	Doc# PRO-2018-0157_TS-0020_WebSocket_subprotocol_names_R2.doc
Change Request
	[image: image4.png]

	

	CHANGE REQUEST

	Meeting ID:*
	PRO#34

	Source:*
	Nobu Uchida, nuchida@qti.qualcomm.com
Wolfgang Granzow, Qualcomm, wgranzow@qti.qualcomm.com

	Date:*
	2018-05-15

	Reason for Change/s:*
	Reassignment of subprotocol names

	CR against: Release*
	Release 2

	CR against: WI*
	 FORMCHECKBOX
 Active WI

 FORMCHECKBOX
 MNT maintenance / < Work Item number(optional)>
Is this a mirror CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

mirror CR number:
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0020 v2.2.0

	Clauses *
	5.2.2, 6.2.2.7, 6.2.2.9, Annex A

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 FORMCHECKBOX
 Change to existing feature or functionality
 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	<TS/TR number>, <Version Number>, and <Description on which aspect should be reflected in this TS/TR>

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES FORMCHECKBOX
 NO FORMCHECKBOX

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separate “mirror CR” should be posted at the same time of this CR
Mirror CR: applies only when the text, including clause numbering are exactly the same.

Companion CR: applies when the change means the same but the baselines differ in some way (e.g. clause number).
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction

This CR updates the notation of WebSocket subprotocol names defined in TS-0020. Since oneM2M protocol version indication is now included in the request and response primitives itself there is no need to indicate this information in the subprotocol name.

The following subprotocol names as defined in Table 6.2.2.9-1 are now proposed to be used:

oneM2M.json, oneM2M.xml, oneM2M.cbor
These names need to be registered in the IANA WebSocket Subprotocol Name Registry (https://www.iana.org/assignments/websocket/websocket.xml).
-----------------------Start of change 1---
1.1 Binding Overview
WebSocket binding may be employed for communication between any two endpoints which can be connected over the Mca, Mcc or Mcc' interface reference points supported by the oneM2M Architecture as shown in figure 6.1-1 of oneM2M TS-0001 [2].

When using the WebSocket protocol, one communication endpoint shall act as the WebSocket server. The WebSocket server listens for inbound handshake messages arriving from any WebSocket client to which a WebSocket connection is not yet established. Whether a communication endpoint takes the role of the client or the server shall depend on the registration relationship between the communicating entities as follows: the registree shall always use a WebSocket client, while the associated registrar shall always use a WebSocket server on the respective reference point.

This implies that ADN and ASN always take the role of a WebSocket client when WebSocket binding is employed. An MN-CSE uses a WebSocket server to communicate with its registrees and a WebSocket client to communicate with its own registrar (which can be another MN-CSE or an IN-CSE).

The IN-CSE provides a WebSocket server functionality to communicate with all its registrees, i.e. within a service provider's domain. On the Mcc' reference points, i.e. for communication between IN-CSEs of different Service Provider domains, the IN-CSE shall provide both WebSocket client and server functionality. This enables any IN-CSE to open a WebSocket connection to any IN-CSE of another Service Provider's domain.

Figure 5.2-1 shows some applicable example system configuration.

[image: image1]
Figure 5.2-1: Example scenarios of WebSocket client and server configurations

There exists a maximum of one WebSocket connection between two nodes. A WebSocket connection is established for the first time when the initial registration procedure of an entity to its registrar is performed. On an established WebSocket connection, request and response primitives can be exchanged in both directions. Any connection may be closed by either the WebSocket client or the server, depending on the communication schedule of either entity. However, the connection can be reopened from the client side only.

If the connection is closed temporarily, it shall be reopened when the next request primitive is sent from the client to the server side, or when the time to become reachable configured at <schedule> resource. If the WebSocket connection with the next-hop entity is not opened, and the WebSocket connection cannot be established due to lack of pointOfAccess address for the entity, a sending CSE may enable buffering of primitives which should be sent to the entity until the connection is reopened or their expiration time is reached. See Annex H of oneM2M TS-0004 [5] about buffering of primitives by CMDH functionality.
Figure 5.2-2 shows an example message flow for a scenario where an ADN-AE registers to its registrar MN-CSE using an unsecured TCP connection without proxy and then continues exchanging non-registration request and response primitives.

[image: image2]
Figure 5.2-2: Example message flow with WebSocket binding

The ADN-AE wants to register to its registrar MN-CSE. If a WebSocket connection does not exist, it is established by the following steps 2) and 3). It is assumed that the ADN-AE knows the point of access (i.e. WebSocket URI specified in IETF RFC 6455 [1]) under which the registrar CSE can be reached with WebSocket binding.

The WebSocket client opens handshake to the server with subprotocol name oneM2M.json ' following IETF RFC 6455 [1].
If the server can be reached under the WebSocket URI ws://example.net:9000/, the client handshake may look as follows:

GET / HTTP/1.1

Host: mncse1234.net:9000

Upgrade: WebSocket

Connection: Upgrade

Sec-WebSocket-Key: ud63env87LQLd4uIV20/oQ==
Sec-WebSocket-Protocol: oneM2M.json

Sec-WebSocket-Version: 13

The WebSocket server replies with a handshake to the client. In the successful case, the status-line of this HTTP response may look as follow (note that text shown in brackets [...] is not sent explicitely):

[Request-Version:] HTTP/1.1

[Status-Code:] 101

[Response-Phrase:] Switching Protocols

Upgrade: WebSocket

Connection: Upgrade

Sec-WebSocket-Protocol: oneM2M.json
Sec-WebSocket-Accept: FuSSKANnI7C/6/FrPMt70mfBY8E=

The ADN-AE issue a registration request primitive. The request primitive may e.g. look as follows as JSON-serialized representation (note that only mandatory parameters of the request primitive are shown in this example; the message may include any optional primitive parameters in addition, e.g. “fr”):

{"op":1,"to":"//example.net/mncse1234","rqi":"A1234","pc":{"m2m:ae":{"api":"a56", "apn":"app1234"}},"ty": 2}

NOTE:
The WebSocket client associated with an ADN-AE does not need to be reachable for WebSocket Server handshake messages.

WebSocket Binding process, which transforms a single oneM2M primitive into one or more data frames of the WebSocket Framing protocol, as specified in IETF RFC 6455 [1]. When transmitting a JSON-serialized primitive in utf-8 text format, the 4-bit opcode in the WebSocket Base Framing Protocol of the first message fragment will be set to x1 ("text frame").

The WebSocket message (consisting of one or more frames) shall be sent to the WS server.

The original request primitive shall be unpacked from the WebSocket message by the WS server.

The request primitive is delivered to the MN-CSE.

The MN-CSE performs the receiver side operations of AE registration as specified in oneM2M TS-0001 [2].
The response primitive is issued to the WebSocket server.

WebSocket binding process for the response primitive is performed.

The WebSocket message (consisting of one or more frames) is sent to the client.

The response primitive is unpacked.

The response primitive is to the ADN-AE.

After successful completion of AE registration any other CRUDN requests and response primitives can be exchanged over the existing WebSocket connection in both directions. If the ADN-AE has no other requests to send, the WebSocket connection may be closed temporarily. When the WebSocket connection is closed after registration and reopened later again, the registration procedure as outlined in steps 4 to 14 is omitted. In this case any non-registration request primitives can be sent directly.
-----------------------End of change 1---

-----------------------Start of change 2---

1.1.1.1 Sec-WebSocket-Protocol header
The Sec-WebSocket-Protocol header shall be present in a client handshake message. It enables the client to indicate its supported application subprotocols on the server and be sure that the server agreed to support that subprotocol. It is used by the client to indicate the oneM2M Service Layer Protocol version and supported serialization formats to the server.

The value of the Sec-WebSocket-Protocol header shall be one or more of the registered names defined in clause 6.2.2.9. It shall also be allowed to include multiple Sec-WebSocket-Protocol headers with a value that includes one registered name each as defined in IETF RFC 6455 [1], for example:

Sec-WebSocket-Protocol: oneM2M.json, oneM2M.xml
and

Sec-WebSocket-Protocol: oneM2M.xml
Sec-WebSocket-Protocol: oneM2M.json
are equivalent headers, expressing that the WebSocket client supports both application subprotocols, oneM2M.json and oneM2M.xml. The order of names indicated in the Sec-WebSocket-Protocol header specifies the client's preference.
-----------------------End of change 2---

-----------------------Start of change 3---

1.1.1.2 Subprotocol names and serialization formats
The Sec-WebSocket-Protocol header in the opening handshake is used to negotiate the application protocol layered on top of WebSocket. The application protocol addressed in this specification is the Release-2 version of the oneM2M Service Layer.

The oneM2M Service Layer Protocol consists of the exchange of serialized representations of request and response primitives as defined in oneM2M TS-0001 [2] and oneM2M TS-0004 [5]. This version of the specification allows use of the serialization formats listed in table 6.2.2.9-1. Both, protocol version and serialization format are associated with a specific subprotocol name.

Table 6.2.2.9-1 lists the serialization formats, associated subprotocols names and opcode setting of the WebSocket Frame protocol applicable for the present version of this specification.

Table 6.2.2.9‑1: Applicable Subprotocol names
	Serialization Format
	Subprotocol Name
	WS opcode
	Notes

	JSON
	oneM2M.json
	x1 ("text frame")
	See clause 8.4 in oneM2M TS-0004 [5]

	XML
	oneM2M.xml
	x1 ("text frame")
	See clause 8.3 in oneM2M TS-0004 [5]

	CBOR
	oneM2M.cbor
	x2 ("binary frame")
	See clause 8.5 in oneM2M TS-0004 [5]

-----------------------End of change 3---

-----------------------Start of change 4---

1.2 Registration procedure

A oneM2M entity (AE or CSE) not yet registered to its registrar CSE needs to be preconfigured with various parameters as specified in oneM2M TS-0001 [2] and oneM2M TS-0003 [4] in order to be able to send the registration request primitive (i.e. create <AE> or create <remoteCSE> request primitive). To establish a WebSocket connection, the WebSocket client shall be configured with an applicable point of access of its registrar CSE which includes FQDN or IP address and the port number.

After the Registration procedure has been successfully completed, the WebSocket Server (e.g. Registrar CSE for WebSocket Client) shall enable routing of any incoming oneM2M primitives to this registree.

Before the Registration procedure is successfully completed, any incoming oneM2M primitives to the WebClient shall be rejected by the Receiver (e.g. registrar CSE).

Closing of the WebSocket connection after registration does not impact the registration status of an AE or CSE to its registrar, unless an explicit de-registration procedure is performed by deletion of the respective <AE> or <remoteCSE> resource instance.

-----------------------End of change 4---

-----------------------Start of change 5---

Annex A (informative):
Example Procedures

A.1
AE Registration and creation of a container child resource

Figure A.1-1 illustrates a message flow for registration of an ADN-AE to an IN-CSE as described in clause 7.3.5.2.1 of oneM2M TS-0004 [5] with WebSocket mapping and subsequent creation of a <container> child resource.

[image: image3.emf]AE IN-CSE

5) Check access controls,

process request and

create <AE> resource for

originating AE

1) TCP connection and Security Association

Establishment

2) WSS client handshake

4) Create AE request primitive

3) WSS server handshake

6) Response primitive

8) Check access controls,

process request and

create <Container>

resource for originating

AE

7) Create Container request primitive

9) Response primitive

10) Other procedures

Figure A.1-1: Message flow for registration of an ADN-AE to an IN-CSE

In the considered example, the WebSocket protocol is used to send JSON serialized request and response primitives in text format.

The message flow may look as follows:

1) TCP connection establishment and Security Association Establishment as defined in oneM2M TS-0003 [4] based on TLS handshake procedure is accomplished.

The WSS client sends e.g. the following opening handshake message, offering to use either JSON or XML serialization of primitives:

GET / HTTP/1.1

Host: mncse1234.net:9000

Upgrade: WebSocket

Connection: Upgrade

Sec-WebSocket-Key: ud63env87LQLd4uIV20/oQ==

Sec-WebSocket-Protocol: oneM2M.json, oneM2M.xml

Sec-WebSocket-Version: 13

The WSS server selects use of JSON serialization and responds the following handshake message:

Request-Version: HTTP/1.1

Status-Code: 101

Response-Phrase: Switching Protocols

Upgrade: WebSocket

Connection: Upgrade

Sec-WebSocket-Protocol: oneM2M.json

Sec-WebSocket-Accept: FuSSKANnI7C/6/FrPMt70mfBY8E=

The AE sends the following request primitive in textual JSON serialized format:

{"op":1,"to":"//example.net/mncse1234","rqi":"A1000", "rcn":7,"pc":{"m2m:ae":{"rn":"SmartHomeApplication", "api":"Na56", "apn":"app1234"}},"ty":2}

The above JSON object is mapped by the WS client into a data frame of the WebSocket Framing protocol in utf-8 text format, the 4-bit opcode in the WebSocket Base Framing Protocol of the first message fragment is set to x1 ("text frame").

The IN-CSE validates the privilege of the originator to create an <AE> resource, and accepts the request to create the resource.

The IN-CSE acknowledges the success of the request by responding the following JSON serialized response primitive. The response primitive includes all attributes of <AE> instance created in Step 5.

{"rsc":2001,"rqi":"A1000","pc":{"m2m:ae":{"rn":"SmartHomeApplication","ty":2,"ri":"ae1","api":"Na56","apn":"app1234","pi":"cb1","ct":"20160506T153208", "lt":"20160506T153208","acpi":["acp1","acp2"],"et":"20180506T153208", "aei":"S_SAH25"}}}

NOTE:
JSON serialized primitives are not encapsulated under member names “m2m:rqp” and “m2m:rsp” as in XML serialized representations, which allows differentiation between request and response primitives (see clause 8.4 of TS-0004 [5]). JSON serialized primitives can be differentiated by the presence of mandatory members such as “op” in request primitives (see step 4) above), and “rsc” in response primitives.

The above JSON object is mapped by the WS server into a data frame of the WebSocket Framing protocol in utf-8 text format, the 4-bit opcode in the WebSocket Base Framing Protocol of the first message fragment is set to x1 ("text frame").

The AE sends in textual JSON serialized format the following request primitive to create a <container> resource as child resource of the <AE> created in Step 5:

{"op":1,"to":"//example.net/mncse1234/SmartHomeApplication",”fr”:”S_SAH25”,"rqi":"A1001","rcn":7,"pc":{"m2m:cnt":{"rn":"SmartHomeContainer","mbs":100000, "mni":500}},"ty":3}

The above JSON object is mapped by the WS client into a data frame of the WebSocket Framing protocol in utf-8 text format, the 4-bit opcode in the WebSocket Base Framing Protocol of the first message fragment is set to x1 ("text frame").

The IN-CSE validates the privilege of the originator to create an <container> resource under the <AE> resource created in step 5, and accepts the request to create the resource.

The IN-CSE acknowledges the success of the request by responding the following JSON serialized response primitive:

{"rsc":2001,"rqi":"A1001","pc":{"m2m:cnt":{"rn":"SmartHomeContainer", "ty":3,"ri":"cnt1","pi":"ae1","ct":"20160506T154048", "lt":"20160506T154048","acpi":["acp1"],"et":"20180506T154048","cr":" S_SAH25","st":0,"mni":500,"mbs":100000,"cni":0,"cbs":0,"mia":3600}}}

The above JSON object is mapped by the WS server into a data frame of the WebSocket Framing protocol in utf-8 text format, the 4-bit opcode in the WebSocket Base Framing Protocol of the first message fragment is set to x1 ("text frame").

Primitives of further subsequent CRUDN procedures may be transferred on the existing WebSocket connection.
-----------------------End of change 5---

CHECK LIST

· Does this Change Request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Have any mirror CRs been posted?
· Does this Change Request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not include a proposal to change only 3 tables?Does this Change Request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
AE

WS

 Client

CSE

WS

 Server

WS

 Client

AE

CSE

WS

 Client

AE

AE

WS

 Client

CSE

WS

 Client

AE

CSE

WS

 Server

WS

 Client

AE

 CSE

WS

 Server

WS

 Client

ADN

ASN

ADN

MN

MN

ASN

IN

Mcc’

Mcc

Mca

Mcc

Mca

Mcc

AE

WS client

c

client

CSE

WS server

c

client

ADN

MN

AE wants to start registration procedure and triggers WebSocket connection establishment

Client handshake

Server handshake

Request primitive

WebSocket Binding

WebSocket message

Unpacking request primitive

Request primitive

Receiver side processing of AE registration procedure

Response primitive

WebSocket Binding

WebSocket message

Unpacking response primitive

Response primitive

non-registration CRUDN operations

© 2018 oneM2M Partners
 Page 11 (of 11)

[image: image4.png]