	Doc# PRO-2016-0324-CR_WebSocketTS_cleanups.doc
Change Request
	[image: image3.png]

	

	CHANGE REQUEST

	Meeting:*
	PRO 24.0

	Source:*
	FUJITSU

	Date:*
	20156-07-20

	Contact:*
	Shingo Fujimoto, FUJITSU, shingo_fujimoto@jp.fujitsu.com

	Reason for Change/s:*
	This CR aims to resolve remained Editor's comments.

	CR against: Release*
	Release-2

	CR against: WI*
	 FORMCHECKBOX
 Active WI-0040

 FORMCHECKBOX
 MNT maintenace / < Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0020 V0.5.1

	Clauses/Sub Clauses*
	

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 Change to existing feature or functionality
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR is a mirror CR? YES FORMCHECKBOX
 if YES, please indicate the document number of the original CR: <Document Number) : NO FORMCHECKBOX

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
This CR aims to resolve remained Editor's comments.
R01: make clause 5.2 for informative statements. Fixed on some editorial errors.
-----------------------Start of change 1---
5.2
Binding Overview
WebSocket binding may be employed for communication between any two endpoints which can be connected over the Mca, Mcc or Mcc' interface reference points supported by the oneM2M Architecture as shown in figure 6.1-1 of oneM2M TS-0001 [2].

When using the WebSocket protocol, one communication endpoint shall act as the WebSocket server. The WebSocket server listens for inbound handshake messages arriving from any WebSocket client to which a WebSocket connection is not yet established. Whether a communication endpoint takes the role of the client or the server shall depend on the registration relationship between the communicating entities as follows: the registree shall always use a WebSocket client, while the associated registrar shall always use a WebSocket server on the respective reference point.

This implies that ADN and ASN always take the role of a WebSocket client when WebSocket binding is employed. An MN-CSE uses a WebSocket server to communicate with its registrees and a WebSocket client to communicate with its own registrar (which can be another MN-CSE or an IN-CSE).

The IN-CSE provides a WebSocket server functionality to communicate with all its registrees, i.e. within a service provider's domain. On the Mcc' reference points, i.e. for communication between IN-CSEs of different Service Provider domains, the IN-CSE shall provide both WebSocket client and server functionality. This enables any IN-CSE to open a WebSocket connection to any IN-CSE of another Service Provider's domain.

Figure 5.2.-1 shows some applicable example system configuration.

[image: image1]
There exists a maximum of one WebSocket connection between two nodes. A WebSocket connection is established for the first time when the initial registration procedure of an entity to its registrar is performed. On an established WebSocket connection, request and response primitives can be exchanged in both directions. Any connection may be closed by either the WebSocket client or the server, depending on the communication schedule of either entity. However, the connection can be reopened from the client side only.

If the connection is closed temporarily, it shall be reopened when the next request primitive is sent from the client to the server side, or when the time to become reachable configured at <schedule> resource. If the WebSocket connection with the next-hop entity is not opened, and the WebSocket connection cannot be established due to lack of pointOfAccess address for the entity, a sending CSE may enable buffering of primitives which should be sent to the entity until the connection is reopened or their expiration time is reached. See Annex H of oneM2M TS-0004 [5] about buffering of primitives by CMDH functionality.

Figure 5.2-2 shows an example message flow for a scenario where an ADN-AE registers to its registrar MN-CSE using an unsecured TCP connection without proxy and then continues exchanging non-registration request and response primitives.

[image: image3.png]
[image: image2]
1) The ADN-AE wants to register to its registrar MN-CSE. If a WebSocket connection does not exist, it is established by the following steps 2) and 3). It is assumed that the ADN-AE knows the point of access (i.e. WebSocket URI specified in IETF RFC6455 [1]) under which the registrar CSE can be reached with WebSocket binding.

2) The WebSocket client opens handshake to the server with subprotocol name 'oneM2M-pro-v1.0' following IETF RFC6455 [1].
If the server can be reached under the WebSocket URI ws://example.net:9000/, the client handshake may look as follows:

GET / HTTP/1.1

Host: mncse1234.net:9000

Upgrade: WebSocket

Connection: Upgrade

Sec-WebSocket-Key: ud63env87LQLd4uIV20/oQ==
Sec-WebSocket-Protocol: oneM2M-pro-v1.0

Sec-WebSocket-Version: 13

3) The WebSocket server replies with a handshake to the client. In the successful case, the status-line of this HTTP response may look as follow:

Request-Version: HTTP/1.1

Status-Code: 101

Response-Phrase: Switching Protocols

Upgrade: WebSocket

Connection: Upgrade

Sec-WebSocket-Protocol: oneM2M-pro-v1.0

Sec-WebSocket-Accept: FuSSKANnI7C/6/FrPMt70mfBY8E=

4) The ADN-AE issues a registration request primitive. The request primitive may e.g. look as follows as JSON-serialized representation:

{"m2m:rqp":{"op":1,"to":"//example.net/mncse1234","rqi":"A1234","pc":{"m2m:ae":{"api":"a56", "apn":"app1234"}},"ty": 2}}
NOTE: The WebSocket client associated with an ADN-AE does not need to be reachable for WebSocket Server handshake messages.
5) WebSocket Binding process, which transforms a single oneM2M primitive into one or more data frames of the WebSocket Framing protocol, as specified in IETF RFC6455 [1]. When transmitting a JSON-serialized primitive in utf-8 text format, the 4-bit opcode in the WebSocket Base Framing Protocol of the first message fragment will be set to x1 ("text frame").

6) The WebSocket message (consisting of one or more frames) shall be sent to the WS server.

7) The original request primitive shall be unpacked from the WebSocket message by the WS server.

8) The request primitive is delivered to the MN-CSE.

9) The MN-CSE performs the receiver side operations of AE registration as specified in oneM2M TS-0001[2].
10) The response primitive is issued to the WebSocket server.

11) WebSocket binding process for the response primitive is performed.

12) The WebSocket message (consisting of one or more frames) is sent to the client.

13) The response primitive is unpacked.

14) The response primitive is delivered to the ADN-AE.

15) After successful completion of AE registration any other CRUDN requests and response primitives can be exchanged over the existing WebSocket connection in both directions. If the ADN-AE has no other requests to send, the WebSocket connection may be closed temporarily. When the WebSocket connection is closed after registration and reopened later again, the registration procedure as outlined in steps 4 to 14 is omitted. In this case any non-registration request primitives can be sent directly.

-----------------------End of change 1---

-----------------------Start of change 2---

6.2.2.3
Host header

The Host header shall be present in each client handshake.
The Host header indicates the FQDN or IP address of the Receiver CSE of the next hop. If the originator of the client handshake is an oneM2M field entity, the host header represents the registrar CSE of the originator.

When no proxy is used, the Host header shall be set as one of the pointOfAccess attribute values associated with the Receiver. Selection of the appropriate Receiver is described in oneM2M TS-0004 [5].
If the client is configured to use a proxy when using the WebSocket Protocol, then the client should connect to that proxy and ask it to open a TCP connection to the host and port rather than to the next hop CSE,

-----------------------End of change 2---

-----------------------Start of change 3---

6.2.2.7
Sec-WebSocket-Protocol header

The Sec-WebSocket-Protocol header shall be present in a client handshake message. It enables the client to indicate its supported application subprotocols on the server and be sure that the server agreed to support that subprotocol. It is used by the client to indicate the oneM2M Service Layer Protocol version and supported serialization formats to the server.
The value of the Sec-WebSocket-Protocol header shall be one or more of the registered names defined in clause 6.2.2.9. It shall also be allowed to include multiple Sec-WebSocket-Protocol headers with a value that includes one registered name each as defined in IETF RFC6455[1], for example

Sec-WebSocket-Protocol: oneM2M.R2.0.JSON, oneM2M-R2.0_XML
and

Sec-WebSocket-Protocol: oneM2M.R2.0.XML
Sec-WebSocket-Protocol: oneM2M.R2.0.JSON
are equivalent headers, expressing that the WebSocket client supports both application subprotocols, oneM2M.R2.0.XML and oneM2M.R2.0.XML. The order of names indicated in the Sec-WebSocket-Protocol header specifies the client's preference.

-----------------------End of change 3---

-----------------------Start of change 4---

6.2.2.9
Subprotocol names and serialization formats

The Sec-WebSocket-Protocol header in the opening handshake is used to negotiate the application protocol layered on top of WebSocket. The application protocol addressed in this specification is the Release-2 version of the oneM2M Service Layer.

The oneM2M Service Layer Protocol consists of the exchange of serialized representations of request and response primitives as defined in oneM2M TS-0001 [2] and oneM2M TS-0004 [5]. This version of the specification allows use of the serialization formats listed in Table 6.2.2.9-1. Both, protocol version and serialization format are associated with a specific subprotocol name.

Table 6.2.2.9-1 lists the serialization formats, associated subprotocol names and opcode setting of the WebSocket Frame protocol applicable for the present version of this specification.

Table 6.2.2.9‑1: Applicable Subprotocol names
	Serialization Format
	Subprotocol Name
	WS opcode
	Notes

	JSON
	oneM2M.R2.0.json
	x1 ("text frame")
	See clause 8.4 in oneM2M TS-0004 [5]

	XML
	oneM2M.R2.0.xml
	x1 ("text frame")
	See clause 8.3 in oneM2M TS-0004 [5]

	CBOR
	oneM2M.R2.0.cbor
	x2 ("binary frame")
	See clause 8.5 in oneM2M TS-0004 [5]

-----------------------End of change 4---

-----------------------Start of change 5---

6.3
Closing WebSocket connection

Compliant with section 7 of IETF RFC6455 [1] a WebSocket connection shall be closed by sending a Connection Close Frame (opcode x8). Both, client and server may initiate a closing handshake of an existing WebSocket connection at any time.

WebSocket connections should be kept open for as long as possible considering any given constraints due to communication policies and power saving requirements. Unless communication policies enforce the closing of network access, it is left to implementation to decide when exactly the closing of a WebSocket shall be triggered.
-----------------------End of change 5---

-----------------------Start of change 6---

6.6
Use of proxy servers

The connection to a proxy shall be requested by sending a request-line with the method token "CONNECT", followed by the request target host and port of the WebSocket server and the HTTP version set to "HTTP/1.1" as follows:

CONNECT WSserver.example.com:80 HTTP/1.1

-----------------------End of change 6---
-----------------------Start of change 7---
6.2.3.1 Format of status-line

The status-line of a server handshake shall begin with the HTTP version set to "HTTP/1.1", followed by the status code and reason phrase as defined in IETF RFC6455[1]. When the WebSocket connection is established successfully, the status-line may look as follows:

HTTP/1.1 101 Switching Protocols

For the unsuccessful connection establishment, any appropriate HTTP error status code shall be returned with optional addition of a corresponding reason phrase.
-----------------------End of change 7---

-----------------------Start of change 8---

7.
Security Aspects

Authentication and Transport Layer Security can be established when the oneM2M entity which hosts the WebSocket Server can be addressed with the wss URI scheme. When using the wss URI scheme, one of the Security Association Establishment Frameworks (SAEF) as defined in oneM2M TS-0003 [4] shall be applied to provide mutually authenticated Transport Layer Security between the communicating entities prior to sending the WebSocket client handshake.

The SAEF is accomplished by successful completion of a TLS handshake procedure before the client sends its opening handshake message. The details of SAEF and possibly required Remote Security Provisioning Frameworks are specified in oneM2M TS-0003 [4].

In special deployment scenarios, e.g. when the communicating oneM2M entities using WebSocket binding are located in a secure environment and/or implemented on the same device, Transport Layer Security may not be required. In such scenarios unsecured WebSocket communication addressed with the ws URI scheme may be adequate.

-----------------------End of change 8---
-----------------------Start of change 9---
In Annex A.1, add following title to figure A.1-1:
Figure A.1-1: Message flow for registration of an ADN-AE to an IN-CSE
-----------------------End of change 9---

-Start of changes to Definitions Symbols Abbreviations Acronyms -

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

ADN
Application Dedicated Node

AE
Application Entity

ASN
Application Service Node

CBOR
Concise Binary Object Representation
CSE
Common Services Entity
FQDN
Fully Qualified Domain Name
GUID
Globally Unique Identifier
HTTP
Hypertext Transport Protocol
IANA
Internet Assigned Numbers Authority

IETF
Internet Engineering Task Force

IN-CSE
Infrastructure Node Common Services Entity

IP
Internet Protocol

JSON
JavaScript Object Notation
MN
Middle Node

MN-CSE
Middle Node Common Services Entity

NAT
Network Address Translator
SAEF
Security Association Establishment Framework
TCP
Transmission Control Protocol

TLS
Transport Layer Security

URI
Uniform Resource Identifier

WS
WebSocket
XML
eXtensible Markup Language

---End of changes to Definitions, Symbols, Abbreviations, Acronyms ---

CHECK LIST

· Does this change request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Have any mirror crs been posted?
· Does this change request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable?
· Does this change request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
Figure 5.2-1: Example scenarios of WebSocket client and server configurations

AE

WS

 Client

CSE

WS

 Server

WS

 Client

AE

CSE

WS

 Client

AE

AE

WS

 Client

CSE

WS

 Client

AE

CSE

WS

 Server

WS

 Client

AE

 CSE

WS

 Server

WS

 Client

ADN

ASN

ADN

MN

MN

ASN

IN

Mcc’

Mcc

Mca

Mcc

Mca

Mcc

Figure 5.2-2: Example message flow with Websocket binding

AE

WS client

c

client

CSE

WS server

c

client

ADN

MN

AE wants to start registration procedure and triggers WebSocket connection establishment

Client handshake

Server handshake

Request primitive

WebSocket Binding

WebSocket message

Unpacking request primitive

Request primitive

Receiver side processing of AE registration procedure

Response primitive

WebSocket Binding

WebSocket message

Unpacking response primitive

Response primitive

non-registration CRUDN operations

© 2016 oneM2M Partners
 Page 3 (of 9)

