	Doc# SEC-2016-0002-TS-0003_CR_E2E_Security_of_Primitives_Stage_2_Text
Change Request
	[image: image2.png]

	

	CHANGE REQUEST

	Meeting:*
	SEC#20.4

	Source:*
	Phil Hawkes, Qualcomm, phawkes@qti.qualcomm.com
Wolfgang Granzow, Qualcomm, wgranzow@qti.qualcomm.com

Josef Blanz, Qualcomm, jblanz@qti.qualcomm.com

	Date:*
	2016-01-07

	Contact:*
	As above

	Reason for Change/s:*
	Provides stage 2 details for End-to-End Security of Primitives (ESPrim)

	CR against: Release*
	2

	CR against: WI*
	 FORMCHECKBOX
 Active WI-0016
 FORMCHECKBOX
 MNT Maintenance / < Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0003 and v1.3

	Clauses/Sub Clauses*
	8

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 Change to existing feature or functionality
 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES
 NO
This CR may break backwards compatibility with the last approved version of the TS? YES
 NO
This CR is a mirror CR? YES FORMCHECKBOX
 if YES, please indicate the document number of the original CR: <Document Number) : NO FORMCHECKBOX

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction
The motivation for these changes are provided in SEC-2015-0678-E2E_Primitive_Security.

Corresponding changes for TS-0001are provided in ARC-2016-0006-TS-0001_CR_End-to-End_Security.
-----------------------Start of change 1---

8.x
End-to-End Security of Primitives (ESPrim)
8.x.1
Purpose of E2E Security of Primitives (ESPrim)
End-to-End Security of Primitives (ESPrim) provides an interoperable framework for securing oneM2M primitives so CSEs (forwarding the primitive) do not need to be trusted with the confidentiality and integrity of the primitive. ESPrim provides mutual authentication, confidentiality, integrity protection and a freshness guarantee (bounding the age of secured primitives).

Applicable use cases and requirements are discussed in TR-0012 [TR0012].

The present document assumes that the ESPrim end-points are the Originator and Receiver of the primitive.
The present document specifies credential management aspects and data protection aspects for ESPrim. Transport of secured primitives is described in TS-0001 [1].
8.x.2
End-to-End Security of Primitives (ESPrim) Architecture
ESPrim uses object security. TR-0012 [TR0012] includes a review of object security specifications. ESPrim supports use of either
· JSON Web Encryption (JWE) and associated JOSE specifications [RFC7516, RFC7517, RFC7518], or

· XML Encryption v1.1 [XMLENC].
Most of the high level description of ESPrim is identical in both cases. The Originator selects whether the JOSE specifications or XML security specifications are to be applied. If the Receiver receives a request primitive secured using JWE (or XML Encryption respectively) then the Receiver secures the response primitive using JWE (or XML Encryption respectively)
The primitive to be secured is called the inner primitive, and the primitive which is used to transport a secured inner primitive is called the outer primitive. The inner primitive is protected using an Authentication Encryption with Associated Data (AEAD) protocol which takes a symmetric key sessionE2EPrimitiveKey as input. The sessionESPrimKey is derived from a pairwiseESPrimKey, established between the Originator and Receiver, and 128-bit random values provided by the Originator and Receiver.
Figure 8.x.2-1 shows the ESPrim message flow. Details for establishing pairwiseESPrimKey are deferred to clause 8.x.3 “Establishing pairwiseESPrimKey”.

Editor’s note: clause 8.x.3 “Establishing pairwiseESPrimKey” is not yet written.

[image: image1.emf]Originator Receiver How often?

Once only, or

more often if

desired

CSE2 registered with Receiver

A. Establishing pairwiseESPrimKey

B.1.ii Update procedure:

To = latestsharedReceiverE2ERand in

<remoteCSE> representing Receiver.

Content = sharedReceiverE2ERand

B.2.i Retrieve procedure.

To = latestsharedReceiverE2ERand in

Receiver’s <remoteCSE> on CSE2

Periodically.

Typically multiple

times per

pairwiseESPrimKey.

Typically less often

than per exchange

of inner request and

response primitives

B.1.i Generate sharedReceiverE2ERand

B.2.iii. Generate originatorE2ERand

B.2.iv. Generate sessionESPrimKey from pairwiseESPrimKey,

originatorE2ERand and sharedReceiverE2ERand. Cache sessionESPrimKey

Per exchange of

inner request and

response primitives

C.1. Form JSON/XML serialization of inner request primitive

C.2. Apply JWE/XML-ENC processing to JSON/XML serialization of inner request primitive

using sessionESPrimKey, resulting in a JWE/XML-ENC object with headers including

pairwiseESPrimKeyId, originatorE2ERand(Id) and sharedReceiverE2ERand(Id).

C.3. Form outer request primitive. To =<e2ESecurityPrimitiveExchange> on Receiver,

Content =JWE/XML-ENC object. Details in TS-0001 [1]

C.4. Send outer request primitive.

C.5. Extract Content: = JWE/XML-ENC object from outer request primitive

C.8. Apply JWE/XML-ENC processing to the JWE/XML-ENC object using sessionESPrimKey,

resulting in the JSON/XML serialization of inner request primitive

C.9. Process inner request primitive, resulting in the JSON or XML serialization of the

corresponding inner response primitive

C.10. Apply JWE/XML-ENC processing to JSON/XML serialization of inner response primitive,

resulting in a JWE/XML-ENC object with headers including pairwiseESPrimKeyId,

originatorE2ERand(Id) and sharedReceiverE2ERand(Id).

C.11. Form outer response primitive with Content =JWE/XML-ENC object. Details in TS-

0001 [1]

C.12. Send outer response primitive.

C.13. Extract Content: = JWE/XML-ENC object from outer response primitive

C.15. Apply JWE/XML-ENC processing to the JWE/XML-ENC object, resulting in the JSON/

XML serialization of inner response primitive

C.16. Process inner response primitive

C.7. Extract originatorE2ERand(Id) and sharedReceiverE2ERand(Id) from JWE/XML-ENC

object. Verify sharedReceiverE2ERandis still valid. If JWE/XML-ENC includes

originatorE2ERand, then store. Generate sessionESPrimKey from

pairwiseESPrimKey,originatorE2ERand,sharedReceiverE2ERand. Cache sessionESPrimKey.

B. Establishing sessionESPrimKey

C. Securing Primitive Exchange

C.6. Extract pairwiseESPrimKeyId from JWE/XML-ENC object and obtain the corresponding

pairwiseESPrimKey,if it is still valid.

C.14. Extract pairwiseESPrimKeyId, originatorE2ERand(Id) and sharedReceiverE2ERand(Id)

from headers ofJWE/XML-ENC object from outer response primitive. Retrieve cached value

of sessionESPrimKey corresponding to these values.

 Figure 8.x.2-1: Message flow End-to-End Security of Primitives (ESPrim). This message flow shows the sequence of events for Blocking Mode. Non-blocking modes will differ only in how outer response primitives are delivered in steps C.4 and C.12.
Sequence of events:
A. Establishing pairwiseESPrimKey: ESPrim supports two of options for establishing at the pairwiseESPrimKey.
· Provisioned pairwiseESPrimKey Framework: The Originator and Receiver are provisioned with pairwiseESPrimKey. This credential is provisioned via one of
· Pre-provisioning;
· a Remote Security Provisioning Frameworks (RSPF), specified in clause 8.3, or
· End-to-End Security Key establishment (ESKey) between the Originator and Receiver, specified in clause 8.z “End-to-End Security Key establishment”.
Editor’s note: End-to-End Security Key and ESKey will need to be added to clause 3. At present this is intended to occur when the ESKey specification text is provided.

The Originator and Receiver also establish pairwiseESPrimKeyId and optionally pairwiseESPrimKeyLifetime during this process. If no pairwiseESPrimKeyLifetime, is provided, then then pairwiseESPrimKey never expires. The Originator and Receiver cache the (pairwiseESPrimKeyId, pairwiseESPrimKey, (optional) pairwiseESPrimKeyLifetime) tuple to use for processing subsequent primitives.
· MAF ESPrim Framework: The Originator and M2M Authentication Function (MAF) authenticate each other using symmetric keys (which may be pre-provisioned or remotely provisioned) and derive a M2M Secure Connection key (Kc) and corresponding key identifier (KcId). The Originator generates pairwiseESPrimKey from Kc and a reserved string. The value of KcId is used in phase C as the pairwiseESPrimKeyId in the JWE/XML-ENC object. The Originator caches the (pairwiseESPrimKeyId, pairwiseESPrimKey) pair to use for processing subsequent primitives. The Receiver retrieves Kc and a credential lifetime from the MAF after it receives an inner request primitive secured using the corresponding pairwiseESPrimKey’ see step C.6.
When pairwiseESPrimKey is established using the MAF option, then it typically has a shorter lifetime than the former option.
B. Establishing sessionE2EPrimitiveKey:
B.1. Receiver Actions
B.1.i. The Receiver shall regularly generates a random 128-bit value sharedReceiverE2ERand for which the six most significant bits differ from all other sharedReceiverE2ERand values that it currently considers to be valid. These six most significant bits form the sharedReceiverE2ERandId: a short identifier for distinguishing between sharedReceiverE2ERand values which are valid simultaneously (for example, when transitioning from an old sharedReceiverE2ERand value to a new sharedReceiverE2ERand value).
B.1.ii. On other CSEs with which the Receiver has registered, the Receiver shall perform the Update <remoteCSE> procedure to assign the latestSharedReceiverE2ERand attribute to the value of the most recently generated sharedReceiverE2ERand.
B.2. Originator Actions

B.2.i. The Originator shall ensures that it has the current sharedReceiverE2ERand for the Receiver, which may require retrieving the latestSharedReceiverE2ERand attribute in one of the Receiver’s <remoteCSE> resources on a CSE with which the Receiver is registered.
NOTE: At a given point in time, multiple Originators will be using identical values for the current sharedReceiverE2ERand.
B.2.ii. The Originator shall regularly generate a random 128-bit value originatorE2ERand for which the six most significant bits differ from all other originatorE2ERand values that it currently considers to be valid for use with the Receiver. These six most significant bits form the originatorE2ERandId: a short identifier for distinguishing between originatorE2ERand values which are valid simultaneously for use with the Receiver (for example, when transitioning from an old originatorE2ERand value to a new originatorE2ERand value).
B.2.iii. The Originator shall generate the sessionESPrimKey from the pairwiseESPrimKey and the current originatorE2ERand and sharedReceiverE2ERand values. The sessionESPrimKey used to secure an inner request primitive is always used to protect the corresponding inner response primitive, so sessionESPrimKey should be cached at least until the corresponding inner response primitive is expected to have been received. The Originator typically caches the sessionESPrimKey for for a longer period of time since the sessionESPrimKey may be used for securing multiple primitive exchanges.

C. Securing a Primitive Exchange
NOTE: The Originator selects whether to use a JSON or XML serialization of the inner request primitive to be secured.
C.1. The Originator shall form the JSON or XML serialization of the inner request primitive.
C.2. The Originator shall produce a JWE or XML-ENC object by applying JWE or XML-ENC procedures as follows:
· One or more headers of the JWE or XML-ENC object shall include
· The pairwiseESPrimKeyId
· Encoding of the originatorE2ERand or corresponding originatorE2ERandId. If there is the possibility that this JWE or XML-ENC object could be the first JWE or XML-ENC object received by the Receiver which is secured by the Originator using a specific originatorE2ERand, then the full originatorE2ERand shall be encoded. Otherwise, either originatorE2ERand or originatorE2ERandId may be encoded.
· Encoding of the sharedReceiverE2ERand or corresponding sharedReceiverE2ERandId. Either sharedReceiverE2ERand or sharedReceiverE2ERandId may be encoded.
· The plaintext (to be encrypted) shall be the JSON or XML serialization of the inner request primitive.
· The sessionESPrimKey shall be used directly as the symmetric key providing authenticated encryption of the plaintext, resulting in the ciphertext which is encoded in the JWE or XML-ENC.
C.3. The Originator shall forms an outer request primitive as described in the Update <e2ESecurityPrimitiveExchange> procedure in TS-0001 [2]. Descriptions of the most relevant parameters are copied below, but TS-0001 [2] shall be the definitive specification for the parameters in the outer request primitive:
· To: the Resource-ID of the <e2ESecurityPrimitiveExchange> resource on the Receiver.

· Operation: Update (U).
· Request Identifier: This shall be set to a default value for outer request primitives when ESPrim is applied. The motivation is increasing the difficulty of unauthorized entities correlating outer response primitives to the corresponding outer request primitives.

· Content: the JWE or XML-ENC object produced at step C.2.

C.4. The Originator shall sends the outer request primitive to the Receiver.

C.5. The Receiver shall extract the JWE or XML-ENC object from the Content parameter of the outer request primitive.

C.6. The Receiver shall extract the pairwiseESPrimKeyId from the JWE or XML-ENC object headers and obtains the corresponding pairwiseESPrimKey:

· If the pairwiseESPrimKeyId is of the form for a Provisioned pairwiseESPrimKey, then the Receiver shall use the corresponding (previously-provisioned) pairwiseESPrimKey.
· If the pairwiseESPrimKeyId is of the form for a MAF pairwiseESPrimKey: If this this is the first time that the Receiver received a message with this pairwiseESPrimKeyId, then the following process shall be performed.
i. The Receiver shall identify the MAF from the pairwiseESPrimKeyId (which is a KcId)
ii. The Receiver shall establish a secure TLS connection to the MAF and requests the M2M Secure Connection key (Kc) and Kc Lifetime corresponding to pairwiseESPrimKeyId (which is identical to KcId).
iii. The MAF shall provide Kc and Kc Lifetime to the Receiver.
iv. The Receiver shall generate the pairwiseESPrimKey from Kc and a reserved string.
v. The Receiver shall cache (pairwiseESPrimKeyId, pairwiseESPrimKey, pairwiseESPrimKeyLifetime) for use for processing subsequent primitives.
If the Receiver has previously cached (pairwiseESPrimKeyId, pairwiseESPrimKey, pairwiseESPrimKeyLifetime), and pairwiseESPrimKeyLifetime has not yet expired, then the Receiver shall use the cached pairwiseESPrimKey,
C.7. The receiver shall apply the following process to generate the sessionESPrimKey.
C.7.i. The Receiver shall extract the encoding of the originatorE2ERand or originatorE2ERandId from the headers of the JWE or XML-ENC object, and apply the appropriate decoding. If originatorE2ERand is provided then it shall be cached. If originatorE2ERandId is provided then the Receiver shall retrieve the corresponding cached value of originatorE2ERand. If no cached value is found, or the cached value is considered expired, then the Receiver shall respond to the outer request primitive with an error.
C.7.ii. The Receiver shall extract the encoding of the sharedReceiverE2ERand or sharedReceiverE2ERandId from the headers of the JWE or XML-ENC object, and apply the appropriate decoding. If sharedReceiverE2ERandId is provided then the Receiver shall retrieve the corresponding cached value of sharedReceiverE2ERand. If no cached value is found, or the cached value is considered expired, then the Receiver shall respond to the outer request primitive with an error.
C.7.iii. The Receiver shall generate the sessionESPrimKey from the pairwiseESPrimKey and the current originatorE2ERand and sharedReceiverE2ERand values. The sessionESPrimKey used to secure an inner request primitive is always used to protect the corresponding inner response primitive, so sessionESPrimKey should be cached at least until the corresponding inner response primitive is sent. The Receiver typically caches the sessionESPrimKey for a longer period of time since the originator may use the sessionESPrimKey for securing multiple primitive exchanges.
C.8. The Receiver shall apply JWE or XML-ENC processing to the JWE or XML-ENC object, using sessionESPrimKey. This produces in a verified JSON or XML serialization of the inner request primitive.
C.9. The Receiver shall process the inner request primitive, resulting in a JSON or XML serialization of the corresponding inner response primitive.
NOTE: Steps C.2 to C.9 are mirrored closely by C.10 to C.16, with the Originator and Receiver swapping their participation in the exchange, and the request primitives replaced by response primitives. There are minor differences: in particular the processing in Steps C.6 and C.7 for the request processing is not required in the response processing since the Originator has already generated sessionESPrimKey; it is only necessary to identify the appropriate sessionESPrimKey, as performed in step C.14
C.10. The Receiver shall produce a JWE or XML-ENC object by applying JWE or XML-ENC procedures as follows:
· One or more headers of the JWE or XML-ENC object shall include
· The pairwiseESPrimKeyId identifying the pairwiseESPrimKey used to protect the inner request primitive.
· Encoding of the originatorE2ERand used to protect the inner request primitive, or the corresponding originatorE2ERandId. Either originatorE2ERand or originatorE2ERandId may be encoded.
· Encoding of the sharedReceiverE2ERand used to protect the inner request primitive, or the corresponding sharedReceiverE2ERandId. Either sharedReceiverE2ERand or sharedReceiverE2ERandId may be encoded.
· The plaintext (to be encrypted) shall be the JSON or XML serialization of the inner response primitive.
· The sessionESPrimKey used to protect the inner request primitive shall be used directly as the symmetric key providing authenticated encryption of the plaintext, resulting in the ciphertext which is encoded in the JWE or XML-ENC.
C.11. The Receiver shall form an outer response primitive as described in the Update <e2ESecurityPrimitiveExchange> procedure in TS-0001 [2]. Descriptions of the most relevant parameters are copied below, but TS-0001 [2] shall be the definitive specification for the parameters in the outer response primitive:

· Request Identifier: This shall be set to a default value for outer response primitives when ESPrim is applied. The motivation is increasing the difficulty of unauthorized entities correlating outer response primitives to the corresponding outer request primitives.
· Content: the JWE or XML-ENC object produced at step C.2.

C.12. The Receiver shall sends the outer response primitive to the Originator.

C.13. The Originator shall extract the JWE or XML-ENC object from the Content parameter of the outer response primitive.

C.14. The Originator shall extract, from the headers of the JWE or XML-ENC object, the values of :

· pairwiseESPrimKeyId
· Encoding of the originatorE2ERand or the corresponding originatorE2ERandId.
· Encoding of the sharedReceiverE2ERand used to protect the inner request primitive, or the corresponding sharedReceiverE2ERandId.
If any of these values have expired, then the outer response primitive is discarded. For this reason, the expiry of these values should be great enough to allow receiving the corresponding inner response primitive.

Otherwise, the Originator shall use the cached value of sessionESPrimKey corresponding to these values.
C.15. The Originator shall apply JWE or XML-ENC processing to the JWE or XML-ENC object, using sessionESPrimKey. This produces in a verified JSON or XML serialization of the inner response primitive.

C.16. The Originator shall process the inner response primitive.
-----------------------End of change 1---
-Start of changes to Definitions Symbols Abbreviations Acronyms -

3
Definitions, symbols, abbreviations and acronyms

3.1
Definitions

For the purposes of the present document, the terms and definitions given in oneM2M-TR-0004 [2] and the following apply:

AE-ID Certificate: certificate with a certificate chain to a trust anchor certificate and containing an AE-ID in the subjectAltName extension

NOTE:
An AE_ID certificate can be used to verify that an entity has been assigned the AE-ID in the certificate.
association configuration: phase of a Security Association Establishment Framework in which the entity establishing the Security Association (and the Central Key Distribution Server, in the case of Centralized Security Frameworks), are provided with identities (and any other relevant credentials) to ensure that the security association is established between the intended entities

association security handshake: phase of a Security Association Framework in which the security association endpoints perform mutual authentication

additional authenticated data [i.RFC5166]: refers to data that is authenticated, but not encrypted by an authenticated encryption with associated data algorithm..

authenticated encryption with associated data [i.RFC5166]: An algorithm providing confidentiality for the plaintext and a way to check its integrity and authenticity while providing the ability to check the integrity and authenticity of some additional authenticated data. In this context plaintext refers to data that is authenticated and encrypted.

bootstrap credential: pre-provisioned credential enabling mutual authentication of the Enrolee and the M2M Enrolment function
bootstrap credential configuration: phase of a Security Bootstrap Framework in which the Bootstrap Credentials are pre-provisioned to the Enrolee and the M2M Enrolment function
bootstrap enrolment handshake: phase of a Security Bootstrap Framework in which the Enrolee and M2M Enrolment Function perform mutual authentication
bootstrap instruction configuration: phase of a Security Bootstrap Framework in which the Enrolee and M2M Enrolment Function are provided with identities (and any other relevant credentials) to enable the M2M Enrolment function to establish a Master Credential between the intended Enrolee and M2M Authentication Function
bootstrap server function [13]: BSF is hosted in a network element under the control of a Mobile Network Operator. BSF, HSS, and UEs participate in GBA in which a shared secret is established between the network and a UE by running the bootstrapping procedure
NOTE:
The shared secret can be used between NAFs and UEs, for example, for authentication purposes.

bootstrapping transaction identifier [13]: bootstrapping transaction identifier (B-TID) is used to bind the subscriber identity to the keying material in GBA reference points Ua, Ub and Zn
CA-Certificate [i.6]: certificate created by one certification authority (CA) certifying the public key of another CA
certificate: See Public Key Certificate.

certificate chain: sequence of one or more CA-certificates, where: the Public Verification Key in each CA-certificate is certified in the previous CA-certificate; and the public key of the first CA-Certificate is trusted a priori
NOTE:
Trust in the public key in each CA-certificate can be based on trust in the previous CA-Certificate.
certificate name: unique identifier in a name field of a Certificate (e.g. in the X.509 "Subject" or "Subject Alternative Name" attribute)
certificate verification: process necessary to trust an entity's Certificate
certification authority [i.6]: responsible for establishing and vouching for the authenticity of public keys
NOTE:
[This] includes binding public keys to distinguished names through signed certificates, managing certificate serial numbers, and certificate revocation.
credential configuration: phase of a Security Association Establishment Framework in which the Credentials necessary for the Security Association Establishment Framework are configured to the relevant entities and functions

Credential-ID type-ID: portion of a Credential-ID indicating the type of credential being identified

CSE-ID certificate: certificate with a certificate chain to a root of trust and containing a CSE-ID in the subjectAltName extension

NOTE:
A CSE_ID certificate can be used to verify that an entity has been assigned the CSE-ID in the certificate.

device certificate: certificate with a certificate chain to a root of trust and containing at least one globally unique hardware instance identifier in the subjectAltName extension

NOTE:
A device certificate can be used to verify that an entity is executing on the identified hardware instance.
digital signature [i.7]: information is signed by appending to it an enciphered summary of the information
NOTE:
The summary is produced by means of a one-way hash function, while the enciphering is carried out using the private key of the signer.
End-to-end Security of Primitives: an interoperable framework for securing the exchange of oneM2M primitives so CSEs do not need to be trusted with the confidentiality and integrity of the primitives.
enrolee: AE or CSE that requires remote provisioning of a symmetric key to be shared with an enrolment target
enrolment key: symmetric key established between an Enrolee and M2M Enrolment Function following successful mutual authentication

NOTE:
A symmetric key to be shared by the Enrolee and an Enrolment Target may be derived (at the Enrolee and M2M Enrolment Function) from the currently valid Enrolment Key, and the M2M Enrolment Function subsequently securely delivers the symmetric key to the Enrolment Target.

enrolment key generation: phase of remote security provisioning Framework in which the Enrolee and M2M Enrolment function establish an Enrolment Key and Enrolment Key identifier
enrolment phase: step in the lifecycle of an M2M equipment where it becomes provisioned for operation with a specific M2M Service Provider

enrolment target: M2M Authentication Function, CSE, or AE with whom an Enrolee wishes to establish a symmetric key (master credential or pre-provisioned secure connection key) using remote security provisioning

entity identifier: CSE-ID (or AE-ID respectively) of a CSE (or AE respectively)

FQDN certificate: certificate with a certificate chain to a root of trust and containing an FQDN

generic bootstrap architecture: set of 3GPP and 3GPP2 specifications providing security features and a mechanism to bootstrap authentication and key agreement for application security from the 3GPP and 3GPP2 underlying network authentication mechanisms

inner request primitive: A request primitive to be protected by End-to-End Security of Primitives (ESPrim).

inner response primitive: A response primitive to be protected by End-to-End Security of Primitives (ESPrim).
message integrity code: tag computed from a message and a symmetric key, and attached to a message

NOTE 1:
The purpose of a messages integrity code is to facilitate, without the use of any additional mechanisms, assurances regarding both the source of a message and its integrity.

NOTE 2:
A Message Integrity Code is sometimes called a "Message Authentication Code" - we have used "Message Integrity Code" since the abbreviation of "Message Authentication Code" (MAC) might be misunderstood to refer to "Media Access Control". The definition is based on text from [i.6] (p323).
M2M secure connection key: key shared between two CSEs of M2M Nodes (e.g. ASN/MN-CSE and IN-CSE) in order to secure the communication between those two entities

NOTE:
This M2M Secure Connection Key results from a successful M2M Security Association Establishment procedure.
MAF handshake: phase of a Security Association Establishment Framework in which an entity and the MAF perform mutual authentication and generate a Symmetric Key which can then be used in the Association Security Handshake for mutual authentication between that entity and other entities
master credentials: credentials used to mutually authenticate between an ASN/MN-CSE and the MAF. This is done to secure access to the infrastructure of an M2M Service Provider
NOTE:
The Master Credentials are either pre-provisioned or remotely provisioned (without relying on those credentials).

Online Certificate Status Protocol: A protocol for requesting a report on the status of one or more X.509 certificates (IETF RFC 6960 [35])
operational phase: period in the lifecycle of an M2M equipment where it is actually used for providing M2M services

outer request Primitive: The request primitive used to transport the data object containing an inner request primitive to which End-to-End Security of Primitives (ESPrim) has been applied.

outer response Primitive: The response primitive used to transport the data object containing an inner response primitive to which End-to-End Security of Primitives (ESPrim) has been applied.
policy decision point [i.5]: system entity that evaluates applicable policy and renders an authorization decision

policy enforcement point [i.5]: system entity that performs access control, by making decision requests and enforcing authorization decisions
policy information point [i.5]: system entity that acts as a source of attribute values
policy retrieval point: system entity that retrieves applicable policy or policy set
pre-provisioned secure connection key: Symmetric Key that is pre-provisioned to two entities (which may be AEs or CSEs) to be used for mutual authentication of those entities in Security Association Establishment

pre-provisioned secure connection key identifier: Identifier for a Pre-Provisioned Secure Connection Key

pre-provisioned symmetric enrolee key: Symmetric Key that is pre-provisioned to the Enrolee and M2M Enrolment Function

pre-provisioned symmetric enrolee key identifier: Identifier for a Pre-Provisioned Symmetric Enrolee Key
private signing key: secret key that can generate signatures that can be verified using a corresponding Public Verification Key
public key certificate: electronic document that uses a digital signature to bind a public key with an identity
NOTE:
[i.6] A public-key certificate is a data structure consisting of a data part and a signature part. The data part contains cleartext data including, as a minimum, a public [verification] key and a string identifying the part (subject entity) to be associated therewith. The signature part consists of the digital signature of a certification authority over the data part, thereby binding the subject entity's identity to the specified public key.

public key certificate flavour: name describing the usage of a public key certificate within the scope of oneM2M
public key infrastructure: set of hardware, software, people, policies, and procedures needed to create, manage, distribute, use, store, and revoke Public Key Certificates. For more details, see [i.6].
public verification key: credential that can verify digital signatures generated by a corresponding Private Signing Key, but which cannot be used to generate digital signatures

raw public key certificate: certificate comprising only the SubjectPublicKeyInfo structure of an X.509 certificate that carries the parameters necessary to describe the public key [37]
relative enrolment key identifier: part of the enrolment key identifier that is unique within the context of a M2M Enrolment Function

security association establishment: sequential processing of credential configuration, association configuration and association security handshake between two entities
NOTE:
Credential configuration and/or association configuration can not be performed if those steps have already been executed before.
security association establishment framework: Security Framework for Security Association Establishment

security bootstrap framework: Security Framework for Remote security provisioning: a mechanism for remotely provisioning a Master Credential and Master Credential Identifier to a Enrolee and an M2M Authentication Function
secure environment: a logical entity that protects Sensitive Data and Sensitive Functions from tampering, unauthorized monitoring or execution and that provides access to these Sensitive Data and Sensitive Functions to authorized oneM2M entities

security framework: set of procedures providing Security Association Establishment or Remote security provisioning

sensitive function: function processed within the secure environment requiring protection from unauthorized monitoring, tampering or execution and that is operating on sensitive data, e.g. derivation of keys from M2M long-term service-layer keys and cryptographic algorithms
self-signed certificate: Public Key Certificate that is signed by the same entity whose identity it certifies
symmetric key: secret key that is shared between two entities

trust anchor certificate: a certificate that is trusted a priori
X.509: ITU-T recommendation for a Public Key Infrastructure
3.2
Symbols

For the purposes of the present document, the following symbols apply:

||
Concatenation

3.3
Abbreviations
For the purposes of the present document, the abbreviations given in oneM2M TR-0004 [i.2] and the following abbreviations apply:

3GPP2
3rd Generation Partnership Project 2

AAA
Authentication, Authorization and Accounting

ABAC
Attribte Based Access Control

ACP
AccessControlPolicy Instance

AEAD
Authenticated Encryption with Associated Data

AE-ID
Application Entity Identifier

ASN-CSE
CSE which resides in the Application Service Node

BSF
Bootstrapping Server Function

B-TID

Bootstrapping Transaction Identifier

CA
Certification Authority

CIDR
Classless Inter-Domain Routing

CoAP
Constrained Application Protocol

CSE-ID
Common Service Entity Identifier

DTLS
Datagram Transport Layer Security (Protocol)

Enrolee-ID
Enrollee Identity

ESPrim
End-to-end Security of Primitives

ETSI
European Telecommunications Standards Institute

---End of changes to Definitions, Symbols, Abbreviations, Acronyms ---

© 2016 oneM2M Partners
 Page 12 (of 12)

[image: image2.png]_1513706958.vsd
Originator

Receiver

How often?

Once only, or more often if desired

CSE2 registered with Receiver

A. Establishing pairwiseESPrimKey

B.1.ii Update procedure:  To = latestsharedReceiverE2ERand in <remoteCSE> representing Receiver.  Content = sharedReceiverE2ERand

