	Doc# PRO-2014-0436-TS-0004_Annex_F_Cleanup.doc
Input Contribution
	[image: image1.png]

	INPUT CONTRIBUTION

	Group Name:*
	PRO#12.4

	Title:*
	TS-0004 Annex F Cleanup

	Source:*
	QUALCOMM Incorporated (TIA) and others?

	Contact:
	Wolfgang Granzow, wgranzow@qti.qualcomm.com

	Date:*
	2014-08-27

	Abstract:*
	This contribution proposes changes to XSD design guidelines Annex F of TS-0004

	Agenda Item:*
	Contribution

	Work item(s):
	WI 0009

	Document(s)

Impacted*
	oneM2M-TS-0004 Protocol Specification

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	Agree for inclusion into TS-0004

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
Annex A (informative):
Guidelines for one M2M resource type XSD

This Annex contains rules to be followed when creating XML Schema Definition (XSD) files to represent the oneM2M resources. The XSD files themselves form part of the oneM2M protocol specification, but the rules used to construct them do not, hence this Annex is informative.

The purpose of these rules is:

· To keep a consistent style between the schemas for different resources

· To keep the XSD simple

· To allow individual resource schemas to be authored and maintained separately, while minimising the risk of conflict when they are all used together

1) Each XSD file should include a schema element with following namespace declarations:

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.onem2m.org/xml/protocols"
 xmlns:m2m="http://www.onem2m.org/xml/protocols"
 elementFormDefault="unqualified" attributeFormDefault="unqualified" >
This defines the prefix xs: for the XML Schema namespace, a target namespace http://www.onem2m.org/xml/protocols, and the prefix m2m: as equivalent for the target namespace. Locally declared elements and attributes shall be unqualified (elementFormDefault and attributeFormDefault declarations are not strictly required since “unqualified” is the default value setting).
2)
Each Resource XSD file will contain a single Global Element Declaration whose name is the name of the Resource Type in accordance with [6]. This means that the root element of a Resource (when represented as an XML instance) contains an m2m: (or equivalent) namespace prefix. It shall not contribute anything to the m2m: namespace other than this root element.

3) The root element of each Resource XSD file shall have an attribute called “name” which gives an identifier for that particular resource instance. A URI to the resource instance can be constructed by taking the URI of its parent and appending /<name> where <name> is the value of the name attribute.

4) Each resource attribute of the Resource Type in accordance with [6] is represented as a child element of the top level element. It shall be declared as an element that is local to the resource that contains it, and so does not have a namespace prefix in any XML instance representation of the resource.
5) Each child resource of the Resource Type in accordance with [6] shall be represented as a child element of the top level element using the name ‘childResource’ of data type m2m:childResourceRef.
This data type defines assignment of a non-hierarchical URI
 value to the childResource element. The data type m2m:childResourceRef shall define two attributes to be assigned in XML instances that include : a) type; Data type ID of instances, b) name; the name of a child resource instance.
Example:
child resource element in a XSD file:
<xs:element name="childResource" type="m2m:childResourceRef" minOccurs="1"/>
child resource element in a corresponding XML instance:
<childResource type="container" name="myContainerA">
 //INCSEID.m2m.myoperator.org/CSEBase/myContainerA/</childResource>

6) Each resource attribute shall be declared to use one of the following data types:

a. A data type listed in clause 6.3.1 or 6.3.2.

b. A list of one of the data types listed in clause 6.3.1 or 6.3.2. If the list type is not already included in 6.3.2 it may be defined inside the XSD file for the resource, but if so it must be defined as an anonymous type in the attribute declaration itself.

c. A data type derived by restriction from one of the types listed in clause 6.3.1 or 6.3.2. This may be defined inside the XSD file for the resource, but if so it must be defined as an anonymous type in the attribute declaration itself.

d. An anonymous complex type defined as part of the attribute declaration (inside the XSD file for the resource). The complex type should only be composed out of the types listed in clause 6.3.1 or 6.3.2.

7) If a data type is used by more than one attribute (either in the same resource or in two different resources) it must be included in 6.3.2, and referenced by each attribute that uses it. Options 5b, 5c, 5d should only be used in cases where the type is only used by one attribute.

8) With the exception of CSEBase, all Resource types will extend one of the XML complex types regularResourceType or announceableResourceType
 defined in the file CDT-commonTypes-v1_0_0<date>.xsd.

9) The resource-specific attributes and child resources shall appear as a sequence of elements in the XSD file, with their order being determined by the order shown in the tables in clause 9.6 of [6].

10) Each XSD file shall include an XML comment that contains a oneM2M Copyright Notification, Notice of Disclaimer & Limitation of Liability, and a change history. The change history is to be filled in only after the initial release.
11) To enable distinction between element names used for resource attributes
and their data types in the m2m: namespace, it shall be avoided to use identical names. It is recommended to use the text suffix ‘Type’ in data type names.

Example:

<xs:element name="status" type="m2m:statusType />
�This is good, in particular the removing of the xmlns: default namespace declaration

�I think we should use the same concept to define the mgmtLink attribute in XSD. This could be captured in an additional paragraph (after we have achieved agreement on the proposed text for the childResource).

�Should the URI value include the name of the child resource as given in the @name attribute?

�I think that a discussion of m2m:childResourceRef really belongs somewhere in clause 6.3 rather than in Annex F since it's something that gets filled in at runtime rather than instructions to the XSD creator. All we really need in Annex F is a directive to use m2m:childResourceRef. Having said that, Wolfgang's comment and example raises a couple of questions. i) Should we allow any URI, not just non-hierarchical ones? ii) what is the xsd datatype and format of the type element? Is it a string, the QName of the Resource type GED, the NCName part of that Resource type GED or the m2m:resourceType (currently an integer enumeration)?

�If we agree to include all resource attribute data types into clause 6.3, see comment GW4 below, we actually should mandate to not use anonymous data types at all.

�Would you want to include list types and types defined by restriction of simple types in 6.3 as well?

�I think this is very impractical. How shall a developer of the XSD for one specific resource know whether or not a required data type has already been defined for use in another resource, unless all data types are listed in clause 6.3? I recommend that all data types shall be listed in clause 6.3, but these can still be kept as part of the resource XSD file (as either anonymous data types or types in the m2m: namespace; I have no strong opinion on that)

�I agree that this would be impractical if there were a large number of resource types, but we aren’t talking about that many. My assumption was that if a type was used by more than one resource type then it would be likely that the same person would be authoring the two XSDs that use it, and so would know.

�What about subordinateResourceType, do we not need that any more?

�I don’t think that this is strictly necessary as they are in separate namespaces. I’m undecided as to whether we should require a type suffix on everything. At the moment we have it on some types but not others, which looks a bit irregular

© 2014 oneM2M Partners
 Page 1 (of 3)

[image: image1.png]