	Doc# PRO-2016-0302-CR_TS0004_schema_validation.doc
Change Request
	[image: image1.png]

	
	

	CHANGE REQUEST

	Meeting:*
	PRO#24

	Source:*
	Qualcomm Inc. (TIA)

	Date:*
	2016-07-13

	Contact:*
	Nobu Uchida, Qualcomm, nuchida@qti.qualcomm.com
Wolfgang Granzow, Qualcomm, wgranzow@qti.qualcomm.com

	Reason for Change/s:*
	Clarification on schema validation and order of elements in XML representations

	 CR against: Release*
	R2

	CR against: WI*
	 FORMCHECKBOX
 Active <Work Item number>

 FORMCHECKBOX
 MNT maintenance / <Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0004 V2.6.0

	Clauses/Sub Clauses*
	6.1, 7.4.0 (new), 7.4.1, 8.3, 8.4

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 FORMCHECKBOX
 Change to existing feature or functionality
 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR is a mirror CR? YES FORMCHECKBOX
 if YES, please indicate the document number of the original CR: NO FORMCHECKBOX

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
This CR proposes clarifications in TS-0004 to address issue #23 related to XML schema validation raised at the 2nd interoperability test event, see TP-2016-0118R01:

Issue #15:

“The CSE shall validate resource representation against the XSDs schemas:

· Q1: Is it necessary to respect the order of attributes for XML ?

· Q2: How about object order in JSON ?

· Q3: Current XSDs are provided for update or for Create ?”
Discussion:

(A1): The XSD defines the resource types as xs:sequence group of its applicable elements (i.e. resource attributes and choice of child resource references or inlined child resources). This implies that the order of elements in an XML representations of a resource instance is significant.

XML schema allows the definition of groups of unordered elements by means of xs:all, but this works for elements with maxOccurs = “1” only. Due to the unbounded occurrence of child resource references in oneM2M resources it cannot be applied without creation of extra overhead due to the definition of wrapper elements which would have maxOccurs = “1”. There are a number of other complication when using xs:all groups. There is no way to modify the XSD in a backward compatible fashion that it allows arbitrary order (not even for top level elements such as resource attributes only).
(A2): In JSON objects, the order of its members is insignificant.

(A3): The XSD files are directly applicable only to validate instantiations of resource types at the hosting CSE. That means given a representation of a resource in XML format, the presence of all mandatory elements is validated, and the compliance of any element value given in the XML object is validated against its datatype definition. This means for instance that mandatory resource attributes which are created by the hosting CSE (e.g. parentID) and which are never sent by the originator, must be included in the XML object to comply with the “original” XSD associated with the given resource type. The “original” XSD files cannot be employed directly to validate schema compliance of resource representations included in the Content parameter of request and response primitive. However, XSD that could be employed for validation of partial resource representations as exchanged in Create, Update and Partial Retrieve request or response primitives by simply setting minOccurs = 0 for all resource attributes which are mandatory (i.e. minOccurs = “1” in the original XSD file)
Proposed resolution:

Clause 6.1 of TS-0004 was intended to clarify the general purpose of the XSD files. Clause 7.4.1 describes the conventions used for the specification of each resource type. Clauses 8.3 and 8.4 specify XML and JSON serialization. Furthermore, there is the informative Annex F “Guidelines for oneM2M resource type XSD” which describes some rules to be applied for XSD development. This Annex F is not affected by the changes proposed in this CR.
It is suggested to clarify the questions raised by the TST WG without making technical changes to the XSD itself.

Change 1 to clause 6.1 and change 2 to clause 7.4.1 provide clarification to Question Q3.

Question Q2 should be clear from bullet 11) in clause 8.4 and should not require any further clarification.

The most critical issue to clarify is whether or not XML serialized data should respect the order of element occurrence imposed by the XSD, or if this requirement could be relaxed (Question Q1)
Since it is possible to validate JSON representations with arbitrarily ordered members against the given XSD, it would also be possible to validate XML representations which are out of order. However, given that a receiver doesn’t know whether the XML object is in order or not, this would require an extra processing step even for correctly ordered XM.
Any tools which generate schema-valid XML from OOP objects (i.e. JAVA, C++, etc.) will anyway always produce correctly ordered XML. An originator that sends unordered XML actually indicates that it has not applied any formal schema validation at all.
Change 3 to clause 8.3 “XML Serialization” of this CR therefore proposes to include an explicit statement that mandates XML element order compliance.

This means if implementers don’t want ensure the correct order of elements compliant with the XSD, they should use JSON serialization rather than XML. If this is regarded a too strong restriction, one solution to allow unordered XML serializations, could be to define an explicit media type for this. Receivers supporting that media type could then perform the required processing when required only. However, it is very unlikely that such a solution gets much traction. It could be regarded as receiver tolerant to sloppy protocol implementation.
In addition to clarification of the above questions, this CR includes a number of other text improvements and bug fixes in the addressed clauses that were felt to be required.
R01: changes:

· Online revisions agreed at presentation

· Shortening NOTE 2 in clause 6.1 (in change 1)

· Removal of unclear statement about creator attribute in clause 7.4.1.1 (in change 2)

· Changes to proposed text in clause 8.3 (change 3), which references to NOTE 2 in clause 6.1

-----------------------Start of change 1---

6.1 Introduction

The present document describes message formats and procedures to communicate with oneM2M compliant M2M Platform System.

The present document describes:

· Data representation for communication protocol messages.

· Normal and exceptional procedure.

· Status codes.

· Guidelines for drafting APIs.
For wide acceptance by industrial markets, the present document describes structured and non-structured data for oneM2M Protocol using XML Schema Definition (XSD) language [3].

The actual format of data in request and response messages partially depends on the applied protocol binding. Mapping rules between the data formats defined in the present document types and protocol-specific native data formats are specified in the protocol binding specifications TS-0008 [22], TS-0009 [23] and TS-0010 [24].

The core data types of XML elements defined in the present document for use in oneM2M protocols shall use the namespace:

· http://www.onem2m.org/xml/protocols.
The present document, and any XML or XML Schema Documents produced by oneM2M shall use the prefix m2m: to refer to that namespace.
Specializations of the <flexContainer> resource type (cf. clause 7.4.37) may employ a different target namespace.
The XSD files referenced in the present document shall serve following purposes:

1) Provide an unambiguous definition of XML element names and data types used for

a) resource representations,

b) resource attributes,

c) Request and Response primitives (including Notification primitive),
d) parameters used in Request and Response primitives.

2) Help to identify and avoid that equivalent data types are defined multiple times with different names.
3) Provide a testable definition of the value range of data elements (e.g. allowed number range, allowed characters or character patterns, allowed enumeration values).
NOTE 1: The XML schemas do not fully check the value ranges of all data elements. This particularly applies to XML elements which represent string patterns (see Table 6.3.2‑1). For full compliance with this specification, an implementation must respect both the schema definition and any additional constraints given in the tabular specification of data types defined in this document.
4) Provide a testable definition of the presence of mandatory elements (minOccurs=”1") and of the cardinality of data elements (e.g. maxOccurs="2") in XML representations of data objects (i.e. resource instantiations and primitive parameters).
NOTE 2:
The XSD files referenced in this document are intended to validate instantiations of complete resources at the hosting CSE. When requesting a CRUD operation and receiving the response, the Content primitive parameter however typically includes partial representations of a resource.
Implementations compliant with this specification may employ modified versions of the XSD for schema-validation of partial resource representations.
5) Provide a testable definition of the correct sequence of occurrence of each element of a data object (where correct sequence is required).

6) Enable the use of development tools that generate executable code for data object processing from the XSD.
7) Enable the use of XML development tools which allow automatic generation of valid templates for XML and JSON objects, and validation of the compliance of any XML or JSON objects with the XSD.
Parameters and resource representations exchanged in primitives between oneM2M entities shall comply with data formats defined in the present document based on the referred XSD documents. The present document defines procedures for validation of received messages and the error handling in case of reception of non-compliant message content.

NOTE 3: M2M implementations are required to validate the data received in incoming primitives in accordance with the present document, but the present document does not intend to impose restrictions on implementation of the validation procedures. In particular the validation procedure is not required to use the XSD documents directly.
-----------------------End of change 1---

-----------------------Start of change 2---
7.4 Resource type-specific procedures and definitions

7.4.0 Introduction
This clause specifies the structure of each individual resource type and the resource type specific details of procedures (i.e. differences from the generic procedures specified in clauses 7.2 and 7.3) to be performed by the originator and receiver of a request message.
The applicability of each of the following resource type-specific procedures to an interface reference point (i.e. Mca, Mcc and Mcc') is defined in clause 10.2 (Resource Type-Specific Procedures) of TS-0001 [6].
7.4.1 Resource type specification conventions

7.4.1.1 Resource type definition conventions
This clause provides general information on conventions applied to resource type specifications and how to interpret the provided information. Each resource type is defined in a tabular format as shown in the tables below.
A reference to the XSD file associated with the given resource type is provided in the format shown in table 7.4.1.1‑1. Further information on usage and limitations of the XSD is given in clause 6.1.
Table 7.4.1.1‑1: Data type definition of <resourceType>

	Data Type ID
	File Name
	Note

	Actual Data Type ID
	XSD file name
	

Information about universal/common resource attributes of a resource type is provided in the format shown in table 7.4.1.1‑1. The column “Request optionality” specifies the presence of each resource attribute in the Content parameter of the request primitive. This is defined as Mandatory (M), Optional (O), or NP (Not Present). The table applies only to Create and Update operations. A Retrieve request operation may include a Content parameter containing a list of attribute names to be retrieved. A Delete request shall not include a Content parameter.
Universal/common resource attributes do not have any default value. However, value restrictions and notes given in table 6.3.6‑1 apply.
Table 7.4.1.1‑2: Universal/Common Attributes of <resourceType> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	Universal/common attribute name
	M/O/NP
	O/NP

Information about resource specific attributes of the resource type is provided in the format shown in table 7.4.1.1‑3. Request optionality shall be interpreted the same way as described for universal/common attributes above.

Table 7.4.1.1‑3: Resource Specific Attributes of <resourceType> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	resource specific attribute name
	M/O/NP
	O/NP
	Assigned XSD datatype
	Applicable constraints on attribute values and default value if applicable

Request primitives shall comply with the request optionality of universal/common and resource specific attributes in Create and Update request primitives as defined for each individual resource type in the following clauses. The values of each resource attribute shall comply with its assigned datatype and any indicated constraints. See clause 6.1 for limitations on using the XSD files associated with the resource type for validation of compliance.
Table 7.4.1.1‑4 provides the information of child resources of the resource type.

Table 7.4.1.1‑4: Child resources of <resourceType> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to Resource Type Definition

	<resourceType>
	"[variable]" or fixed name
	Multiplicity of child resource instances in the corresponding resource type
	Reference to the resource type definition in the present document.

-----------------------End of change 2---

-----------------------Start of change 3---

8.3 XML serialization
8.3.1 Method
XML serialization of request or response primitives refers to the process of representing the primitive as an XML document.
The XML document shall be a well-formed XML document compliant with W3C XML 1.0 [1]. It shall be restricted to Unicode characters and encoded using UTF-8 as described in RFC 3629 [21].
The structure and data types of XML serialized request and response primitives shall be consistent with the XSD defined in CDT-requestPrimitive-v2_6_0.xsd and CDT-responsePrimitive-v2_6_0.xsd, respectively. The data types used in these XSD files comply with the definitions in clause 6 and clause 7 of the present document.
XML serializations shall comply with the order of resource attributes and elements imposed by the XML schema definition. If an implementation uses modified XSD modified from the original files for schema validation of partial resource representations (see NOTE 2 in clause 6.1), the order of resource attributes shall not be changed.
Note that the XSD files included in the present release employ the long names for primitive parameters and other XML elements and attributes, but the primitive serialization is required to use the corresponding short names (as defined clause 8.2 of the present document).

NOTE: XML Schema files are available with both long and short names.
8.3.2 The primitive Content parameter is serialized just like any other element of complex type. Generally, the Content parameter may include only a partial set of attributes specified for the resource type as indicated in the Resource Type parameter, e.g. for partial Update or Retrieve Request procedures. For Notification Request primitives, the Content parameter includes a Notification data object as defined in clause 7.5.1.1 and the datatype definition given in CDT-notification-v2_6_0.xsd.
8.3.3 Examples
An example that shows a request primitive serialized into an XML document is shown below. This example shows the create request for an instance of a <contentInstance> resource. Only mandatory primitive parameters and resource attributes are shown.

<?xml version="1.0" encoding="UTF-8"?>
<m2m:rqp xmlns:m2m="http://www.onem2m.org/xml/protocols">
 <op>1</op>
 <to>//cse1.mym2msp.org/</to>
 <fr>/cse1234/app567</fr>
 <rqi>0002bf63</rqi>
 <ty>4</ty>
 <pc>
 <m2m:cin>
 <cnf>application/xml:1</cnf>
 <con>PHRpbWU+MTc4ODkzMDk8L3RpbWU+PHRlbXA+MjA8L3RlbXA+DQo=</con>
 </m2m:cin>
 </pc>
</m2m:rqp>

The XML elements have the following meaning:

· rqp: Root element of the Request primitive, which includes a reference to an XSD file which defines its datatype.

· op:
Operation parameter of datatype m2m:operation: in this example value = 1 indicates a "Create" operation.

· to:
To parameter of type m2m:anyURI: URI of the target resource.

· fr:
From parameter of type m2m:ID: ID of the Originator (either AE-ID or CSE-ID).

· rqi:
Request Identifier parameter of type m2m:requestID: this could e.g. represent a counter number.

· ty:
Resource Type parameter of datatype m2m:resourceType: indicating type of the resource to be created (value = 4 indicates that a <contentInstance> resource shall be created).

· pc:
Content parameter of datatype m2m:primitiveContent: the attributes of the resource to be provided by the Originator.

· cin: Root element of the <contentInstance> resource of datatype m2m:contentInstance: this includes the mandatory attributes (and optional attributes not shown in this example) supplied by the request Originator.

In this example, the Content parameter includes an instance of a <contentInstance> resource which consists of two attributes: contentInfo (cnf) – which specifies base64 encoding - and the content (con) itself.

8.4 JSON serialization
8.4.1 Terminology

The following conventions are used in the clause that follows.

· The italicized terms object, member, name, array, number, string, boolean and null are to be interpreted as in RFC 7159 [19]

· The italicized term element is to be interpreted to encompass oneM2M Primitive Parameters, Resource Attributes and other elements or attributes used inside oneM2M complex type definitions

8.4.2 Method

The primitive shall be encoded as a JSON object, conforming to the requirements of RFC 7159 [19]. This JSON object shall be restricted to Unicode characters defined in The Unicode Standard and encoded using UTF-8 as described in RFC 3629 [21]. The names in each object in the JSON shall be unique.
The structure of the top-level primitive object shall be determined by the data type definitions in clause 6 and clause 7 of the present document, as follows:

1. All member's names shall be the short name defined in clause 8.2.

2. If an element is defined in the present document as having a complex type, then it is serialized in the JSON member as an object and its children are recursively serialized as members of that object, using short names as defined in clause 8.2.

3. The membership of each nested object shall respect the cardinality constraints from the corresponding XSD complex type definition,

4. If an element is defined in the present document as having an atomic data type that is numeric in nature (e.g. xs:integer or a type derived from it) then its value is serialized into the JSON member as a number.

5. If an element is defined as having an atomic data type that is non-numeric then its value is serialized into the JSON member as a string.

6. If an element is defined as xs:boolean (or a type derived from xs:boolean) then it is serialized in the JSON member as a boolean.

7. If an element is defined as having an xs:list type in the corresponding XSD then it is serialized in the JSON member as an array.

8. If an element instance has a null value then it is serialized into the JSON member as a null, regardless of the data type that it has in the corresponding XSD.

9. If an element is defined as having maxOccurs > 1 in the corresponding XSD then its occurrences are serialized in a single JSON member as an array.
10. If an element has an XSD data type that is a simple type with XML attributes, then it is serialized in the JSON member as an object. The XML attributes appear as members of that object (using their short names) and the value of the element is serialized as a member of that object with the special name "val".

11. The members (at each level) may be serialized in any order. The order in which they appear in the corresponding XSD file is immaterial.
12. If an element has an XSD data type that is a complex type with XML attributes, then it is serialized in JSON as an object. The XML attributes appear as members of that object (using their short names) as do the XML elements.

The Content parameter is treated just like any other parameter of complex type. It is serialized as an object and its members are the attributes and/or child resource references of the Resource that is being transferred. The Content parameter is not required to contain all the attributes of the Resource. The JSON representation of the Content parameter shall be encapsulated by a member name as defined in the first column of Tables 7.5.2-1 and 7.5.2-2
8.4.3 Examples

Here is an example that shows the payload of a request message serialized using JSON:

{"op": "1", "fr": "//xxxxx/2345", "to": "//xxxxx/99", "rqi": "A1234", "pc": {"m2m:sch": {"se": "* 0-5 2,6,10 * * * *"}}, "ty": 18}

· op: operation (in this case it is Create)

· fr: ID of the Originator (either the AE or CSE)

· to: URI of the target resource

· rqi: request identifier (this is a string)

· pc: attributes of the <schedule> resource with member name "m2m:sch" to be provided by Originator. This is serialized as a nested JSON object

· ty: type of resource to be created (in this case a Schedule resource). This is a number.

Note that the Operation (op) parameter is present only in Request primitives. The presence of this parameter in JSON serialized primitive representations allows to differentiate Request primitives from Response primitives.
The example below shows an <AE> resource serialized using JSON where m2m:ae is a Global Element having an XML attribute “rn” defined in the XSD file with short names associated with the <AE> resource:

{
 "m2m:ae": {
 "rn": "appname",
 "aei": "CAE01",
 "ct": "20160404T132648",
 "et": "20160408T004648",
 "lt": "20160404T132648",
 "pi": "ONET-CSE-02",
 "ri": " REQID1",
 "ty": 2
 }
}
-----------------------End of change 3---

CHECK LIST

· Does this change request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Have any mirror crs been posted?
· Does this change request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable?
· Does this change request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
�This doesn't make sense. If the value is empty, why is the creator attribute included at all? It could be set by the CSE just as other NP attributes, e.g. parentID

© 2016 oneM2M Partners
 Page 5 (of 10)

[image: image1.png]