Doc# oneM2M-Template-Input-Contribution.doc

	INPUT CONTRIBUTION

	Group Name:*
	SEC#10.4 AdHoc

	Title:*
	accessControlPolicy Processing Summary

	Source:*
	Qualcomm Inc. (TIA)

	Contact:
	Phil Hawkes, Qualcomm , phawkes@qti.qualcomm.com
Wolfgang Granzow, Qualcomm, wgranzow@qti.qualcomm.com

Josef Blanz, Qualcomm, jblanz@qti.qualcomm.com

	Date:*
	2014-05-12

	Abstract:*
	This contribution provides a high-level summary of processing accessControlPolicy resource(s) when authorizing a resource access request

	Agenda Item:*
	TBD

	Work item(s):
	WI-0007

	Document(s)

Impacted*
	Security Solutions TS-0003

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	Incorporate the proposed text into an appropriate clause of TS-0003

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
The text below provides a high level summary of how Access Control Policies are processed when making an Authorization Decision regarding a resource access request. We propose incorporating this high level description into “oneM2M Security Solutions” TS-0003.
A more detailed description could be incorporated into the appropriate Stage 3 specification (e.g. “oneM2M Service Layer Protocol Core Specification” TS-0004), once the data model of the <acessControlPolicy> resource is stable.

R03 (intermediate version of this document, please ignore R01 and R02, these are incorrect versions that were uploaded):

· alignment of terminology as agreed in contribution SEC-2014-0270R04.

· Simplification of the mathematical description of the access control processing logic to make it easier understandable

· Description included into this intermediate in form of a ppt slide deck. The actual text proposed for TS-0003 still needs to be updated. This will be done in the next revision of this document

R04:

· Corrections in the high-level description of access control processing

· Description of access control processing logic updated in accordance with the ppt slide deck, including corrections as discussed and agreed at the adhoc meeting (updated version of the ppt slide deck is now available as SEC-2014-0294).

· Removal of Note and text on including potential non-standard parameters into access control rules

---------------Start of change 1 ---
x.y.z
Applying Access Control Policies: High Level Description

The present clause describes the process for authorization of (resource access) requests using <accessControlPolicy> resources (described in clause 9.6.2 “Resource Type accessControlPolicy” of TS-0001 [TS0001]). For requests to an <accessControlPolicy> resource, the request is evaluated against the selfPrivileges attribute in that <accessControlPolicy> resource. For other resource types, the resource access request is evaluated against the privileges attributes of the <accessControlPolicy> resources associated with the targeted resource (clause 9.6.2 “Resource Type accessControlPolicy”of TS-0001 [TS0001] describes how to determine the <accessControlPolicy> resources associated with the targeted resource). For other resource types, authorization is granted if the request is evaluated to “Permitted” for at least one such privileges attribute.

There is no difference between the procedure for evaluating a request against a privileges attribute and the procedure for evaluating a request against a selfPrivileges attribute, so this high level description describes only the evaluation against a privileges attribute.

A privileges attribute is a set of access-control-rule-tuples. If a request evaluates to “Permitted” against at least one access-control-rule-tuple, then the request evaluates to “Permitted” against the privileges. In other words, each access-control-rule-tuple provides one acceptable combination of constraints in order for the request to be permitted. Alternatively, a privileges attribute represents the logical OR of the constraints in its access-control-rule-tuples.

An access-control-rule-tuple is comprised of three component parameters. A request evaluates to “Permitted” against an access-control-rule-tuple only if the request evaluates to “Permitted” for all of the component parameters. In other words, an access-control-rule-tuple represents the logical AND of constraints in its components. The three component parameters of an access-control-rule-tuple supported in this specification are:

· accessContolOriginators: which represents the set of Originators that can be authorized using this access-control-rule-tuple;

· accessControlOperations: which represents the set of operations that can be authorized using this access-control-rule-tuple;
· accessControlContexts: which represents a set of request contexts that are permitted using this access-control-rule-tuple.

The accessControlOriginators component parameter contains a set of parameters of varying type: each type is a different way of describing one or more Originators (see clause 9.6.2.1 of TS-0001 [TS0001] for details). The request evaluates to “Permitted” against the accessControlOriginators parameter if the Originator matches any of those descriptions. In other words, accessControlOriginators represents the logical OR of the constraints in its set of parameters.

The accessControlOperations component parameter contains the set of operations (e.g. Create, Retrieve, Delete etc.) which are permitted to be applied on the requested resource (the types of operations are defined in clause 9.6.2.3 of TS-0001 [TS0001]). The request evaluates to “Permitted” against the accessControlOperations component parameter if the requested operation is indicated in accessControlOperations. In other words, accessControlOriginators represents the logical OR of the constraints in its set of parameters.

The accessControlContexts contains a set, where each element of the set represents a set of constraints on the request context. A request evaluates to “Permitted” against the accessControlContexts parameter if the request context is permitted according to the constraints of at least one resource context constraint. In other words, accessControlContexts represents the logical OR of the request context constraints.

Each element representing a request context constraint contains three parameters (see clause 9.6.2.2 “accessControlContexts” of TS-0001 [TS0001] for details):

· accessControlTimeWindows: Represents a set of time windows which are compared against the time that Authorization Decision is made;

· accessControlLocationRegions: Represents a set of location regions which are compared against the location of the Originator of the request;

· accessControlIpAddresses:
Represents a set of IP addresses and/or IP address blocks which are compared against the IP address of the Originator of the request.

A request evaluates to “Permitted” against a request context constraint if each of the following conditions are met.

· The time of the Authorization Decision is within one of the time windows described by the accessControlTimeWindows parameter;

· The location of the Originator is within at least one of the location regions described by the accessControlLocationRegions parameter;

· The IP address of the Originator matches at least one of the IP addresses or IP address blocks represented by the accessControlIpAddresses parameter.

In other words, for each parameter (accessControlTimeWindows, accessControlLocationRegions, accessControlIpAddresses) the request has to match at least one of the constraints. Alternatively, for each parameter (accessControlTimeWindows, accessControlLocationRegions, accessControlIpAddresses), take the logical OR of the constraints within that parameter; and then take the logical AND of the result for the three parameters.

The logic for evaluating a request against a privilege can be described mathematically as follows. A privileges or selfPrivileges attribute included in an <accessControlPolicy> resource represents a set of access control rules, acrs, which is built as in the graph below:

[image: image2]
The parameters associated with a request, which are evaluated against the parameters contained in the access control rules, are denoted as follows:
rq_orig:
originator of the request (i.e. URI of the originating entity)
rq_op:
operation requested (i.e. Create, Retrieve, Update, etc.)
rq_time: time when the request was received (e.g. time in hh:mm:ss UTC, exact format TBD)
rq_ip:
IP address of the originator (i.e. set of IPv4/IPv6 addresses, address blocks or address prefixes)
rq_loc:
location information about the originating entity (format TBD)
The access decision is the result of evaluating a given set of access control rules, acrs. It is denoted

[image: image3.wmf]î

í

ì

=

else

0

or

FALSE

rules

control

access

 the

matches

request

 the

if

1

or

TRUE

res_acrs

The access decision res_acrs is derived by evaluating each access control rule as follows:
 res_acrs = res_acr(1) OR res_acr(2) ... OR res_acr(k) … OR res_acr(K),
where res_acr(k) represents the logical evaluation result (i.e. TRUE/FALSE or 1/0) of the request parameters against the kth access control rule in the set acrs, which can be expressed as follows:
 res_acr(k) = res_origs(k) AND res_ops(k) AND res_ctxts(k), k = 1…K.
The 3 partial logical result variables on the right side of above equation can be defined by using the following set function:

[image: image4.wmf]î

í

ì

Î

=

else

0

or

FALSE

setX

 x

if

1

or

TRUE

setX)

,

ismember(x

With this definition:
 res_origs(k) = ismember(rq_orig, acr(k)_accessControlOriginators)

 res_ops(k) = ismember(rq_op, acr(k)_ accessControlOperations)
The third partial logical result res_ctxts(k) is derived as follows
 res_ctxts(k) = res_context(k, 1) ... OR res_context(k, m) ... OR res_context (k, M_k),
where,
 res_context(k, m) = res_time(k, m) AND res_ip(k, m) AND res_loc (k, m), k = 1…K, m = 1…M_k
and
 res_time(k, m) = ismember(rq_time, acr(k)_accessControlTimeWindows(m))
 res_ip(k, m) = ismember(rq_ip, acr(k)_accessControlIpAddresses(m))
 res_loc (k, m) = ismember(rq_loc, acr(k)_accessControlLocationRegions(m))

·
·
·
·

·
·

---------------End of change 1 ---
 acrs = { acr(1), acr(2), ..., acr(k), ..., acr(K) }

acr(k) = {acr(k)_accessControlOriginators, acr(k)_accessControlOperations, acr(k)_accessControlContexts} }

Set of originator parameters of any type defined in

TS-0001 Table 9.6.2.1-1. Examples:

{CSE-ID1, AE-ID1, AE-ID2, entityGroup1, entityGroup2}

{all}

Set of allowed operations of any type defined in TS-0001 Table 9.6.2.3-1. Examples:

{Create, Retrieve, Update, Delete, Discover, Notify}

{Retrieve, Discover, Notify}

Set of context constraints consisting of the 3 elements defined in TS-0001 Table 9.6.2.2-1:

{accessControlTimeWindows(k, m), accessControlLocationRegions(k,m), accessControlIpAddresses(k, m)}

Set of time windows defined by start and end time

Example:

{04:30 – 06:00, 11:30 – 12:30, 22:15 – 00:30}

Set of location regions defined by list of objects representing geographical regions

Example:

{geoRegion1, geoRegion2, geoRegion3}

Set of IP addresses or address blocks

Example (IPv4):

{212.75.201.105, 88.77.0.0/16, 116.27.123.0/24}

Set (list) of M_k context constraints (number of elements M_k can be different for each acr(k)):

{acr(k)_accessControlContext(k, 1), …

 …, acr(k)_accessControlContext(k, m), …

 …, acr(k)_accessControlContext(k, M_k)}

© 2014 oneM2M Partners

Page 6 (of 7)

_1462135313.unknown

_1462136471.unknown

Each privileges attribute is a set of „access control rules“

 acrs = (acr(1), acr(2), ..., acr(n), ..., acr(N))

 where each access control rule arc(n) is represented as an „access-control-rule-tuple“ of three elements:

 arc(n) = (acr(n)_accessControlOriginators, acr(n)_accessControlOperations, acr(n)_accessControlContexts)

accessControlOriginators = set of parameters of any type defined in Table 9.6.2.1-1

 Examples: (CSE-ID1, AE-ID1, AE-ID2, entityGroup1, entityGroup2)

 (all)

accessControlOperations = set of operations that can be authorized

 Examples: (Create, Retrieve, Update, Delete, Discover, Notify)

 (Retrieve, Discover, Notify)

accessControlContexts = set of context constraints where each context constraint consists of 3 parts:

 (accessControlTimeWindow, accessControlLocationRegion, accessControlIpAddress)

 where accessControlTimeWindow represents a list of time windows where access is permitted

 accessControlLocationRegion represents a list of locations from where access is permitted

 accessControlIpAddress represents a list of permitted IP addresses or address blocks

Example for accessControlTimeWindow: (0:00 – 2:00 , 6:00 – 8:00) hours UTC time

Representation of Access Control Rules

5/14/2014

‹#›

Notation: „res_origs(n)“ means: the binary result (TRUE/FALSE or 1/0) of evaluating the originator of a request („rq_orig“) against the accessControlOriginators included in the nth access control rule („acr(n)_originators“).

Definition: set operator „ismember“:

 1 (TRUE) if x ∈ SetX

 ismember(x, SetX) =

 0 (FALSE) else

res_origs(n) = ismember(rq_orig, acr(n)_originators)

res_ops(n) = ismember(rq_op, acr(n)_operations)

Processing of Access Control Rules (1)

5/14/2014

‹#›

acr(n)_ctxts = (acr(n)_context(1), ..., acr(n)_context(m), ...,

 acr(n)_context(M_n))

acr(n)_context(m) = (acr(n)_accessControlTime Window(m), ... ,

 acr(n)_accessControlIpAddress(m), ... ,

 acr(n)_accessControlLocationRegion(m))

res_time(n, m) = ismember(rq_time, acr(n)_accessControlTime Window(m))

res_ip(n, m) = ismember(rq_ip, acr(n)_accessControlIpAddress(m))

res_loc (n, m) = ismember(rq_loc, acr(n)_accessControlLocationRegion(m))

res_context(n, m) = res_time(n, m) AND res_ip(n, m) AND res_loc (n, m)

res_context(n) = res_time(n, 1) ... OR res_ip(n, m) ... OR res_loc (n, M_n)

res_acr(n) = res_orig(n) AND res_ops(n) AND res_context (n)

res_acr = res_acr(1) OR res_acr(2) ... OR res_acr(N)

Processing of Access Control Rules (2)

5/14/2014

‹#›

res_acr(n) = res_orig(n) AND res_ops(n) AND res_context (n)

res_privileges_k

 = res_acrs_k = res_acr(1) OR res_acr(2) ... OR res_acr(N)

Same test applies for each of the privileges attributes k = 0, ..., K

Processing of Access Control Rules (3)

5/14/2014

‹#›

image1.png

image2.emf

