Doc# oneM2M-Template-Input-Contribution.doc

	INPUT CONTRIBUTION

	Group Name:*
	SEC#10.4 AdHoc

	Title:*
	accessControlPolicy Processing Summary

	Source:*
	Qualcomm Inc. (TIA)

	Contact:
	Phil Hawkes, Qualcomm , phawkes@qti.qualcomm.com
Wolfgang Granzow, Qualcomm, wgranzow@qti.qualcomm.com

Josef Blanz, Qualcomm, jblanz@qti.qualcomm.com

	Date:*
	2014-05-12

	Abstract:*
	This contribution provides a high-level summary of processing accessControlPolicy resource(s) when authorizing a resource access request

	Agenda Item:*
	TBD

	Work item(s):
	WI-0007

	Document(s)

Impacted*
	Security Solutions TS-0003

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	Incorporate the proposed text into an appropriate clause of TS-0003

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
The text below provides a high level summary of how Access Control Policies are processed when making an Authorization Decision regarding a resource access request. We propose incorporating this high level description into “oneM2M Security Solutions” TS-0003.
A more detailed description could be incorporated into the appropriate Stage 3 specification (e.g. “oneM2M Service Layer Protocol Core Specification” TS-0004), once the data model of the <acessControlPolicy> resource is stable.

Revision R01:

· Alignment with terminology agreed in SEC-2014-0270R04

· Correction of spelling mistakes

---------------Start of change 1 ---
x.y.z
Applying Access Control Policies: High Level Description

The present clause describes the process for authorization of (resource access) requests using <accessControlPolicy> resources (described in clause 9.6.2 “Resource Type accessControlPolicy” of TS-0001 [TS0001]). For requests to an <accessControlPolicy> resource, the request is evaluated against the selfPrivileges attribute in that <accessControlPolicy> resource. For other resource types, the resource access request is evaluated against the privileges attributes of the <accessControlPolicy> resources associated with the targeted resource (clause 9.6.2 “Resource Type accessControlPolicy”of TS-0001 [TS0001] describes the how to determine the <accessControlPolicy> resources associated with the targeted resource). For other resource types, authorization is granted if the request is evaluated to “Permitted” for at least one such privileges attribute.

There is no difference between the procedure for evaluating a request against a privileges attribute and the procedure for evaluating a request against a selfPrivileges attribute, so this high level description will describes only the evaluation against a privileges attribute.

A privileges attribute is a list of access-control-rule-tuples. If a request evaluates to “Permitted” against at least one access-control-rule-tuple, then the request evaluates to “Permitted” against the privileges. In other words, each access-control-rule-tuple provides one acceptable combination of constraints in order for the request to be permitted. Alternatively, a privileges attribute represents the logical OR of the constraints in its access-control-rule-tuples.

An access-control-rule-tuple comprises of at least three components parameters. A request evaluates to “Permitted” against an access-control-rule-tuple only if the request evaluates to “Permitted” for all of the component parameters. In other words, an access-control-rule-tuple represents the logical AND of constraints in its components. An access-control-rule-tuple has three component parameters supported in the specification:

· accessContolOriginators: which represents the set of Originators that can be authorized using this access-control-rule-tuple;

· accessControlOperations: which represents the set of operations that can be authorized using this access-control-rule-tuple.

· accessControlContexts: which represents a set of request contexts that are permitted using this access-control-rule-tuple;

NOTE: Additional non-standard component parameters can be used, but this specification does not describe how to evaluate a request against non-standard component parameters. It is very important that a CSE should reject the creation or update of an <accessControlPolicy> that would result in an access-control-rule-tuple component parameter that the CSE does not understand.

The accessControlOriginators has a list of parameters of varying type: each type is a different way of describing one or more Originators (see clause 9.2.6.1 of TS-0001 [TS0001] for details). The request evaluates to “Permitted” against the accessControlOriginators parameter if the Originator matches any of those descriptions. In other words, accessControlOriginators represents the logical OR of the constraints in its list of parameters.

The request evaluates to “Permitted” against the accessControlOperations parameter if the requested operation is indicated in accessControlOperations (see clause 9.2.6.3 of TS-0001 [TS0001] for details). In other words, accessControlOriginators represents the logical OR of the constraints in its list of parameters.

The accessControlContexts is a little more complicated than the other two component parameters. The accessControlContexts contains a list, where each element of the list represents a set of constrains on the request context. A request evaluates to “Permitted” against the accessControlContexts parameter if the request context is permitted according to the constraints of at least one resource context constraint. In other words, accessControlContexts represents the logical OR of the request context constraints.

Each element representing a request context constraint is a complex parameter containing a set of parameters: within the request context constraint there are three parameter types supported in the specification (see clause 9.2.6.2 “accessControlContexts” of TS-0001 [TS0001] for details):

· accessControlTimeWindowConstraint: Represents a time window which is compared against the time that Authorization Decision is made;

· accessControlLocationRegionConstraint: Represents a location region which is compared against the location of the Originator of the request;

· accessControlIpAddressConstraint:
Represents an IP address or IP address block which is compared against the IP address of the Originator of the request.

A request evaluates to “Permitted” against a request context constraint if each of the following conditions are met.

· The time of the Authorization Decision is within one of the time windows described by the accessControlTimeWindowConstraint parameters;

· The location of the Originator is within at least one of the location regions described by the accessControlLocationRegionConstraint parameters;

· The IP address of the Originator matches at least one of the IP addresses or IP address blocks represented by the accessControlIpAddressConstraint parameters.

In other words, the parameters are grouped according to their type, and for each type the request has to match at least one of the constraints. Alternatively, for each type, take the logical OR of the constraints of that type; and then take the logical AND of the result.
The logic for evaluating a request against a privilege can be described mathematically as follows. Denote the result of evaluating a request against some test using “test(req)”, where the expression “test” takes the name of an access control parameter being tested as follows:
· privilege(req) is the outcome of evaluating the request against the privilege,

· access-control-rule-tuple[i] (req) is the outcome of evaluating the request against the i-th access-control-rule-tuple,

· accessContolOriginators[i][a] (req) is the outcome of evaluating the request against the a-th parameter in the list of accessContolOriginators in the i–th access-control-rule-tuple

· accessControlTimeWindowConstraint[i][c][d] (req) is the outcome of evaluating the request against the d-th accessControlTimeWindowConstraint parameter in the c-th accessContolContexts element in the i–th access-control-rule-tuple.

We also use the following notation:

· “OR{i=x..y} test[i] (req)” denotes “test[x](req) OR test[x+1](req) OR .. OR test[y](req)”

· “AND{i=x..y} test[i] (req)” denotes “test[x](req) AND test[x+1](req) AND .. AND test[y](req)”
The result of evaluating a request against a privilege can then be expressed as:

privilege(req) = OR{i=0…n} access-control-rule-tuple[i] (req); where

access-control-rule-tuple[i](req) = accessContolOriginators[i](req) AND accessControlOperations[i](req) AND accessControlContexts[i](req); where

accessContolOriginators[i](req) = OR{a=0…m} accessContolOriginators[i][a](req);

accessContolOperations [i](req) = OR{b=0…5} accessContolOperations [i][b](req);

accessContolContexts[i](req) = OR{c=0…n} accessContolContexts[i][c](req); where

accessContolContexts[i][c](req) =

(OR{d=0…n} accessControlTimeWindowConstraint[i][c][d](req)) AND

(OR{e=0…n} accessControlLocationRegionConstraint[i][c][e](req)) AND
(OR{f=0…n} accessControlIpAddressConstraint[i][c][f](req)).
---------------End of change 1 ---
© 2014 oneM2M Partners

Page 1 (of 4)

