	Doc# PRO-2015-0005-CR_CRUDN_operation.doc
Change Request
	[image: image6.png]

	

	CHANGE REQUEST

	Meeting:*
	PRO 14.2bis

	Source:*
	FUJITSU

	Date:*
	2015-01-06

	Contact:*
	Shingo Fujimoto, FUJITSU, Shingo_fujimoto@jp.fujitsu.com

	Reason for Change/s:*
	oneM2M architecture is assumed as resource-oriented architecture, but message format and primitive does not seem following RoA.

	CR against: Release*
	1.0 (DRAFT)

	CR against: TS/TR*
	TS-0004-V0.8.0

	Clauses/Sub Clauses*
	

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 FORMCHECKBOX
 Change/correction to existing feature or functionality
 New feature or functionality

	Post Freeze checking:*
	This CR contains only essential changes and corrections

 YES FORMCHECKBOX
 NO FORMCHECKBOX

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
oneM2M architecture is assumed as resource-oriented architecture, but message format and primitive does not seem following RoA.
5.2
API design guidelines

The following are the guidelines for designing APIs:

1) APIs shall follow the principle of RESTful architecture, as described in [i.2].

2) APIs shall indicate which features are supported and not supported over the reference points specified in TS-0001 Functional Architecture [6].

3) APIs shall define how to address resources and how to manipulate resources, in accordance with oneM2M TS‑0001 [6]; the resource is identified by a Universal Resource Identifier (URI), [2].

4) APIs shall provide the format and syntax of the operation primitives for all resources defined in TS-0001 Functional Architecture [6] . In case that for a particular protocol binding an operation cannot be supported it has to be clearly stated in the specific protocol binding technical specification.

5) Resource has a representation (see [i.2]) that shall be transferred and manipulated with the verbs. These verbs are identified as operations in TS-0001 Functional Architecture [6]: CREATE. RETRIEVE, UPDATE, DELETE and NOTIFY.

6) All primitives as well as the way that those primitives are sent shall be defined. The functionality of the primitives shall be compliant to the resource type specific procedure as specified in TS-0001 Functional Architecture [6], clause 10.2.

7) Primitives shall include attributes in accordance with TS-0001 Functional Architecture [6] for a specific resource.

8) Primitive shall be self-descriptive and contain all the information needed for the receiver of the primitives to handle the primitives.

9) Primitive should be idempotent operations which mean no matter how many times the primitive is sent, the result doesn't change, in accordance to [i.2].

10) Primitives shall be mapped on the transport layer protocols.

The oneM2M resources are designed to be a 'resource' which is transferred and manipulated with the verbs.

Thus, following oneM2M architecture, protocol specification should separately define the implementation of 'manipuration with (CRUD+N) verbs'.

This contribution proposed necessary changes to correct misleading texts in current TS-0004.

-----------------------Start of change 1---
5.3 oneM2M Resource Manipulation Primitives

5.3.1 Introduction

The oneM2M resource manipulations (CRUD+N) shall be performed by Request/Response primitives.
Resrouce Manipuration Primitives are common service layer messages exchanged over the Mca, Mcc and Mcc’ reference points.

a)
b)

Resource Manipulation Primitives are defined protocol independent way to allow interworking between oneM2M compliant platform systems supporting different set of protocol bindings.
Since actual communication between Originator and Receiver is mapped to the one of protocol bindings in most effective way, single primitive may be mapped to zero or more transport messages.
In case of using an IP-based Underlying Network as illustrated in Figure 5.3.1-1, the primitives are mapped to application layer communication protocols such as HTTP, CoAP or MQTT which use TCP or UDP on the transport layer. The specification of primitives, however, is independent of underlying communication protocols and allow introduction of bindings to other communication protocols.

[image: image1.emf]

Binding Function

Receiver

 IP - based Under l ying Network

Response

Originator

Request

Application/ Common Service L ayer

Application Layer Commu nication Protocol (e.g. HTTP, CoAP, MQTT)

Primitives

Request Response

Primitives

Binding Function

Application Layer Communication Protocol (e.g. HTTP, CoAP, MQTT)

Transport Layer Protocol (UDP/TCP)

Transport Layer Protocol (UDP/TCP)

Figure 5.3.1‑1: Communication model using Request and Response primitives over an IP-based Underlying Network
..

5.3.2 Primitives modelling

The primitive consists of two parts:
Table 5.3.2-1: primitive modleing parts

	Part name
	Usage

	Resource Manipulation
	· Manipulation of targeted oneM2M resource

· Controling delievering message behaviour

	Content
	· Transfering oneM2M resource (full or partial)
· Reporting result of manipulation

c)
d)

[image: image3.emf]Content [Optional]

(resource-data or status)

Primitive Message

Primitive Parameters

(To, From, …)

Figure 5.3.2‑1: Primitives modelling

5.3.3 Primitive principles

Execution of one primitive shall finish completely before execution of a subsequent primitives starts that affects the same resource..

When creating or updating the resource, its representation (full or partial) shall be contained in the content part of the primitive. Based on the representation of the resource, the Hosting CSE can create or update the entire resource without need for further information.

The operations on resources triggered by primitives shall be idempotent. This means no matter how many times the same primitive is targeted to the same resource, the resource does not change after the first execution of this primitive, with the exception of the creation of child resources.

5.3.4 Serialization of primitives

When transferred over a oneM2M reference point while using a communication protocol such as HTTP, CoAP or MQTT, the way oneM2M Request and Response primitives are represented shall be defined by a specific oneM2M protocol binding that is being used for the message transfer. The originator and receiver of each primitive use the same binding, and thus they will be using compatible serialization and deserialization techniques.
Clause 8 of the present document defines canonical serialization methods for JSON objects or XML documents which is commonly used by oneM2M protocol bindings.

-----------------------End of change 1---

-----------------------Start of change 2---

6.1 Introduction

This technical specification describes message formats and procedures to communicate with oneM2M compliant M2M Platform System.

The present document describes:

a) Data representation for communication protocol messages.

b) Normal and exceptional procedure.

c) Status codes.

d) Guidelines for drafting APIs.

For wide acceptance by industrial markets, the present document uses XML Schema Definition (XSD) language ([3]) to define data type syntax for structured and non-structured data for oneM2M Protocol.

Mapping rules between the primitive message and protocol-specific message are specified in the protocol binding specifications TS-0008, TS-0009 and TS-0010.

Any data types of XML elements defined for use in oneM2M protocols shall use the namespace:

· http://www.onem2m.org/xml/protocols.
The present document, and any XML or XML Schema Documents produced by oneM2M shall use the prefix m2m: to refer to that namespace.
The XSD filesreferenced in this specification shall serve following purposes:

1) Provide an unambiguous definition of XML element names and data types used for

resource representations,

resource attributes,

Request and Response primitives,

parameters used in Request and Response primitives.

2) Help to identify and avoid that equivalent data types are defined multiple times with different names.

3) Provide a testable definition of the value range of data elements (e.g. allowed number range, allowed characters or character patterns, allowed enumeration values).

4) Provide a testable definition of the presence of mandatory elements (“minOccurs=1”) and of cardinality not larger than a given limit (e.g. “maxOccurs=1”) in XML representations of data objects (i.e. resource instantiations and primitive parameters).

5) Provide a testable definition of the correct sequence of occurrence of each element of a data object (where correct sequence is required).

6) Enable the use of development tools that generate executable code for data object processing from the XSD.

7) Enable the use of XML development tools which allow automatic generation of valid templates for XML and JSON objects, and validation of the compliance of any XML or JSON objects with the XSD.

Parameters and resource representations exchanged in primitives between oneM2M entities shall comply with data formats defined in this specification based on the referred XSD documents. The present document defines procedures for validation of received messages and the error handling in case of reception of non-compliant message content.

NOTE: M2M implementations are required to validate the data received in incoming primitives in accordance with this specification, but this specification does not intend to impose restrictions on implementation of the validation procedures. In particular the validation procedure is not required to use the XSD documents directly.
-----------------------End of change 2---

-----------------------Start of change 3---

6.4.2 Filter criteria

The request message parameter Filter Criteria shall be specified as combination of following sub-parameters.

1.1.1.1 6.4.2.1 creationTime condition
The condition matches with the resources which the creationTime attribute is chronologically in specified range.
Table 6.3.6.1‑1: Defition of Create Time condition

	Format Variants
	Definition
	Note

	createdBefore
	m2m:timestamp
	

	created After
	m2m:timestamp
	

	NOTE: Both createdBefore and createdAfter may be specified same time, but createdAfter must be the timestamp before createdBefore.

1.1.1.2 6.4.2.2 lastModifiedTime condition
The condition matches with the resources which the lastModifiedTime attribute is chronologically in specified range.

Table 6.3.6.2‑1: Defition of LastModified Time condition

	Format Variants
	Definition
	Note

	modifiedSince
	m2m:timestamp
	

	unmodifiedSince
	m2m:timestamp
	

	NOTE: Both modifiedSince and unmodifiedSince may be specified same time, but modifiedSince must be the timestamp before unmodified Since.

1.1.1.3 6.4.2.3 State Tag condition
The condition matches with the <contentInstance> resources which the stateTag attribute is in specified numeric value range.
Table 6.3.6.3‑1 Defition of State Tag condition

	Format Variants
	Definition
	Note

	stateTagSmaller
	xsd:positiveInterger
	

	stateTagBigger
	xsd:nonNegativeInteger
	

	NOTE:

1.1.1.4 6.4.2.4 expirationTime condition
The condition matches with the expirationTime attribute of the resources is chronologically in specified chnological time range.

Table 6.3.6.4‑1: Defition of ExirationTime condition

	Format Variants
	Definition
	Note

	exprieBefore
	m2m:timestamp
	

	expireAfter
	m2m:timestamp
	

	NOTE: Both expireBefore and expireAfter may be specified same time, but expireBefore must be the timestamp after expireAfter.

1.1.1.5 6.4.2.5 labels Match condition
The condition matches with the resource which labels attribute contains the specified value.

Table 6.3.6.5‑1: Defition of Lebel Match condition

	Format Variants
	Definition
	Note

	label contains
	xs:token
	

	any of label matches
	list of xs:token
	separator of list elements shall be specified in protocol bindings.

	NOTE:

1.1.1.6 6.4.2.6 resourceType Match condition
The condition matches with the resource which resourceType attribute value is specified value.

Table 6.3.6.6‑1: Defition of Resource Type Match condition

	Format Variants
	Definition
	Note

	single type
	m2m:resourceType
	

	multiple types
	list of m2m:resourceType
	separator of list elements shall be specified in protocol bindings.

	NOTE:

1.1.1.7 6.4.2.7 contentSize condtion
The condition matches with the contentSize attribute of the <contentInstance> resources is in range of specified numerica value range.

Table 6.3.6.7‑1: Defition of Content Size Match condition

	Format Variants
	Definition
	Note

	sizeBelow
	xs:nonNegativeInteger.
	

	sizeAbove
	xs:nonNegativeInteger.
	

	NOTE:

1.1.1.8 6.4.2.8 typeOfContent condition
The condition matches with the typeOfContent attribute of the <contentInstance> resource is the specified value.
Table 6.3.6.8‑1: Defition of Content Type Match condition

	Format Variants
	Definition
	Note

	content type
	xs:token
	The one of the Content-Type string shall be specified

	content sub-types
	xs:token after ‘:’ character.
	The one of the Content sub-type strings shall be specified.

	NOTE:

1.1.1.9 6.4.2.9 attribute Match condition
The condition matches with the resources which all attribute/value pairs are specified combination.

Table 6.3.6.9‑1: Defition of Attribute Match condition

	Format Variants
	Definition
	Note

	single pair
	concatenation of xs:token with ‘:’ character.
	first token shall be shortname of attribute and second token shall be its value.

	multiple pairs
	list of single pairs.
	separator of list elements shall be specified in protocol bindings.

	NOTE:

1.1.1.10 6.4.2.10 Limit results request parameter
Limitation the number of matching resources to the specified value.
Table 6.3.6.10‑1: Defition of Limit conditions

	Format Variants
	Definition
	Note

	limits
	xs:nonNegativeInteger
	

	NOTE:

1.1.1.11 6.4.2.11 Filter Usage request parameter
Indicates how the filter criteria is used. E.g. if this parameter is not provided, the Retrieve operation is for generic retrieve operation.
Table 6.3.6.11‑1: Definition of Filter Usage
	Value
	Interpretation
	Note

	1
	Discovery Criteria
	

	2
	Event Notification Criteria
	

	NOTE:

-----------------------End of change 3---

-----------------------Start of change 4---

6.5 Resource data types

6.5.1 Description

Each oneM2M Resource Data Type is defined using XML Schema (XSD)
 This XML Schema defines the attributes of the Resource in accordance with TS-0001 Functional Architecture [6].
It represents data structure of an entire oneM2M resource stored in hosting CSE. In other words, actual protocol messages may not contains all data defined here. If the specific protocol binding allowed to perform CRUD+N operation with partially transferred resource data, the protocol binding function is responsible to complete missing information.

Each Resource Type will be defined in a separate XSD file. The name of that file should be prefixed with 'CDT-' and followed by the resource type name and version of the TS0004 Core Protocol (the present document).

-----------------------End of change 4---

-----------------------Start of change 5---

-----------------------End of change 5---

-----------------------Start of change 6---

8.4 Canonical JSON serialization
8.4.1 Terminology

The following conventions are used in the clause that follows.

· The italicized terms object, member, name, array, number, string, boolean and null are to be interpreted as in RFC 7159 [19]

· The italicized term element is to be interpreted to encompass oneM2M Primitive Parameters, Resource Attributes and other elements or attributes used inside oneM2M complex type definitions

8.4.2 Method

The oneM2M data type definition in XSDshall be used to serialize data in primitive as a JSON object, conforming to the requirements of RFC 7159 [19].

The serialization of oneM2M structure data typed information shall be performed, as follows:

1. Use short names for any elements in XSD, as defined in clasue 8.2

2. The root element of XSD definition shall be mapped to the JSON object with the name of element.

3.
4. If an element is defined in this specification as having a complex type, then it is serialized in the JSON member as an object and its children are recursively serialized as members of that object.

5. The membership of each nested object shall respect the cardinality constraints from the corresponding XSD complex type definition,

6. If an element is defined in this specification as having an atomic data type that is numeric in nature (e.g. xs:integer or a type derived from it) then its value is serialized into the JSON member as a JSON number.

7. If an element is defined as having an atomic data type that is non-numeric then its value is serialized into the JSON member as a JSON string.

8. If an element is defined as xs:boolean (or a type derived from xs:boolean) then it is serialized in the JSON member as a JSON boolean.

9. If an element is defined as having an xs:list type in the corresponding XSD then it is serialized in the JSON member as a JSON array.

10. If an element instance has a null value then it is serialized into the JSON member as a null, regardless of the data type that it has in the corresponding XSD.

11. If an element is defined as having maxOccurs > 1 in the corresponding XSD then its parent JSON member is serialized as a JSON array.
12. If an element has an XSD data type that is a simple type with XML attributes, then it is serialized in the JSON member as an object. The XML attributes appear as members of that object (using their short names) and the value of the element is serialized as a member of that object with the special name “val”.

13. The members (at each level) may be serialized in any order. The order in which they appear in the corresponding XSD file is immaterial.

The Content parameter is treated just like any other parameter of complex type. It is serialized as an object and its members are the attributes and/or child resource references of the Resource that is being transferred. The Content parameter is not required to contain all the attributes of the Resource.

Editor’s note: The method and rules described in this clause are subject to further review.

8.4.3 Examples

Here is an example of serialized 'data container' resource data using JSON:
 SHAPE * MERGEFORMAT

ct(creationTimestamp):

20150106T113030
et(expirationTimestamp):

null

lt(lastModifiedTimestamp):

20150508T121034

nm(name): c24
pi(parentResourceId): "//example.com/cse1"
ri(resourceId): "//example.com/cse1/c24"
rt(resourceType): 3(container)

st(stateTag): 5

crf(childResource):

nm(name):ins1
rt(resourceType): 4(contentInstance)

val: "//example.com/cse1/c24/ins9"

·
·
·
·
·
·
-----------------------End of change 6---

-----------------------Start of change 7---

8.2.5 Child Resource Reference
Following short name shall be used for the reference information of child resources
Table 8.2.5-1: short name for child resource reference
	Element Name
	Occurs in
	Short Name

	childResource
	All resourcet
	crf

-----------------------End of change 7---

CHECK LIST

· Does this change request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Does this change request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable?
· Does this change request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
<?xml version="1.0"?>

<m2m:resourceData xmlns:m2m="http://www.onem2m.org/xml/protocols">

 <m2m:resourceTypeId>containerType</m2m:resourceTypeId>

 <m2m:container>

 <m2m:name>container1</m2m:name>

 </m2m:container>

</m2m:resourceData>

{

 "ct": "20150106T113030",

 "et": null,

 "lt": "20150108T121034",

 "nm": "c24",

 "pi": "//example.com/cse1",

 "ri": "//example.com/cse1/c24",

 "rt": 3,

 "st": 5,

 "crf": {

 "nm": "ins1",

 "rt": 4,

 "val": "//example.com/cse1/c24/ins9"

 }

}

�Primitives are never used to communicate with external entities. It has to targeted to the CSE which is responsible for interacation between external entities.

�Applicability of CRUD operation can be explained later.

�Proposed to move those clause after 6.4.1 Request message parameter data types

�Same text appeared twice.

�XML is just one of representation, and it is not appropriate to use here.

�Unused definition of resource data.

�RFC7159 already specified to use UNICODE. Do we need to mandate further ?

�Why it has to be cared by serialization ?Avoiding name conflict should be solved in XSD definitions.

© 2015 oneM2M Partners
 Page 14 (of 14)

[image: image6.png]_1482067536.vsd

