	Doc# PRO-2016-0085R01-WebSocket_EditorialCorrections.doc
Change Request
	[image: image3.png]

	CHANGE REQUEST

	Meeting:*
	PRO#21

	Source:*
	Qualcomm Inc. (TIA)

	Date:*
	2016-03-07

	Contact:*
	Wolfgang Granzow, Qualcomm, wgranzow@qti.qualcomm.com
Nobu Uchida, Qualcomm, nuchida@qti.qualcomm.com

	Reason for Change/s:*
	Editorial Corrections to WebSocket Binding specification

	CR against: Release*
	Release-2

	CR against: WI*
	 FORMCHECKBOX
 Active WI-0040
 FORMCHECKBOX
 MNT Maintenance / < Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>

Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0020v0.3.0

	Clauses/Sub Clauses*
	2, 3, 4, 5, 6

	Type of change: *
	 FORMCHECKBOX
 Editorial change

 FORMCHECKBOX
 Bug Fix or Correction

 Change to existing feature or functionality

 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR is a mirror CR? YES FORMCHECKBOX
 NO FORMCHECKBOX
 if YES, please indicate the document number of the original CR:
<Document Number)<CR Number of the original CR to the current Release>

	Template Version:23 February 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR

Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.

All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction

This CR proposes a number of editorial corrections to clauses 2 – 6 of the current draft version v0.3.0 of TS-0020.
-----------------------Start of change 1---
2. References
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1. Normative references

The following referenced documents are necessary for the application of the present document.
[1]
IETF RFC 6455: "The Web Socket Protocol", December 2011.
[2]
oneM2M TS-0001: "Functional Architecture ".

[3]
IETF RFC 7230: "Hypertext Transport Protocol (HTTP/1.1): Message Syntax and Routing", June 2014.

[4]
oneM2M TS-0003: "Security Solutions".
[5]
oneM2M TS-0004: "Service Layer Core Protocol Specification”.
2.2. Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
· Use the EX style, add the letter "i" (for informative) before the number (which shall be in square brackets) and separate this from the title with a tab (you may use sequence fields for automatically numbering references).
 [i.1]
oneM2M Drafting Rules (http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc)

3. Definitions, symbols and abbreviations

Delete from the above heading the word(s) which is/are not applicable.

3.1. Definitions

oneM2M WebSocket Client (WS Client): A WebSocket Client associated with an AE or a CSE capable of establishing the WebSocket connections.

oneM2M WebSocket Server (WS Server): A WebSocket Server associated with a CSE which accepts requests to establish WebSocket connections.

3.2. Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3. Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Abbreviation format

<ABREVIATION1>
<Explanation>

<ABREVIATION2>
<Explanation>

<ABREVIATION3>
<Explanation>

3.4. Acronyms

Acronyms should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Acronym format

<ACRONYM1>
<Explanation>

<ACRONYM2>
<Explanation>

<ACRONYM3>
<Explanation>

4. Conventions

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]

5. Overview on WebSocket Binding
5.1. Use of WebSocket
This binding makes use of the WebSocket protocol [RFC6455] to transport serialized representations of oneM2M request and response primitives over the Mca or Mcc reference points.

Establishment of a WebSocket connection shall be initiated by a WebSocket client by sending a handshake to a WebSocket server as specified in section 4 of IETF RFC6455[1]. Once the WebSocket connection is established, both oneM2M request and response primitives can be exchanged bi-directionally between the two endpoints of the connection. Serialized representations of the request and response primitives shall be mapped in the Payload Data field of the WebSocket base framing protocol, as defined in section 5.2 of IETF RFC6455[1].

A WebSocket connection employs either a TCP/IP or a TLS over TCP/IP connection. The underlying TCP and TLS connections are established as the first step of the WebSocket handshake.
5.2. Binding Overview
WebSocket binding may be employed for communication between any two endpoints which can be connected over the Mca, Mcc or Mcc’ interface reference points supported by the oneM2M Architecture as shown in figure 6.1-1 of oneM2M TS-0001 [2].

When using the WebSocket protocol, one communication endpoint shall act as the WebSocket server. The WebSocket server listens for inbound handshake messages arriving from any WebSocket client to which a WebSocket connection is not yet established. Whether a communication endpoint takes the role of the client or the server shall depend on the registration relationship between the communicating entities as follows: the registree shall always use a WebSocket client, while the associated registrar shall always use a WebSocket server on the respective reference point.

This implies that ADN and ASN always take the role of a WebSocket client when WebSocket binding is employed. An MN-CSE uses a WebSocket server to communicate with its registrees and a WebSocket client to communicate with its own registrar (which can be another MN-CSE or an IN-CSE).

The IN-CSE provides a WebSocket server functionality to communicate with all its registrees, i.e. within a service provider’s domain. On the Mcc’ reference points, i.e. for communication between IN-CSEs of different Service Provider domains, the IN-CSE shall provide both WebSocket client and server functionality. This enables any IN-CSE to open a WebSocket connection to any IN-CSE of another Service Provider’s domain.

Figure 5.2-1 shows some applicable example system configuration.

[image: image1]
There exists a maximum of one WebSocket connection between two nodes. A WebSocket connection is established for the first time when the initial registration procedure of an entity to its registrar is performed. On an established WebSocket connection, request and response primitives can be exchanged in both directions. Any connection may be closed by either the WebSocket client or the server, depending on the communication schedule of either entity. However, the connection can be reopened from the client side only.

If the connection is closed temporarily, it shall be reopened when the next request primitive is sent from the client to the server side, or when the time to become reachable configured at <schedule> resource. If the WebSocket connection with the next-hop entity is not opened, and the WebSocket connection cannot be established due to lack of pointOfAccess address for the entity, a sending CSE shall buffer primitives which should be sent to the entity until the connection is reopened or their expiration time is reached.
Editor’s note: buffering should be handled by the service layer (i.e. CSE) and this feature should apply independent of the binding protocol and be properly specified in oneM2M TS-0001[2]. Therefore we should consider to remove mentioning of buffering in this document.
Figure 5.2-2 shows an example message flow for a scenario where an ADN-AE registers to its registrar MN-CSE using an unsecured TCP connection without proxy and then continues exchanging non-registration request and response primitives.

[image: image3.png]
[image: image2]
1) The ADN-AE wants to register to its registrar MN-CSE. If a WebSocket connection does not exist, it is established by the following steps 2) and 3). It is assumed that the ADN-AE knows the point of access (i.e. WebSocket URI specified in IETF RFC6455[1]) under which the registrar CSE can be reached with WebSocket binding.

2) The WebSocket client shall open handshake to the server with subprotocol name 'oneM2M-pro-v1.0' following IETF RFC6455 [1].
If the server can be reached under the WebSocket URI ws://example.net:9000/, the client handshake may look as follows:

GET / HTTP/1.1

Host: mncse1234.net:9000

Upgrade: WebSocket

Connection: Upgrade

Sec-WebSocket-Key: ud63env87LQLd4uIV20/oQ==
Sec-WebSocket-Protocol: oneM2M-pro-v1.0

Sec-WebSocket-Version: 13

3) The WebSocket server shall reply with a handshake to the client. In the successful case, the status-line of this HTTP response may look as follows:

Request-Version: HTTP/1.1

Status-Code: 101

Response-Phrase: Switching Protocols

Upgrade: WebSocket

Connection: Upgrade

Sec-WebSocket-Protocol: oneM2M-pro-v1.0

Sec-WebSocket-Accept: FuSSKANnI7C/6/FrPMt70mfBY8E=

4) The ADN-AE shall issue a registration request primitive. The request primitive may e.g. look as follows as JSON-serialized representation:

{“m2m:rqp”:{"op":1,"to":"//example.net/mncse1234","rqi":"A1234","pc":{"m2m:ae":{"api":“a56”, “apn”:”app1234”}},"ty": 2}}
NOTE: The WebSocket client associated with an ADN-AE does not need to be reachable for WebSocket Server handshake messages.
5) WebSocket Binding process, which transforms a single oneM2M primitive into one or more data frames of the WebSocket Framing protocol, as specified in IETF RFC6455 [2]. When transmitting a JSON-serialized primitive in utf-8 text format, the 4-bit opcode in the WebSocket Base Framing Protocol of the first message fragment shall be set to x1 (“text frame”).

6) The WebSocket message (consisting of one or more frames) shall be sent to the WS server.

7) The original request primitive shall be unpacked from the WebSocket message by the WS server.

8) The request primitive shall be delivered to the MN-CSE.

9) The MN-CSE shall perform the receiver side operations of AE registration as specified in oneM2M TS-0001[2].
10) The response primitive shall be issued to the WebSocket server.

11) WebSocket binding process for the response primitive shall be performed.

12) The WebSocket message (consisting of one or more frames) shall be sent to the client.

13) The response primitive shall be unpacked.

14) The response primitive shall be delivered to the ADN-AE.

15) After successful completion of AE registration any other CRUDN requests and response primitives can be exchanged over the existing WebSocket connection in both directions. If the AND-AE has no other requests to send, the WebSocket connection may be closed temporarily. When the WebSocket connection is closed after registration and reopened later again, the registration procedure as outlined in steps 4 to 14 is omitted. In this case any non-registration request primitives can be sent directly.

6. Protocol Binding
6.1. Introduction
The WebSocket protocol enables two-way communication between client and server even when a firewall and/or NAT are present between them. This means, once a WebSocket connection is established, request (and response) primitives can be exchanged in both directions, from the client to the server and vice versa. However, AEs may be capable of handling Notification request primitives only, or no request primitives at all.
WebSocket binding applied by oneM2M entities/nodes shall be fully compliant with IETF RFC 6455 [1]. After establishment of a WebSocket connection between two nodes, at the transmitter side each individual request and response primitive is mapped into one or several WebSocket frames.
6.2. WebSocket connection establishment

6.2.1. General

A WebSocket connection is opened by the client side as specified in section 4 of IETF RFC 6455 [1] with sending of a client handshake. The server responds with a server handshake.

The client handshake consists of an HTTP upgrade request, along with a list of required and optional header fields.
The handshake shall be a valid HTTP request as specified by IETF RFC 7230[3]. The server handshake consists of a HTTP status-line and a list of header fields.
The applicable format of the request-line, status-line and the applicable header fields are specified in the following subsections.

HTTP headers fields have case-insensitive field names.

6.2.2. Client handshake

6.2.2.1. Format of request-line Format of request-line

The request-line of a client handshake shall begin with the method token “GET”, followed by the request target “/” and the HTTP version set to “HTTP/1.1” as follows:

GET / HTTP/1.1
If the client is configured to use a proxy when using the WebSocket Protocol, a connection to the proxy server shall be established prior to sending the above client handshake. This is described in clause 5.5.
6.2.2.2. Host header

The Host header shall be present in each client handshake.
The Host header indicates the FQDN or IP address of the Receiver CSE of the next hop. If the originator of the client handshake is an oneM2M field entity, the host header represents the registrar CSE of the originator.

When no proxy is used, the Host header shall be set as one of the pointOfAccess attribute values associated with the Receiver. Selection of the appropriate Receiver is described in oneM2M TS-0004 [5].
If the client is configured to use a proxy when using the WebSocket Protocol, then the client should connect to that proxy and ask it to open a TCP connection to the host and port rather than to the next hop CSE,

Editor’s Note: request line format when using proxy needs more study
6.2.2.3. Upgrade header

The Upgrade header shall be present in each client handshake message with value WebSocket as follows:

Upgrade: WebSocket

6.2.2.4. Connection header

The Connection header shall be present in each client handshake message with value Upgrade as follows:

Connection: Upgrade

6.2.2.5. Sec-WebSocket-Key header

The Sec-WebSocket-Key header shall be present in each client handshake message. The header field includes a base64-encoded representation of a random 16 bytes pattern, for example:

Sec-WebSocket-Key: ud63env87LQLd4uIV20/oQ==
6.2.2.6. Sec-WebSocket-Version header

The Sec-WebSocket-Version header shall be present in each client handshake message with value 13 as follows:

Sec-WebSocket-Version: 13

6.2.2.7. Sec-WebSocket-Protocol header

The Sec-WebSocket-Protocol header shall be present in a client handshake message. It enables the client to indicate its supported application subprotocols on the server and be sure that the server agreed to support that subprotocol.

The value of the Sec-WebSocket-Protocol header shall be one or more of the registered names defined in clause 6.2.2.8. It shall also be allowed to include multiple Sec-WebSocket-Protocol headers with a value that includes one registered name each as defined in IETF RFC 6455[1], for example

Sec-WebSocket-Protocol: name1, name2

and

Sec-WebSocket-Protocol: name1

Sec-WebSocket-Protocol: name2

are equivalent headers, expressing that the WebSocket client supports both application subprotocols, name1 and name2.
Editor’s Note: “name1” and “name2” are placeholders for names to be defined. Usage of this field needs more discussion. Possible name could be e.g. “oneM2M-SL”. However, should this field also may be used to differentiate between oneM2M protocol version serialization schemes, e.g. textual/binary, w/o base64 encoding, JSON/XML Values need to be registered in IANA registry. Names need to be registered in the IANA WebSocket Protocol registry https://www.iana.org/assignments/websocket/websocket.xhtml#subprotocol-name

6.2.2.8. Selection of Payload Data formats

Editor’s Note: it needs to be discussed how the selection between textual and binary Payload Data formats shall be handled and how this information should be indicated from the client to the server, e.g in the subprotocol header or in the extension header.

This information should indicate details of the serialization format. Candidate supported formats could be the following:

Text representations

 JSON text

 XML text

 JSON text base64 encoded (w/o compression)

 XML text base64 encoded (w/o compression)

Binary representations

 Protocol Buffers (https://developers.google.com/protocol-buffers/)

 CBOR (RFC 7049: Concise Binary Object Representation)

 BSON (binary JSON ,http://bsonspec.org/)

 ASN.1 BER and/or DER (ITU-T Rec. X.690)

Text to be added after discussion
6.2.3. Server handshake format

6.2.3.1. Format of status-line

The status-line of a server handshake shall begin with the HTTP version set to “HTTP/1.1”, followed by the status code and reason phrase as defined in IETF RFC6455[1]. When the WebSocket connection is established successfully, the status-line may look as follows:

HTTP/1.1 101 Switching Protocols

In the unsuccessful any appropriate HTTP error status code shall be returned with optional addition of a corresponding reason phrase.

6.2.3.2. Upgrade header

The Upgrade header shall be present in each server handshake message with value WebSocket as follows:

Upgrade: WebSocket
6.2.3.3. Connection header

The Connection header shall be present in each server handshake message with value Upgrade as follows:

Connection: Upgrade
6.2.3.4. Sec-WebSocket-Accept header

The Sec-WebSocket-Accept header shall be present in each server handshake message. The header field shall be constructed from the Sec-WebSocket-Key value and the GUID as specified in section 4.2.2 of IETF RFC6455[1]. It may look e.g. as follows:

Sec-WebSocket-Accept: FuSSKANnI7C/6/FrPMt70mfBY8E=

6.2.3.5. Sec-WebSocket-Protocol header

The Sec-WebSocket-Protocol header shall be present in a client handshake message. It indicates to the client that the server accepts the subprotocol indicated by the client.

The implementation compliant with current specification shall be select a value of‘oneM2M-pro-v1.0’.

6.3. Closing WebSocket connection

Compliant with section 7 of RFC 6455 [1] a WebSocket connection shall be closed by sending a Connection Close Frame (opcode x8). Both, client and server may initiate a closing handshake of an existing WebSocket connection at any time.

WebSocket connections should be kept open for as long as possible considering any given constraints due to communication policies and power saving requirements. Unless communication policies enforce the closing of network access, it is left to implementation to decide when exactly the closing of a WebSocket shall be triggered. However, the further requirements and recommendations specified in clause 6.5 apply.
6.4. Registration procedure

A oneM2M entity (AE or CSE) not yet registered to its registrar CSE needs to be preconfigured with various parameters as specified in oneM2M TS-0001 [2] and oneM2M TS-0003 [4] in order to be able to send the registration request primitive (i.e. create <AE> or create <remoteCSE> request primitive). To establish a WebSocket connection, the WebSocket client must be configured with an applicable point of access of its registrar CSE which includes FQDN or IP address and the port number.
After the Registration procedure has been successfully completed, the WebSocket Server (e.g. Registrar CSE for WebSocket Client) shall enable routing of any incoming oneM2M primitives to this registree.

Thus until the Before the Registration procedure is successfully completed, any incoming oneM2M primitives to the WebClient shall be rejected by the Receiver (e.g. registrar CSE).
Closing of the WebSocket connection after registration does not impact the registration status of an AE or CSE to its registrar, unless an explicit de-registration procedure is performed by deletion of the respective <AE> or <remoteCSE> resource instance.

6.5. Handling of Non-Registration Request

Registered entities (AE and CSE) are allowed to send and receive non-registration request primitives. A WebSocket connection should support any of the transfer modes defined in clause 8.2 of oneM2M TS-0001 [2], i.e. blocking requests, and non-blocking requests for both synchronous and asynchronous cases.

When sending blocking requests, the WebSocket connection shall not be closed before the response is received, or before any configured timeout period has expired.

When sending non-blocking requests, the WebSocket connection shall not be closed before the acknowledgment response is received, or before any configured timeout period has expired. If the entities’ communication policies and power saving requirements allow, the connection should be kept open at least until an ongoing procedure has fully completed, i.e. requesting of the result in synchronous mode or completion of Notify procedure in asynchronous mode.
6.6. Use of proxy servers

The connection to a proxy shall be requested by sending a request-line with the method token “CONNECT”, followed by the request target host and port of the WebSocket server and the HTTP version set to “HTTP/1.1” as follows:

CONNECT WSserver.example.com:80 HTTP/1.1
Editor's Note: More text to added!!

-----------------------End of change 1---

Figure 45.2-1: Example scenarios of WebSocket client and server configurations

AE

WS

 Client

CSE

WS

 Server

WS

 Client

AE

CSE

WS

 Client

AE

AE

WS

 Client

CSE

WS

 Client

AE

CSE

WS

 Server

WS

 Client

AE

 CSE

WS

 Server

WS

 Client

ADN

ASN

ADN

MN

MN

ASN

IN

Mcc’

Mcc

Mca

Mcc

Mca

Mcc

Figure 45.2-2: Example message flow with Websocket binding

AE

WS client

c

client

CSE

WS server

c

client

ADN

MN

AE wants to start registration procedure and triggers WebSocket connection establishment

Client handshake

Server handshake

Request primitive

WebSocket Binding

WebSocket message

Unpacking request primitive

Request primitive

Receiver side processing of AE registration procedure

Response primitive

WebSocket Binding

WebSocket message

Unpacking response primitive

Response primitive

non-registration CRUDN operations

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC)
Page 12 of 12
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

