	Doc# SEC-2016-0095R02-CR_TS-0003_R2_cl_8_4_ESPrim_Cleanup(rm)
Change Request
	[image: image5.png]

	

	CHANGE REQUEST

	Meeting:*
	SEC 23

	Source:*
	Phil Hawkes, Qualcomm, phawkes@qti.qualcomm.com
Wolfgang Granzow, Qualcomm, wgranzow@qti.qualcomm.com

Josef Blanz, Qualcomm, jblanz@qti.qualcomm.com

	Date:*
	2016-05-16

	Contact:*
	As above

	Reason for Change/s:*
	Cleanup of ESPrim architecture text

	CR against: Release*
	2

	CR against: WI*
	 FORMCHECKBOX
 Active WI-0016
 FORMCHECKBOX
 MNT Maintenance / < Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0003 and 2.0.1

	Clauses/Sub Clauses*
	8.4.2

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 FORMCHECKBOX
 Change to existing feature or functionality
 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO
This CR is a mirror CR? YES FORMCHECKBOX
 if YES, please indicate the document number of the original CR: <Document Number) : NO FORMCHECKBOX

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction
This CR is a clean-up of clause 8.4.2 “End-to-End Security of Primitives (ESPrim) Architecture”. All changes are editorial or bug-fixes.
R00 Changes:

· Editorial
· Some names needed updating for consistency
· The numbering format for the steps have been updated, based on advice from editHelp.

· Bug Fixes

· The call flow previously included use of a virtual attribute in sub-steps of step/phase B.2. The author has since learnt that virtual attributes are not presently supported, and the call flow has been altered slightly to avoid use of virtual resources.

· Figure 8.4.2-1: “The transport details for establishing pairwiseESPrimKey and establishing sessionESPrimKey in the End-to-End Security of Primitives (ESPrim) Procedure” has been updated accordingly.

· Stage 3 Text

· The e2ESecurityInformation attribute occurs in the <CSEBase>, <remoteCSE> and <AE> resource types. TS-0001 (R2) says that the e2ESecurityInformation attribute is described in TS-0003. This CR provides the TS-0003 text describing e2ESecurityInformation
R01

· Editorial

· Both e2ESecurityCapabilities and e2ESecurityInformation were being used in various places in TS-0003. We decided to stick with on e2eSecInfo.

· Bug fix

· Updated Figure 8.4.2-1 to align with changes.

R02

· Editorial: Updated Figure 8.4.2-2 to align with terminology.

-----------------------End of change 1---

8.4.2
End-to-End Security of Primitives (ESPrim) Architecture

End-to-End Security for Primitives (ESPrim) provides an interoperable framework for securing oneM2M primitives so CSEs do not need to be trusted with the confidentiality and integrity of the primitive. ESPrim provides mutual authentication, confidentiality, integrity protection and a freshness guarantee (bounding the age of ESPrims).

The credential management aspects and data protection aspects for ESPrim are specified in the present clause. Clause 11.3.2, TS-0003 [2] specifies the transport of ESPrims.

The primitive to be secured is called the inner primitive, and the primitive which is used to transport a secured inner primitive is called the outer primitive. The inner primitive is protected using encryption and integrity protection which takes a symmetric key sessionE2EPrimitiveKey as input. The sessionESPrimKey is derived from a pairwiseESPrimKey, established between the Originator and Receiver, and a receiverE2ERandObject and originatorE2ERandObject.

Sequence of events for ESPrim consists of three main phases:

A. Establishing pairwiseESPrimKey.

B. Establishing sessionESPrimKey at the Originator.
C. Securing a primitive exchange.

Figures 8.4.2-1 shows the ESPrim message flow for establishing pairwiseESPrimKey and sessionESPrimKey at the Originator. Figure 8.4.2-2 shows the ESPrim message flow for securing a Primitive Exchange.

[image: image2.emf]OriginatorReceiverHow often?

Once only, or

more often if

desired

CSE2 registered with Receiver

A. Establishing pairwiseESPrimKey

B.2a Request

receiverESPrimRandObject

Periodically.

Typically multiple

times per

pairwiseESPrimKey.

Typically less often

than per exchange

of inner request and

response primitives

B.2e. Generate receiverESPrimRandObject

B.2g. Generate originatorESPrimRandObject

B.2h. Generate sessionESPrimKey from pairwiseESPrimKey, originatorESPrimRandObject and

sharedReceiverESPrimRandObject. Cache sessionESPrimKey

Per exchange of

inner request and

response primitives

B. Establishing

sessionESPrimKey

C. Securing Primitive Exchange

Shown in separate figure

B.2b (pre-gen option)

receiverESPrimRandObject or

(non-pre-gen option) nothing

B.2d. Request receiverESPrimRandObject

B.2f. receiverESPrimRandObject

B.2c if receiverESPrimRand is returned then jump to step B.2g

(pre-gen option) B.1a. Generate receiverESPrimRandObject

(pre-gen option) B.1b. receiverESPrimRandObject

Figure 8.4.2-1: Message flow for establishing pairwiseESPrimKey and establishing sessionESPrimKey at the Originator in the End-to-End Security of Primitives (ESPrim) Procedure.
A. Establishing pairwiseESPrimKey: The pairwiseESPrimKey may be established using either of the following frameworks:

· Provisioned pairwiseESPrimKey Framework: The Originator and Receiver shall be provisioned with pairwiseESPrimKey. This credential shall be provisioned via one of
· Pre-provisioning;

· a Remote Security Provisioning Frameworks (RSPF), specified in clause 8.3, or

· Certificate based End-to-End Security Key Establishment between the Originator and Receiver, specified in clause 8.7 “End-to-End Security Certificate Key Establishment (ESCertKE)”.

The Originator and Receiver also establish pairwiseESPrimKeyId and optionally pairwiseESPrimKeyLifetime during this process. If no pairwiseESPrimKeyLifetime, is provided, then then pairwiseESPrimKey never expires. The Originator and Receiver cache the (pairwiseESPrimKeyId, pairwiseESPrimKey, (optional) pairwiseESPrimKeyLifetime) object to use for processing subsequent primitives.

·
MAF ESPrim Framework: The Originator and M2M Authentication Function (MAF) authenticate each other using symmetric keys (which may be pre-provisioned or remotely provisioned) and derive a M2M Secure Connection key (Kc) and corresponding key identifier (KcId). The Originator generates pairwiseESPrimKey from Kc and a reserved string. The value of KcId is used in phase C as the pairwiseESPrimKeyId in the JWE/XML-ENC object. The Originator caches the (pairwiseESPrimKeyId, pairwiseESPrimKey) pair to use for processing subsequent primitives. The Receiver retrieves Kc and a credential lifetime from the MAF after it receives an inner request primitive secured using the corresponding pairwiseESPrimKey’ see step C.6.a.
When pairwiseESPrimKey is established using the MAF option, then it typically has a shorter lifetime than the former option.
·
Receiver indicate support for ESPrim: If Receiver supports ESPrim, the Receiver shall ensure the following for the Receiver’s <remoteCSE> resource on all CSEs with which the Receiver is registered:
· The Receiver’s <remoteCSE> resource shall include the e2eSecInfo attribute
· The e2eSecInfo attribute in this resource shall indicate support for ESPrim.
B. Establishing sessionESPrimKey at the Originator: The Receiver shall select to either (a) pre-generate a receiverE2ERandObject which is distributed for used by multiple Originators for establishing sessionESPrimKey, or (b) generate a unique receiverE2ERandObject upon request (in which case no action is required prior to receiving such a request).
C.
D. If the Receiver selects to generate a unique receiverE2ERandObject upon request, then In the latter case, the Receiver shall ensure that the sharedReceiverE2ERandObject parameter is not present in the e2eSecInfo attribute in the Receiver’s <remoteCSE> resource on all CSEs to which the Receiver is registered. The absence of the sharedReceiverE2ERandObject parameter indicates that the Receiver will provide a unique receiverE2ERandObject upon request.
D.1. (If the Receiver selected to use pre-generation) Receiver pre-generation of sharedReceiverE2ERandObject:
D.2. If the Receiver selected to pre-generate and distribute a receiverE2ERandObject, the Receiver performs the following steps every time the Receiver wishes to provide a new shared receiverE2ERandObject
D.2a. The Receiver shall generate a receiverE2ERandObject including the following parameters:

· The Receiver shall generate a 128-bit fresh random value ESPrimRandValue.

· The Receiver shall assign ESPrimRandExpiry, indicating when the receiverE2ERandObject shall cease to be valid.

· The Receiver shall assign an ESPrimRandID for the receiverE2ERandObject which shall satisfy the following criteria: (a) the ESPrimRandID shall indicate that the receiverE2ERandObject is shared; (b) the ESPrimRandID shall be unique among the shared receiverE2ERandObject issued by the Receiver and valid at the time of issuance. These criteria ensure that the receiverE2ERandObject can be uniquely identified until it expires.
· The Receiver shall include a list of sessionESPrimKeyGenrationAlgorithmId values identifying the algorithms that the Receiver is willing to use for generating sessionESPrimKey using this receiverE2ERandObject.

· The Receiver shall include a list of AEADAlgorithmId values identifying the AEAD algorithms that the Receiver is willing to use with this receiverE2ERandObject.

D.2b. The Receiver shall update the sharedReceiverE2ERandObject parameter of the e2eSecInfo attribute in the Receiver’s <remoteCSE> resource on all CSEs to which the Receiver is registered.

NOTE: At a given point in time, multiple Originators will be using identical values for the current sharedReceiverE2ERandObject.

D.3. Originator obtaining receiverE2ERandObject: The Originator shall perform the following steps whenever the Originator establishes a sessionESPrimKey with the Receiver.
D.3a. The Originator shall perform a Retrieve on the e2eSecInfo attribute in the Receiver’s <remoteCSE> resource on a CSE, here denoted CSE2, with which the Receiver is registered.

D.3b. If the e2eSecInfo attribute is present in the Receiver’s <remoteCSE> resource on CSE2, then CSE2 shall returns the e2eSecInfo attribute. Otherwise CSE2 returns an error message to the Originator.

D.3c. The Originator determines if the Receiver supports ESPrim, which requires that the e2eSecInfo attribute is present and the e2eSecInfo attribute indicates support for ESPrim.

D.3c.1. If the Receiver does not support ESPrim, then the Originator aborts the procedure.

D.3c.2. If the Receiver supports ESPrim, and the e2eSecInfo attribute includes a sharedReceiverE2ERandObject parameter, then the Originator shall examine the ESPrimRandExpiry in this parameter to determine if the sharedReceiverE2ERandObject has expired. If the sharedReceiverE2ERandObject has not expired, then the Originator sets receiverE2ERandObject to the value of receiverE2ERandObject and proceeds to step B.2.g. If the sharedReceiverE2ERandObject has expired, then the Originator sets receiverE2ERandObject to the value of receiverE2ERandObject and proceeds to step B.2.d.

D.3c.3. If the Receiver supports ESPrim, and the e2eSecInfo attribute does not include a sharedReceiverE2ERandObject parameter, then the Originator proceeds to step B.2.d.

D.3d.
D.3d.1.
·
·

D.3d.2.
D.3e. The Originator shall send a message to the Receiver requesting a receiverE2ERandObject.

D.3f. The Receiver, upon receiving such a request, shall generate a receiverE2ERandObject including the following parameters:

· The Receiver shall generate a 128-bit fresh random value ESPrimRandValue.

· The Receiver shall assign ESPrimRandExpiry, indicating when the receiverE2ERandObject shall cease to be valid.

·
The Receiver shall assign an ESPrimRandID for the receiverE2ERandObject which shall satisfy the following criteria: (a) the ESPrimRandID shall indicate that the receiverE2ERandObject is not shared; (b) the ESPrimRandID shall be unique among the non-shared receiverE2ERandObject issued by the Receiver and valid at the time of issuance. These criteria ensure that the receiverE2ERandObject can be uniquely identified until it expires.

· The Receiver shall include a list of sessionESPrimKeyGenrationAlgorithmId values identifying the algorithms that the Receiver is willing to use for generating sessionESPrimKey using this receiverE2ERandObject.

· The Receiver shall include a list of AEADAlgorithmId values identifying the AEAD algorithms that the Receiver is willing to use with this receiverE2ERandObject.

D.3g. The Receiver shall send a message to the Originator with the receiverE2ERandObject
D.3h. .

D.3i. The Originator shall generate an originatorE2ERandObject including the following parameters:

· The Originator shall generate a 128-bit fresh random value ESPrimRandValue.

· The Originator shall assign ESPrimRandExpiry, indicating when the originatorE2ERandObject shall cease to be valid. The ESPrimRandExpiry shall not be later than the ESPrimRandExpiry in the receiverE2ERandObject obtained in step B.2c or B.2f.

·
The Originator shall assign an ESPrimRandID for the originatorE2ERandObjectID which shall satisfy the following criteria: (a) the ESPrimRandID shall indicate that the originatorE2ERandObject is not shared; (b) the ESPrimRandID shall be unique among the non-shared originatorE2ERandObject issued by the Originator and valid at the time of issuance. These criteria ensure that the originatorE2ERandObject can be uniquely identified until it expires.

· The Originator shall include a single sessionESPrimKeyGenrationAlgorithmId identifier for algorithm that the Originator is applying for generating sessionESPrimKey using this originatorE2ERandObject. This shall be one of the algorithms identified by the sessionESPrimKeyGenrationAlgorithmId values in receiverE2ERandObject obtained in step B.2c or B.2f.
· The Originator shall include a list of AEADAlgorithmId values identifying the AEAD algorithms that the Originator is willing to use with this originatorE2ERandObject. This shall be one or more of the algorithms identified by AEADAlgorithmId in the receiverE2ERandObject obtained in step B.2c or B.2f.
D.3j. The Originator shall generate the sessionESPrimKey from the pairwiseESPrimKey, receiverE2ERandObject received at step B.2.c and originatorE2ERandObject generated at step B.2.d.

Editor’s note: Further specific details could be added here as part of the stage 3 details.

NOTE: The sessionESPrimKey used to secure an inner request primitive is always used to protect the corresponding inner response primitive, so sessionESPrimKey should be cached at least until the corresponding inner response primitive is expected to have been received. The Originator typically caches the sessionESPrimKey for a longer period of time since the sessionESPrimKey may be used for securing multiple primitive exchanges.

[image: image3.emf]OriginatorReceiverHow often?

Once only, or

more often if

desired

CSE2 registered with Receiver

A. Establishing pairwiseESPrimKey

Periodically.

Typically multiple

times per

pairwiseESPrimKey.

Typically less often

than per exchange

of inner request and

response primitives

Per exchange of

inner request and

response primitives

C.1. Select object security technology

C.3. Apply object security technology to serialization of inner request primitive

using sessionESPrimKey, resulting in a ESPrim object with headers including

pairwiseESPrimKeyId, originatorESPrimRand(Id) and receiverESPrimRandId.

C.4. ESPrim object. Transport details in clause 11.4.2, TS-0001 [2].

C.5. Extract ESPrim object from received message

C.7. Process inner request primitive, resulting in the serialization of the corresponding

inner response primitive

C.10 Extract ESPrim object from received message

C.12. Process inner response primitive

B. Establishing sessionESPrimKey

Shown in a separate figure

C. Securing Primitive Exchange

C.6.c. Apply AEAD processing to ciphertext, resulting in authenticated serialization of

inner request primitive

C.2. Form serialization of inner request primitive

C.8. Apply object security technology to serialization of inner response primitive using

sessionESPrimKey, resulting in a ESPrim object with headers including

pairwiseESPrimKeyId, originatorESPrimRand(Id) andreceiverESPrimRandId.

C.9. ESPrim object. Transport details in clause 11.4.2, TS-0001 [2].

C.6.b. Extract originatorESPrimRand(Id) and sharedReceiverESPrimRand(Id) from ESPrim

object. Verify sharedReceiverESPrimRandis still valid. If ESPrim object includes

originatorESPrimRand, then store. Generate sessionESPrimKey from pairwiseESPrimKey,

originatorESPrimRand, sharedReceiverESPrimRand. Cache sessionESPrimKey.

C.6.a. Extract pairwiseESPrimKeyId from ESPrim object and obtain the corresponding

pairwiseESPrimKey,if it is still valid.

C.11.a. Check validity ofpairwiseESPrimKeyId, originatorESPrimRand(Id) and

sharedReceiverESPrimRand(Id) from ESPrim object. Retrieve/regenerate sessionESPrimKey.

C.11.b. Apply AEAD processing to ciphertext, resulting in authenticated serialization of

inner response primitive

Figure 8.4.2-2: Message flow for securing a primitive exchange in the End-to-End Security of Primitives (ESPrim) Procedure.

E. Securing a Primitive Exchange

NOTE: The Originator selects the type of serialization (e.g. JSON, XML) of the inner request primitive to be secured.

E.1. The Originator selects the object security technology depending on the object security technology supported by the Originator, and the type of serialization of the inner request primitive.
Editor’s note: Further specific details could be added here as part of the stage 3 details.
E.2. The Originator shall form the serialization of the inner request primitive.
E.3. The Originator shall produce a ESPrim Object by applying the object security technology as follows:
· One or more headers of the a ESPrim Object shall include the following information
· pairwiseESPrimKeyId
· originatorE2ERandObject used to generate the sessionESPrimKey, or the corresponding ESPrimRandID. If there is the possibility that this ESPrim Object could be the first ESPrim Object received by the Receiver which is secured by the Originator using a specific originatorE2ERand, then the full originatorE2ERandObject shall be included. Otherwise, one of originatorE2ERandObject or ESPrimRandID shall be included.
· ESPrimRandID of the receiverE2ERandObject used to generate the sessionESPrimKey.
· AEADAlgorithmId for the ESPrim Object. This shall be one of the AEAD algorithms identified in originatorE2ERandObject.
· The plaintext (to be encrypted) shall be the serialization of the inner request primitive.
· The sessionESPrimKey shall be used directly as the symmetric key providing authenticated encryption of the plaintext, resulting in the ciphertext in the ESPrim Object. The ciphertext is assumed to include the MIC for verifying integrity of the inner request primitive.
E.4. The Originator shall form an outer request primitive for transporting the ESPrim Object as described in in TS-0001 [2]. The Originator shall send the outer request primitive to the Receiver.

E.5. The Receiver processes the received outer request primitive to extract the ESPrim Object as described in in TS-0001 [2].

E.6. The Receiver shall process the ESPrim Object.

Editor’s note: The step numbers within C.6 are currently not aligned with TS-0001. One or both of the specifications may need editorial changes to align the steps
E.6a. The Receiver shall extract the pairwiseESPrimKeyId from the ESPrim Object headers and obtains the corresponding pairwiseESPrimKey:

If the pairwiseESPrimKeyId is of the form for a Provisioned pairwiseESPrimKey, then the Receiver shall use the corresponding (previously-provisioned) pairwiseESPrimKey.

If the pairwiseESPrimKeyId is of the form for a MAF pairwiseESPrimKey: If this this is the first time that the Receiver received a message with this pairwiseESPrimKeyId, then the following process shall be performed.

E.6a.1. The Receiver shall identify the MAF from the pairwiseESPrimKeyId (which is a KcId)

E.6a.2. The Receiver shall establish a secure TLS connection to the MAF and request the M2M Secure Connection key (Kc) and Kc Lifetime corresponding to pairwiseESPrimKeyId (which is identical to KcId).

E.6a.3. The MAF shall provide Kc and Kc Lifetime to the Receiver.

E.6a.4. The Receiver shall generate the pairwiseESPrimKey from Kc and a reserved string.

E.6a.5. The Receiver shall set pairwiseESPrimKeyLifetime to Kc Lifetime.

E.6a.6. The Receiver shall cache (pairwiseESPrimKeyId, pairwiseESPrimKey, pairwiseESPrimKeyLifetime) for use for processing subsequent primitives.

If the Receiver has previously cached (pairwiseESPrimKeyId, pairwiseESPrimKey, pairwiseESPrimKeyLifetime), and pairwiseESPrimKeyLifetime has not yet expired, then the Receiver may use the cached pairwiseESPrimKey,

E.6b. The Receiver shall apply the following process to generate the sessionESPrimKey.

E.6b.1. The Receiver shall extract ESPrimRandID of the receiverE2ERandObject from the headers of the ESPrim object, and attempt to retrieve the corresponding cached value of receiverE2ERandObject. If no cached value is found, or the cached value is expired, then the Receiver shall respond to the outer request primitive with an error.

E.6b.2. The Receiver shall extract the encoding of the originatorE2ERandObject or ESPrimRandID of the originatorE2ERandObject from the headers of the ESPrim object, and apply the appropriate decoding. If an originatorE2ERandObject is provided then it shall be cached. If an ESPrimRandID is provided then the Receiver shall retrieve the corresponding cached value of originatorE2ERandObject.If no cached value is found, or the cached value is considered expired, then the Receiver shall respond to the outer request primitive with an error message.

The Receiver shall process the originatorE2ERandObject.

E.6b.2a
The Receiver shall check the Expiry in the originatorE2ERandObject to verify (a) that the this Expiry is not already in the past and (b) the Expiry is not later than the Expiry in the receiverE2ERandObject.

E.6b.2b The Receiver shall extract sessionESPrimKeyGenerationAlgorithmId and verify that the identified algorithm matches one of the sessionESPrimKeyGenerationAlgorithmId in receiverE2ERandObject.

E.6b.2c The Receiver shall generate the sessionESPrimKey from the pairwiseESPrimKey, receiverE2ERandObject and originatorE2ERandObject or retrieve the value of sessionESPrimKey if previously generated and cache.

NOTE: The sessionESPrimKey used to secure an inner request primitive is always used to protect the corresponding inner response primitive, so sessionESPrimKey should be cached at least until the corresponding inner response primitive is sent. The Receiver typically caches the sessionESPrimKey for a longer period of time since the originator may use the sessionESPrimKey for securing multiple primitive exchanges.

Editor’s note: Further specific details could be added here as part of the stage 3 details.

E.6c. Authenticated decryption steps at the Receiver:

E.6c.1. The Receiver shall extract AEADAlgorithmIds in originatorE2ERandObject and verify that the identified set of algorithms is a subset of the set in AEADAlgorithmIds in receiverE2ERandObject.

The Receiver shall process the AEADAlgorithmId in the ESPrim Object headers for and verify that the identified algorithm matches one of the AEADAlgorithmIds in originatorE2ERandObject.

E.6c.2. The Receiver shall apply the AEAD Algorithm identifier in the ESPrim Object header to the ciphertext parameter in the ESPrim Object resulting in verified plaintext, using The sessionESPrimKey, The ciphertext is assumed to include the MIC for verifying integrity of the inner request primitive. The authenticated serialization of the inner request primitive is the verified plaintext output by the AEAD algorithm.

E.7. The Receiver shall process the inner request primitive, resulting in a serialization of the corresponding inner response primitive.

NOTE: Steps C.2 to C.7 are mirrored closely by C.8 to C.12, with the Originator and Receiver swapping their participation in the exchange, and the request primitives replaced by response primitives. There are minor differences: in particular some processing in Steps C for the request processing is not required in the response processing since the Originator has already generated sessionESPrimKey; it is only necessary to identify the appropriate sessionESPrimKey, as performed in step C.11.a.

E.8. The Receiver shall use the same sessionESPrimKey as used in the ESPrim Object received at step C.5. Consequently, pairwiseESPrimKeyId, originatorE2ERandObject and receiverE2ERandObject are the same as for the received at step C.5
The Receiver shall produce a ESPrim Object by applying the object security technology as follows:
· One or more headers of the a ESPrim Object shall include the following information
· pairwiseESPrimKeyId
· originatorE2ERandObject’s ESPrimRandID.
· receiverE2ERandObject’s ESPrimRandID
· AEADAlgorithmId for the ESPrim Object. This shall be one of the AEAD algorithms identified in originatorE2ERandObject.
· The plaintext (to be encrypted) shall be the serialization of the inner response primitive.
· The sessionESPrimKey shall be used directly as the symmetric key providing authenticated encryption of the plaintext, resulting in the ciphertext in the ESPrim Object. The ciphertext is assumed to include the MIC for verifying integrity of the inner request primitive.
E.9. The Receiver shall form an outer request primitive for transporting the ESPrim Object as described in in TS-0001 [2]. The Originator shall send the outer response primitive to the Receiver.

E.10. The Originator processes the received outer response primitive to extract the ESPrim Object as described in in TS-0001 [2].

E.11. The Originator shall process the ESPrim Object.

Editor’s note: The step numbers within C.11 are currently not aligned with TS-0001. One or both of the specifications may need editorial changes to align the steps
E.11a. The Originator shall extract, from the headers of the ESPrim object, the values of pairwiseESPrimKeyId, originatorE2ERandObject’s ESPrimRandID, receiverE2ERandObject’s ESPrimRandID. These values shall match the pairwiseESPrimKeyId, originatorE2ERandObject’s ESPrimRandID, receiverE2ERandObject’s ESPrimRandID of a session that the Originator considers to be currently valid.

 If any of these values have expired, then the outer response primitive is discarded.

NOTE: For this reason, the expiry of these values should be great enough to allow receiving the corresponding inner response primitive.

Otherwise, the Originator shall use the cached value of sessionESPrimKey corresponding to these values, or may regenerate sessionESPrimKey.

E.11b. The Originator shall apply the AEAD Algorithm identifier in the ESPrim Object header to the ciphertext parameter in the ESPrim Object resulting in verified plaintext, using sessionESPrimKey, The ciphertext is assumed to include the MIC for verifying integrity of the inner request primitive. The authenticated serialization of the inner request primitive is the verified plaintext output by the AEAD algorithm.

E.12. The Originator shall process the inner response primitive.

-----------------------End of change 1---

© 2016 oneM2M Partners
 Page 4 (of 11)

[image: image5.png]_1525129061.vsd
Originator

Receiver

How often?

Once only, or more often if desired

CSE2 registered with Receiver

A. Establishing pairwiseESPrimKey

B.2a Request receiverESPrimRandObject

_1525168627.vsd
Originator

Receiver

How often?

Once only, or more often if desired

CSE2 registered with Receiver

A. Establishing pairwiseESPrimKey

C.2. Form serialization of inner request primitive

_1525128185.vsd
Originator

Receiver

How often?

Once only, or more often if desired

CSE2 registered with Receiver

A. Establishing pairwiseESPrimKey

B.1.b receiverE2ERandTuple

