding the message under evaluation.
If any allowed target network was found, memorize the message under evaluation as an allowed message and the allowed target network(s) for the message under evaluation and continue with the next evaluation of buffered messages 


2.2.2. When all buffered messages have been evaluated, remove from the memorized list of allowed messages and their allowed target networks those target networks where the amount of data to be forwarded – accumulated over all allowed messages of the same event category – is less than the amount of data indicated in the ‘minReqVolume’ attribute of the corresponding [cmdhNwAccessRule] resource. 


2.2.3. Remove any messages from the list of allowed messages for forwarding if no allowed target network is left for that message after the previous step.


2.3. Process messages allowed for forwarding to the next CSE:
If any messages can be forwarded, i.e. if any evaluation of step 2.2 was positive, apply the following steps:


2.3.1. Reuse already established Mcc communication connections or – if needed – establish new Mcc communication connection(s) so that all the messages that are allowed to be forwarded to their next CSE can be forwarded. Some messages may be allowed on the same target network.  Follow the procedure outlined in clause II.v for setting up a Mcc communication connection to another CSE via a particular target network. If no usable Mcc communication connection could be established for forwarding a particular allowed message before the message expires, execute step 1.4 in this clause above for that message.

2.3.2. For all messages allowed for forwarding and for which Mcc communication connections are established, apply steps 1.3 through 1.5 in this clause above.


2.4. Else, i.e. currently no message forwarding is allowed:
End this cycle of CMDH message forwarding and wait for new triggering events.

When any of the underlying networks becomes usable for message forwarding due to transition(s) in allowed schedule(s) or due to establishing of availability of connectivity (e.g. cable plugged-in, coverage established), carry out the processing above in this clause starting with step 2.2.

When any of the underlying networks becomes unusable for message forwarding due to transition(s) in allowed schedule(s) or due to loss of availability of connectivity (e.g. cable unplugged, coverage lost), complete – if at all possible – any ongoing message forwarding procedures. End this cycle of CMDH message forwarding and wait for new triggering events.

When any message buffered for CMDH forwarding expires, carry out step 1.4 in this clause above. End this cycle of CMDH message forwarding and wait for new triggering events.



[image: image5.emf]Message needs to be

forwarded asap

Successful

?

Message Type

?

request

Ignore 

response

message

response

NO

non-blocking 

request

?

YES

NO

Send unsuccessful 

response to open 

blocking request with 

matching Request-ID

End

Establish Mcc communication connection picking any of the underlying  

networks that can provide communication to the next CSE and

forward message to the next CSE. Retry as long as message has not expired.

Update corresponding 

<request> resource. In 

case of asynchronous 

request, send 

notification with 

unsuccessful response 

to notification target(s)

Message Type

?

request

response

non-blocking 

request

?

YES

NO

Send successful 

response to open 

blocking request with 

matching Request-ID

Update corresponding 

<request> resource. In 

case of asynchronous 

request, send 

notification with 

successful response to 

notification target(s)

YES


Figure 1 Forwarding of messages with 'ec' = 'immediate'.


[image: image6.emf]New message needs to be 

buffered for CMDH message 

forwarding

message is 

request and ‘ec’ = 

‘latest’

?

Enough

memory

?

Purge messages with lower storage priority. 

In case of purging request messages, create 

& send  unsuccessful responses

NO

NO

YES

End

Store message in CMDH message forwarding buffer with 

assigned storage priority

found

?

YES NO

Purge found request 

message

YES

Find buffered request message with 

same (‘fr’,’to’,’op’) parameters

‘op’ = notification 

triggered by subscription

?

NO

Find buffered request message with 

same subscription reference

YES


Figure 2 Buffering of messages for CMDH message forwarding.
II.v Establishment of Mcc communication connection to another CSE

When a Mcc communication connection shall be established via a specific target network for forwarding a message of a specific event category indicated by the ‘ec’ parameter of the message, the process of establishing the Mcc communication connection shall be governed by values contained in the ‘backOffParameters’ attribute of the [cmdhNwAccessRule] resource that was used to evaluate whether the message was allowed to be forwarded, as defined in step 2.2 in the procedure outlined in clause II.iv.

When connectivity via the selected target network to reach the next CSE has not already been established for other reasons, then the CSE that is trying to forward a message buffered for CMDH message forwarding shall establish a new Mcc communication connection via the selected target network for transporting oneM2M messages to the next CSE via a new Mcc instance. This communication connection shall be established following the procedures for authentication and security association as outlined in TS XXX, clause YYY taking into account provisioned security settings. The protocol mapping for transporting oneM2M specified messages via this instance of Mcc shall be selected according to the capabilities of the two end-points of the Mcc instance. 

If establishing the Mcc communication connection via the selected target network fails, a new attempt to establish that communication connection shall only be made after waiting for a back-off time according to the value given in the ‘back-off time’ component of the ‘backOffParameters’ attribute of the effective [cmdhNwAccessRule] resource.

When establishing the Mcc communication connection via the selected target network still fails, for each subsequent new attempt to establish the Mcc communication connection without any successful attempts in-between, the back-off time shall be increased by the value given in the ‘back-off time increment’ component of the ‘backOffParameters’ attribute of the effective [cmdhNwAccessRule] resource.

The back-off time for waiting before making any new attempt to establish the Mcc communication connection via the selected target network shall not exceed the value given by the ‘maximum back-off time’ component of the ‘backOffParameters’ attribute of the effective [cmdhNwAccessRule] resource.

When the next CSE is hosted on a node for which a usable Mcc communication connection for forwarding a message to the next CSE can only be established by the next CSE itself, device triggering mechanisms as defined in TS-0001 shall be used. 

In case the next CSE can only be reached via communication connections originating from the node that hosts the next CSE, while it is capable of processing incoming oneM2M messages, it is assumed that such a CSE establishes a polling channel as defined in TS-0001 in order to effectively receive unsolicited oneM2M messages.
© 2013 oneM2M Partners
                                                                                                     Page 4 (of 24)



[image: image7.png]_1467746499.vsd
�

�

�

�

New request or response message for CMDH Processing received


CMDH message validation


Queue received message for CMDH message forwarding


Successful ?


YES


Message Type ?


Send unsuccessful response to Originator of the request


request


Ignore response


response


NO


 non-blocking request ?


Send acknowledgement response to entity that sent the request via Mca or Mcc


YES


End


NO


Create <request> resource


Message  Type ?


response


request


Memorize Req-ID as open blocking request, set timer for timeout, wait for response to forward to Originator or send unsuccessful response when timeout occurs



_1467746502.vsd
�

�

�

�

New message queued up for  CMDH message forwarding


Any underlying network becomes usable due to transition(s) in allowed schedule or due to change(s) in connectivity


End


Evaluate if any message forwarding is currently allowed (step 2.2. in II.iv)



_1467746503.vsd
�

�

�

�

Message needs to be forwarded asap



_1467746504.vsd
�

�

�

�

New message needs to be buffered for CMDH message forwarding


Find buffered request message with same (‘fr’,’to’,’op’) parameters



_1467746500.vsd
�

�

�

�

New request or response message for CMDH message validation


Determine value to be used for ‘ec’ (step 1.1 in II.iii)


Determine remaining missing CMDH parameters as function of ‘ec’ (step 1.2 in II.iii)



_1467746498.vsd
�

�

�

�

New request or response message received


Message is a response with ‘rs’= acknowledgement or  ‘to’ parameter of the message targets the receiver CSE itself, an AE registered with the receiver CSE or a resource hosted on the receiver CSE ?




