	Doc# SEC-2016-0102-CR_TR-0012_reorganizing_clauses_etc
Change Request
	[image: image10.png]

	

	CHANGE REQUEST

	Meeting:*
	SEC 23

	Source:*
	Min Zuo, China Mobile, zuomin@chinamobile.com

Phil Hawkes, Qualcomm, phawkes@qti.qualcomm.com

	Date:*
	2016-05-09

	Contact:*
	As above

	Reason for Change/s:*
	Some clauses need to be reorganized.

	CR against: Release*
	2

	CR against: WI*
	 FORMCHECKBOX
 Active WI-0016
 FORMCHECKBOX
 MNT Maintenance / < Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0012 v 0.9.0

	Clauses/Sub Clauses*
	Clause 6, Clause 7, Clause 8

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 FORMCHECKBOX
 Change to existing feature or functionality
 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO
This CR is a mirror CR? YES FORMCHECKBOX
 if YES, please indicate the document number of the original CR: <Document Number) : NO FORMCHECKBOX

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction
The following changes have been made:
· Clause 7.2: moved to be clause 6.1.2

· Clause 7.4: moved to be clause 6.2.2.2
· Table 6.2.1-1: add a column specifying target data class identifier according to clause 6.2.3
· “clause 6.2.2.2.x ESF-S2 Requirements” and “clause 6.2.2.x ESF-S2 Processing Flow”: deleted, as this option was not explored further,
· Clause 7: removed
· Clause 8: re-numbered as clause 7
-----------------------Start of change---

6
Candidate Architecture

6.1
Group Authentication Architecture Proposal
6.1.1
Architecture of Static Group Authentication
The Candidate Architecture for static group authentication is illustrated as follows:

[image: image1.emf].

.

.

ASN-AE

ASN-CSE

Mca

ASN

ADN-AE

ADN

MN-AE

MN-CSE

Mca

MN

IN-AE

IN-CSE

Mca

IN

Mcc

.

.

.

MN-AE

MN-CSE

Mca

MN

Mcc

ADN-AE

ADN

Mca

Mcc

MN

MN

ADN-AE

ADN

Group

.

.

.

ASN-AE

ASN-CSE

Mca

ASN

ASN-AE

ASN-CSE

Mca

ASN

Mcc

Mcc

MN-AE

MN-CSE

Mca

MN

Mca

Mca

Mcc

Group

Group

Figure: 6.1.1-1: Illustration of Architecture for Static Group Authentication

6.1.1.1
Nodes
For the architecture of static group authentication in Figure 6.1.1-1, there are three architectural components:

· ASN/ADN [i.6]: an M2M device assigned to a group by the M2M server initially, each M2M device in a given group shall carry out mutual authentication with MN.

· MN [i.6]: an M2M gateway which shall perform mutual authentication with the IN on behalf of all ASNs/ADNs in a given group, it could serve for multiple groups.

· IN [i.6]: an M2M server shall verify the MN’s identity and establish the security association with each M2M device in a given group.

NOTE: When the authentication procedure begins, the M2M devices in a given group (e.g. ASN/ADN) will not be changed until the end of this communication session.
6.1.1.2
Reference Points
There are two reference points in the Group Based Authentication Architecture:
· the Mca reference point [i.6] between the ADN-AE and the MN-CSE, or the Mcc reference point [i.6] between the ASN-CSE and the MN-CSE;
· the Mcc reference point [i.6] between the MN-CSE and the IN-CSE.
6.1.2
Group Authentication Requirements
Note: these requirements have been incorporated into TS-0002[i.7].

The following is a list of basic requirements to be considered in design and analysis of group authentication solutions:

· When the M2M Devices are grouped and the M2M Gateway is authorized as delegate of the group for accessing the M2M Server, the M2M Gateway shall be able to, on behalf of the M2M Devices in the group, perform Mutual Authentication with the M2M Server.
· When the M2M Devices are grouped and the M2M Gateway belongs to a third party, oneM2M System shall be able to protect Security and Privacy of communication between individual M2M Device and M2M Server from other M2M devices and the third party M2M Gateway

6.2
End-to-End Security Framework (ESF) Proposal 1

This clause proposes the End-to-End Security Framework (ESF) that provides protection to minimize the number of CSEs that are required to be trusted to maintain the integrity and/or confidentiality of communications in a oneM2M network. ESF includes support for group authentication, which providing mechanisms for improving the efficiency of establishing end-to-end security between members in a group.

The requirements applicable to ESF are provided in SEC-028 through to SEC-033, SEC-036, SEC-046 and SEC-047 of TS-0002 [i.7].

6.2.1

End-to-End Security Framework Introduction

Introduction to the ESF Security Layer. The ESF Security Layer, proposed to be specified in TS-0003 [i.8] defines the following processes:

· Key establishment.

· Transforming target data into ESF-treated target data, or the reverse, using established keys. The target data is comprised of plaintext (data to be encrypted and integrity protected) and/or additional authenticated data (to be integrity protected only).

· Serializing (e.g. using JSON or XML) key establishment parameters and/or ESF-treated target data. The serialization is called an envelope.

What is ESF? There is no inherent restriction on how the ESF Security Layer can be used – it can be used by entities inside or outside of a oneM2M system. However, the End-to-End Security Framework (ESF) specifies how the ESF Security Layer is used when one or both of the ESF Security Layer end-points is a CSE or AE. These additional processing details depend on the target data class to be secured, listed in Table 6.2.1-1 “List of ESF target data classes”. The target data class specific details are proposed to be specified in TS-0001 [i.6].

NOTE 1: The list of supported ESF target data classes is limited for this release. Further ESF target data classes could be added in the future releases.

	Input Item
	Target data
	Details in Clause:

	
	Plaintext
	Additional Authenticated Data (AAD)
	Class Identifier
	

	Request or response
	Entire Request or response
	None
	1
	6.2.3.1

	Request or response
	Content parameter
	None
	2
	6.2.3.2

	<contentInstance> resource
	content attribute
	None
	3
	6.2.3.3

Table 6.2.1-1 List of ESF target data classes
NOTE: The currently-defined ESF target data classes do not use the Additional Authenticated Data. The option to use Additional Authenticated Data has been included in the ESF Security Layer so that future ESF target data classes can use Additional Authenticated Data without requiring an update to the ESF Security Layer specifications.

The ESF functionality within a CSE or AE is called an ESF End-Point (EEP). The ESF reference model partitions the functionality into three protocol layers; shown in Figure 6.2.1-1 “High Level ESF Reference model”.

[image: image2.emf]receiving ESF End-Point (EEP) sending ESF End-Point (EEP)

ESF Security

processing

ESF Integration processing

Envelope

ESF Integration processing

Integration Layer

Input Item (Request, Response or Resource),

ESF Preparation processing

Target Data

ESF Preparation processing

ESF Preparation Layer

Input

Item

Verified Target Data

ESF Security Layer

ESF Security

processing

ESF Treated Item (Request, Response or Resource)

ESF

Treated

Item

Envelope

Verified Input Item (Request, Response or Resource)

ESF Treated Item (Request, Response or Resource)

Figure 6.2.1-1 High Level ESF Reference model. Control data (e.g. security parameters) are not shown.

The three protocol layers in the high level ESF reference model are:

· ESF Preparation Layer:

· A sending EEP, given an input item, extracts the appropriate target data. The input items are either oneM2M messages or oneM2M resources. The target data is provided to the ESF security layer, in a format independent of the target data class, for transforming into an envelope. The input item is forwarded to the ESF Integration Layer for composing the ESF-treated item.

· A receiving EEP reconstitutes a verified input item from the verified target data received from the ESF Security Layer and the ESF-treated item and ESF target data identifier received from the sending EEP.

The processing at this layer depends on the ESF target data class.

· ESF Security Layer: transforms the target data into an envelope, or the reverse. The processing at this layer does not depend on the target data class. Further details are in clause 6.2.2 “ESF Security Layer High Level Architeture”.

· ESF Integration Layer:
· A sending EEP forms the ESF-treated item from the input item received from the ESF Preparation Layer, and the envelope received from the ESF Security Layer.

· A receiving EEP obtains the ESF-treated item via the Mcc and/or Mca reference points, and extracts the envelope. The envelope is provided to the ESF security layer for transforming back to the verified target data. The ESF-treated item is provided to the ESF Preparation layer for reconstituting the verified input item.

The processing at this layer depends on the ESF target data class.

The ESF Preparation Layer and ESF Integration Layer are tightly dependent on each other, since they both depend on ESF target data class, however the ESF Security Layer processing is independent of those layers. Aside from the dependence of key generation on the ESF target data identifier, the security processing is independent of the ESF target data. This independence allows a single ESF Security Layer end-point implementation to be used for all ESF target data classes. Three security session types are proposed for the ESF Security Layer (for more details, see clause 6.2.2 “ESF Security Layer High Level Architeture”). Each of the supported ESF target data classes can be protected using any of the ESF security session types.

In which oneM2M specifications are the ESF layers proposed to be detailed? The functional architecture of the ESF Preparation Layer and ESF Integration Layer are proposed to be specified in TS-0001 [i.6], with protocol-level details proposed to be specified TS-0004 [i.9]. As stated at the beginning of the present clause, the ESF Security Layer details are proposed to be specified in TS-0003 [i.8].

Editor’s note: Is this an appropriate place to discuss how ESF secured resource portions or primitives can be recursively secured within other ESF secured resource portions or primitives? For example, the content, attribute may be secured end-to-end as using ESF target data class 3 at an ADN-AE for consumption by an IN-AE; and the primitive or primitive binding creating the content on the IN-CSE could be secured end-to-end (from ADN-AE to IN-CSE) using ESF target data class 1.

6.2.2 ESF Security Layer High Level Architecture
6.2.2.1
ESF Security Layer Overview
Three security session types, listed in Table 6.2.2.1-1, have been proposed for the Security Layer.
	Term
	Abbr
	Security Session Comprises
	State Lifetime
	Details in clause:

	One-way Single envelope security session
	ESF-S1
	One envelope sent in one direction. Provides all crypto parameters necessary to establish the keys securing the payload. Other than credentials, no state is stored
	Stateless
	6.2.2.3

	Two-way Single Envelope security session
	ESF-S2
	Envelopes securing request and corresponding response. Request envelope provides all crypto parameters necessary to establish the key plus secured payload. Other than credentials, no state is stored
	Initiator stores state until response received. Target stores state until. response sent
	None. See note.

	Two-way Multi-envelope security session
	ESF-Sm
	Handshake exchange followed by any number of envelopes containing secured payloads (sent in either direction)
	Initiator and Target store state until session is terminated or expires
	6.2.2.4

	NOTE: The ESF-S2 security session type is not presently considered a priority, and was not examined in further detail. The ESF-S2 security session type is mentioned here for future reference.

Table 6.2.2.1-1 List of security session types in the ESF reference model.
The ESF-S1 and ESF-Sm security session types were seen as priorities for oneM2M Release 2. Consequently, the ESF-S2 session type was not examined in further detail when the present report was composed. The remaining discussion of the ESF Security Layer focusses only on the ESF-S1 and ESF-Sm security session types.

For each security session type the ESF Security Layer processing can be partitioned into:

· Key Establishment processing: includes

· negotiating the cryptographic algorithms to be used for key establishment and payload security, and

· establishing keys for securing payloads and. KEF

· Payload Security processing: applying security mechanisms transforming the target data into the ESF-treated target data, or the reverse, using the established keys.

· Envelope Serialization processing: responsible for representing exchanged data (key establishment parameters, and ESF-treated target data) in an envelope: a common serialization independent of the security session type.
6.2.2.2
ESF Security Layer Requirements
This clause proposes detailed requirements for the ESF Security Layer. These requirements are intended only for use in design and analysis of components of ESF as part of the work represented in this TR.

Clause 6.2.2.2.1 proposes requirements which are independent of the security session type. Clauses 6.2.2.2.2 and 6.2.2.2.3 proposes requirements specific to the security session types ESF-S1 and ESF-Sm respectively.
6.2.2.2.1
Generic Requirements for the ESF Security Layer
6.2.2.2.1.1
Generic ESF Security Layer Macro-Considerations

“Macro-considerations” are considerations or requirements for the ESF Security Layer that are not specific to the Facilitation, Key Establishment, Payload Security or Envelope Serialization processing of the ESF Security Layer.

The following is a list of proposed macro-considerations for the ESF Security Layer which are independent of security session type:

· The ESF Security Layer supports ESF End-Point implementations with ESF Key Establishment processing in a secure environment providing established keys to ESF Payload Security processing outside the secure environment.

Proposed macro-considerations for individual security session types are found in clauses 6.2.2.2.2.1 (for ESF-S1), and 6.2.2.2.3.1 (for ESF-Sm).
6.2.2.2.1.2
Generic ESF Payload Security Requirements
The following is a list of proposed requirements for the ESF Payload Security processing which are independent of the security session type:

· ESF Payload Security supports protecting the payload using a symmetric (secret) key established using the corresponding ESF Key Establishment reference points.

· ESF Payload Security supports encryption of the input payload using a symmetric key.

· ESF Payload Security supports integrity protection of the input payload using a symmetric key.

· ESF Payload Security supports a range of crypto algorithms, to enable migrating to another secure cryptographic algorithms in the event that cryptographic algorithms are found to be insecure or are otherwise deprecated.

· ESF Payload Security is not required to maintain state between security sessions.

Proposed ESF Payload Security requirements for individual security session types are found in clauses 6.2.2.2.2.2 (for ESF-S1), and 6.2.2.2.3.2 (for ESF-Sm).
6.2.2.2.1.3
Generic ESF Key Establishment Requirements

The following is a list of proposed requirements for the ESF Key Establishment processing which are independent of the security session type:

· ESF Key Establishment provides a mechanism for negotiating an appropriate set of cryptographic algorithms and credentials. This could be influenced by

· Cryptographic algorithms supported by the EEPs

· Credentials of the EEPs.

· A Security Profile relevant to the target data.

· ESF Key Establishment supports authenticated key establishment based on a symmetric (secret) key provisioned by means unspecified by oneM2M specifications.

· ESF Key Establishment supports authenticated key establishment based on a symmetric (secret) key obtained through interaction with a trusted Facilitator.
NOTE: The role of Facilitator in this case could be played by an M2M Authentication Function (MAF) or M2M Enrolment Function (MEF).

· ESF Key Establishment supports key establishment using certificates.
· ESF Key Establishment supports mutual authentication.

· ESF Key Establishment could support one-way authentication of the source/initiator EEP or target/responder EEP.

· ESF Key Establishment ensures that there is only a very low probability that keys established for one security session are identical to keys established for a different security session – regardless of the security session type of both security sessions.

· ESF Key Establishment ensures keys established for one security session type cannot be used in another security session type; e.g. the keys established for a single-envelope security session cannot be used for a multi-envelope security session.

· ESF Key Establishment ensures that there is only a very low probability that keys established for one ESF target data class are identical to keys established for a different ESF target data class.

· ESF Key Establishment maintains minimal state between security sessions.
Proposed ESF Key Establishment requirements for individual security session types are found in clauses 6.2.2.2.2.3 (for ESF-S1), and 6.2.2.2.3.3 (for ESF-Sm).
6.2.2.2.1.4
Generic ESF Facilitation Requirements

ESF Facilitation is independent of the security session type. The following is a list of proposed requirements for the ESF Facilitation which are independent of the security session type:

· ESF Facilitation is independent of the security session type (S1, S2 or Sm)
· ESF Facilitation supports being secured from the ESF End-Point to the Facilitator.

· ESF Facilitation supports mutual authentication of the ESF End-Point and the Facilitator.

· A Facilitator may apply access control.

· ESF Facilitation supports EEPs obtaining symmetric (secret) keys through interaction with trusted Facilitators.

NOTE: The role of Facilitator in this case could be played by an M2M Authentication Function (MAF) or M2M Enrolment Function (MEF).

· ESF Facilitation supports Facilitators acting as a repository of certificates or public keys associated with an ESF End-Point.
· ESF Facilitation supports Facilitators acting as a repository of Security Profiles.
Proposed ESF Facilitation requirements imposed by individual security session types are found in clauses 6.2.2.2.2.4 (for ESF-S1), and 6.2.2.2.3.4 (for ESF-Sm).
6.2.2.2.1.5
Generic ESF Envelope Serialization Requirements
The following is a list of proposed ESF Envelope Serialization requirements which are independent of the security session type:

· The envelope serialization is independent of the security session type (S1, S2 or Sm) and type of input data (resource portion or primitive).

· The envelope serialization identifies the security session type (S1, S2 or Sm)
· The envelope serialization identifies the target data class.
· The envelope serialization is compatible with oneM2M resource and primitive representations (JSON and XML are supported at the time of writing).

· The envelope serialization shall allow simple identification of envelopes within oneM2M resources representations (JSON and XML are supported at the time of writing).

Proposed ESF Envelope Serialization requirements for individual security session types are found in clauses 6.2.2.2.2.5 (for ESF-S1), and 6.2.2.2.3.5 (for ESF-Sm).

6.2.2.2.2
ESF-S1 Requirements
6.2.2.2.2.1
ESF-S1 Macro-Considerations
In addition to the macro-considerations in clause 6.2.2.2.1.1 “ESF Security Layer Macro-Considerations”, the following ESF-S1-specific macro-considerations are proposed:

Editor’s note: there are currently no ESF-S1-specific macro-considerations. Members are invited to provide ESF-S1-specific macro-considerations. If there are no ESF-S1-specific macro-considerations then this clause can be deleted.
6.2.2.2.2.2
ESF-S1 Payload Security Requirements
A Payload Security Algorithm Class (psAlgCl) describes the type of protection that is afforded the input payload; suggested Payload Security Algorithm Classes for oneM2M Release 2 are listed in Table 6.2.2.2.2.2-1 “List of ESF-S1 Payload Security Algorithm Class (AlgCl) options”. This list is not necessarily exhaustive, and other options could be available.

Editor’s note: members are invited to provide other options for consideration.
The selection of algorithms for each AlgCl is discussed in clause 7 “Available Options”
.

Editor’s note: Should advantages and disadvantages of each Algorithm Class be documented in the present document or TR-0008 [i.44]?
	Payload Security Algorithm Class
	Example mechanism
	Brief Description
	Target Data
	Keys that must be established

	Symmetric integrity protection only
	MIC
	Source EEP and Target EEP(s) use a symmetric key for integrity protection, but not confidentiality. Target EEPs can impersonate the Source EEP. For this psAlgCl, ESF does not perform encryption.
	AAD only
	Payload security processing requires a symmetric envelope master key established between the Source EEP and Target EEP(s)

	Symmetric confidentiality and integrity protection
	AEAD
	Source EEP and Target EEP(s) use a symmetric key for confidentiality and integrity protection. Target EEPs can impersonate the Source EEP
	Plaintext + (optional) AAD
	

	Symmetric confidentiality and non-repudiation protection
	AEAD + Digital Signature
	Source EEP and Target EEP(s) use a symmetric key for confidentiality and digital signature for non-repudiation. Target EEPs cannot impersonate the Source EEP. Use of Authenticated Encryption is suggested.
	Plaintext + (optional) AAD
	Payload security processing requires a symmetric envelope master key established between the Source EEP and Target EEP(s); additionally the Source EEP uses a digital signature private signing key and the Target EEP(s) use a digital signature public verification key.

	Non-repudiation protection only
	Digital Signature
	Source EEP and Target EEP(s) use a digital signature for non-repudiation. For this psAlgCl, ESF does not perform encryption.
	AAD only
	Source EEP uses a digital signature private signing key and the Target EEP(s) use a digital signature public verification key.

Table 6.2.2.2.2.2-1 List of ESF-S1 Payload Security Algorithm Class (psAlgCl) options.

6.2.2.2.2.3
ESF-S1 Key Establishment Requirements
The psAlgCl in Table 6.2.2.2.2.2-1 “List of ESF-S1 Payload Security Algorithm Class (AlgCl) options” which require a digital signature public verification key are:

· AEAD + Digital Signature, and

· Digital Signature.

If one of these psAlgCl are used, then a digital signature public verification key is provided for additional verification of the input payload. The digital signature public verification key could be provided in a certificate communicated as key establishment parameter in envelope or via Facilitator. The Target EEP verifies the certificate prior to verifying the digital signature on the target data.

The psAlgCl in Table 6.2.2.2.2.2-1 “List of ESF-S1 Payload Security Algorithm Class (psAlgCl) options” which require an envelope master key are:

· Symmetric integrity protection
· Symmetric confidentiality and integrity protection, and

· Symmetric confidentiality and integrity protection + non-repudiation.

A Key Establishment Algorithm Class (keAlgCl) describes the type of key establishment mechanisms used to establish an envelope master key; suggested Key Establishment Algorithm Classes for oneM2M Release 2 are listed in Table 6.2.2.2.2.3-1 “List of ESF-S1 Key Establishment Key Establishment Algorithm Class (AlgCl) options”. This list is not necessarily exhaustive, and other options could be available. This list is not intended to constrain the options considered for establishing an envelope master key.

Editor’s note: Should advantages and disadvantages of each Algorithm Class be documented in the present document or TR-0008 [i.44]?
	Name
	Brief Description

	Trusted Third Party (TTP)
	The Source EEP requests a Facilitator to store the envelope master key with an associated set of permissions. The Facilitator could optionally generate the envelope master key for the Source EEP. The Source EEP and Facilitator agree on a unique envelope master key identifier for the envelope master key, and this envelope master key identifier is provided in the envelope. After the Target EEP retrieves the envelope, then the Target EEP provides the envelope master key identifier to the Facilitator. If the Target EEP has the necessary permissions, then the Facilitator provides the envelope master key to the Target EEP. This requires a high degree of trust in the Facilitator, and communication with the Facilitator (from both the Source EEP and Target EEP) must be mutually authenticated and secured.

	Pre-Provisioned Shared Key
	The envelope master key is provided to the Source EEP and Target EEP(s) via mechanisms not specified by oneM2M (e.g. manual input, pre-provisioning).

	Key Encryption
	The Source EEP selects a set of Target EEPs for which the Source EEP knows a public encryption key of the Target EEP (for example, the public encryption keys could be in certificates, or Identity Based Encryption might be applied) or the Source EEP shares a symmetric key encryption key (KEK). For each Target EEP, then Source EEP encrypts the envelope master key using either the public encryption key or KEK and includes the resulting encrypted envelope master key in the envelope. The envelope includes an encrypted envelope master key for each Target EEP. After the Target EEP retrieves the envelope, then the Target EEP uses its private decryption key or KEK (shared with the Source EEP) to decrypt its encrypted envelope master key and obtain the envelope master key. The mechanism could optionally authenticate the Source EEP; e.g by including a digital signature that can be verified using a certificate of the Source EEP.

	Key Agreement
	(This approach can work only if there is a single Target EEP). The Source EEP and Target EEP applies a key agreement protocol to establish a shared key. For example, the Source EEP could use a Diffie-Hellman protocol [ReferenceNeeded
] using a public key in a certificate of the Target EEP. The mechanism could optionally authenticate the Source EEP; e.g. by including a digital signature that can be verified using a certificate of the Source EEP.

Table 6.2.2.2.2.3-1 List of ESF-S1 Key Establishment Algorithm Class (AlgCl) options which could be considered for establishing an envelope master key.
6.2.2.2.2.4
ESF-S1-Specific ESF Facilitation Requirements
Proposed ESF-S1-specific Requirements. In addition to the generic requirements in clause 6.2.2.2.1.3 “Generic ESF Key Establishment Requirements”, the following ESF-S1-specific requirements are proposed:

1. ESF Facilitation shall support Facilitators acting as a repository of long-term key parameters associated with an ESF End-Point which could include
· List of supported ksAlgSets.

· List of supported psAlgSets.

· List of Certificates or public keys.

These parameters could be used in the Key Encryption, Key Agreement and Digital Signature Algorithm Classes in Table 6.2.2.2.2.3-1 “List of ESF-S1 Key Establishment Algorithm Class (AlgCl) options”

2. ESF Facilitation may support Facilitator acting as a repository of the latest provided short-term key parameters associated with an ESF End-Point, which could include
· A short-lifetime randomly-generated, non-secret value – e.g. for use as challenges in authentication or for adding non-secret entropy to key generation.

· A short-lifetime public key value – e.g. EC-DH public key for adding perfect forward secrecy (PFS).

NOTE: The case of using a short-lifetime secret value – e.g. for use as adding secret entropy to key generation – is already covered by the first ESF Facilitation requirement “The reference point supports EEPs obtaining symmetric (secret) keys through interaction with trusted Facilitators” in clause 6.2.2.2.1.3 “Generic ESF Key Establishment Requirements”.
These parameters could be used in the Key Encryption, Key Agreement and Digital Signature Algorithm Classes in Table 6.2.2.2.2.3-1 “List of ESF-S1 Key Establishment Algorithm Class (AlgCl) options”

6.2.2.2.2.5
ESF-S1 Envelope Serialization Requirements
Proposed ESF-S1 Envelope Serialization requirements. In addition to the generic requirements in clause 6.2.2.2.1.5 “Generic ESF Envelope Serialization Requirements”, the following ESF-S1-specific Envelope Serialization requirements are proposed:

· The ESF-S1 Envelope Serialization supports representing secured payloads for the Payload Security Algorithm Classes in clause 6.2.2.2.2.2 “ESF-S1 Payload Security Requirements”.

· The ESF-S1 Envelope Serialization supports representing key establishment parameters for the Key Establishment Algorithm Classes in clause 6.2.2.2.2.3 “ESF-S1 Payload Security Requirements”.
· The ESF-S1 Envelope Serialization supports representing the keAlgSet and psAlgSet”.
JSON Representations. The IETF JOSE specifications [i.3] can provide a JSON representation of the ESF-S1 secured payload and key establishment parameters. The generic envelope serialization requirements and the proposed ESF-S1 Envelope requirements could be satisfied by an envelope which is a JSON element comprised of

· An identifier for the security session type (in this case indicating S1), followed by

· One or more JOSE data elements containing the ESF-S1 key establishment parameters and ESF-S1 secured payload.

XML Representations. The W3C XML-SIG [i.10] and XML-ENC [i.11] can provide a XML representation of the ESF-S1 secured payload and key establishment parameters. The generic envelope serialization requirements and the proposed ESF-S1 Envelope requirements could be satisfied by an envelope which is a XML element comprised of

· An identifier for the security session type (in this case indicating S1), followed by
· One or more XML-SIG and/or XML-ENC data elements containing the ESF-S1 secured payload and key establishment parameters.
Detailed proposed specification for JSON serialization and XML serialization are provided in clause 7.

Editor’s note: The above sentence anticipates detailed specifications will be provided in clause 7. If detailed specifications are not provided, then the above sentence should be deleted.

6.2.2.2.3
ESF-Sm Requirements
6.2.2.2.3.1
ESF-Sm Macro-Considerations

In addition to the generic considerations in clause 6.2.2.2.1.1 “ESF Security Layer Macro-Considerations”, the following ESF-S1-specific macro-considerations: are proposed

· The ESF-Sm security layer shall support a signaling messages including the ability to end an existing ESF-Sm session. An example of such a signaling messages are the alert messages of TLS v1.2 (see RFC 5246 [i.12]) and DTLS v1.2 (see RFC 6347 [i.13]).

Editor’s note: Members are invited to provide further ESF-S1-specific macro-considerations.
6.2.2.2.3.2
ESF-Sm Payload Security Requirements

Proposed ESF-Sm Payload Security Requirements. In addition to the generic requirements in clause 6.2.2.2.1.2 “Generic Payload Security Requirements”, the following ESF-Sm-specific Payload Security requirements are proposed:

· Replay detection shall be supported by ESF-Sm.

Possible ESF-Sm Payload Security Solutions.

Encryption and Integrity protection can be provided by either

· A combination of an encryption algorithm and an independent MIC algorithm.

· An Authenticated Encryption with Associated Data (AEAD) algorithm.

Replay detection can be provided by including a sequence number which is protected by the integrity protection calculation.

All of the above mechanisms are supported by appropriate choices of ciphersuites for TLS v1.2 in RFC 5246 [i.12] and DTLS v1.2 in RFC 6347 [i.13]. The selection of appropriate ciphersuites is discussed in clause 7 “Available Options”.
TLS assumes a reliable transport (such as TCP); consequently, TLS cannot be used in all oneM2M scenarios. DTLS does not assume a reliable transport; consequently, DTLS can be used in all oneM2M scenarios. For this reason, DTLS is preferable to TLS.

There are other security protocols which could provide the functionality required for ESF-Sm Payload Security, however these are not as widely used as TLS and DTLS.

Recommendation: DTLS v1.2 record payload protection is the recommended solution for ESF-Sm Payload Security.

6.2.2.2.3.3
ESF-Sm Key Establishment Requirements

Proposed ESF-Sm Key Establishment Requirements. In addition to the generic requirements in clause 6.2.2.2.1.3 “Generic ESF Key Establishment Requirements”, the following ESF-Sm-specific Key Establishment requirements are proposed:

· Perfect Forward Secrecy countermeasures (e.g. the ephemeral Diffie-Hellman protocol or ephemeral Elliptic Curve Diffie-Hellman protocol) is required to be supported by ESF-Sm and optional to be used.

· Replay detection of ESF-Sm Key Establishment handshake messages is required to be supported by ESF-Sm Key Establishment and required to be used.

This list is not necessarily exhaustive, and other options could be available. This list is not intended to constrain the options considered for establishing symmetric (secret) keys for use in the EF-Sm Payload Security reference point.

Possible ESF-Sm Key Establishment Solutions. All of the above mechanisms are supported by appropriate choices of ciphersuites for TLS v1.2 (see RFC 5246 [i.12]) and DTLS v1.2 (see RFC 6347 [i.13]). The selection of appropriate ciphersuites is discussed in clause 7 “Available Options”.

TLS assumes a reliable transport (such as TCP); consequently, TLS cannot be used in all oneM2M scenarios. DTLS does not assume a reliable transport; consequently, DTLS can be used in all oneM2M scenarios. For this reason, DTLS is preferable to TLS.

There are other security protocols which could provide the functionality required for ESF-Sm Payload Security, however these are not as widely used as TLS and DTLS.

Recommendation: The DTLS v1.2 handshake is the recommended solution for ESF-Sm key establishment.

6.2.2.2.3.4
ESF-Sm-Specific ESF Facilitation Requirements
There are no ESF-Sm-specific requirements proposed in addition to the generic requirements in clause 6.2.2.2.1.3 “Generic ESF Facilitation Requirements”.

NOTE: In theory, ESF-Sm could support a Facilitator enabling an faster ESF-S1 key establishment by acting as a repository of the latest provided short-term, non-secret key establishment parameters associated with an ESF End-Point. Such short-term parameters could include

· A short-lifetime secret value – e.g. for use as adding secret entropy to key generation. This options requires trusting the Facilitator to maintain the confidentiality of the value.

· A short-lifetime public key value – e.g. EC-DH public key for adding perfect forward secrecy (PFS).

There is a problem, because the DTLS v1.2 handshake (recommended for ESF-Sm Key Establishment handshake) does not support integrating such parameters into a faster key exchange. If DTLS v1.2 handshake is used, then storing short-term, non-secret key establishment parameters for ESF-Sm Key Establishment provides no value. For this reason, there is no proposal to store short-term, non-secret key establishment parameters for ESF-Sm key establishment.
6.2.2.2.3.5
ESF-Sm Envelope Requirements
Solutions providing ESF-Sm Key Establishment and Payload Security. The discussion in previous clauses indicates the following:

· The DTLS v1.2 handshake (see RFC 6347 [i.13]) is the preferred existing solution providing the functionality required for ESF-Sm Key Establishment key establishment (see clause 6.2.2.4
).

· The DTLS v1.2 record payload protection is the preferred existing solution providing the functionality required for ESF-Sm Payload Security payload security (see clause 6.2.2.3
).

Consequently, DTLS v1.2 is a preferable solution for ESF-Sm Key Establishment and ESF-Sm Payload Security.

However, DTLS messages are binary data, while resources and primitives use a JSON or XML representation. This prevents using the binary DTLS messages directly in a resource or primitive

Proposed ESF-Sm Envelope requirements. In addition to the generic requirements in clause 6.2.2.2.1.5 “Generic ESF Envelope Requirements”, the following ESF-Sm-specific Envelope requirements are proposed:

· ESF-Sm Envelope is required to support transporting DTLS records, where these records contain

· DTLS handshake messages, providing the ESF-Sm Key Establishment functionality

· DTLS protected payloads, providing the ESF-Sm Payload Security functionality. Since DTLS allows tunneling DTLS handshake messages inside an established DTLS session, the DTLS protected payloads can provide the ESF-Sm Key Establishment functionality.

· ESF-Sm Envelope is required to encode binary DTLS records in an ASCII character space allowed by the values in JSON and XML data elements.

JSON Representations. The generic envelope serialization requirements and the proposed ESF-Sm Envelope requirements could be satisfied by an envelope which is a JSON element comprised of

· An identifier for the security session type (in this case indicating Sm), and

· A JSON data element containing a base64 encoding [i.14] of a DTLS message.
XML Representations. The generic envelope serialization requirements and the proposed ESF-Sm Envelope requirements could be satisfied by an envelope which is a XML element comprised of

· An identifier for the security session type (in this case indicating Sm), and

· A XML data element containing a base64 encoding [i.14] of a DTLS message.
Detailed proposals for JSON serialization and XML serialization are provided in clause 7 “Available Options”.

6.2.2.3
ESF-S1 Processing flow

ESF-S1 supports an envelope having a single Source EEP and one or more Target EEPs.

Figure 6.2.2.3-1 shows the processing flow when using this session type.

[image: image3.emf]ESF Security Layer

Processing

Facilitator(s)

E.g. TEF, MEF,

MAF, MN-CSE

1.a (o) Long term Target EEP Params.

(E.g. keAlgSets, psAlgSets, certs, security profile)

Store parameters

3.a (o) Retrieve Target EEP Parameters

Source ESF End-Point

3.b Select keAlgSet & psAlgSet

1.a (o) Long-term Source EEP Params.

(E.g. keAlgSets, psAlgSets, certs, security profile)

1.b (o) Short-term Target EEP params

(E.g. random values, short term secrets)

3.c Apply keAlgSet for source

authentication, AlgSet integrity &

key establishment

3.d (o) Short-term Source EEP Params

(E.g. random values, short term secrets)

4. Apply psAlgSet to target data

using established keys, producing

ESF-treated target data

2. Target data,

(o) Target data security profile,

Target EEP Identity(ies)

6. Security Layer does not address how envelope gets to Target

5. Serialize AlgSets, key params and

secured payload in envelope

7. Extract AlgSets, key params and ESF-treated

target data from envelope

8.a (o) Retrieve Source

EEP Parameters

9 Apply psAlgSet to ESF-treated target data

using established keys, producing ESF-treated

target data

Store parameters

10. verified target data,

 Source EEP Identity

8.b Apply keAlgSet to obtain source

verification, AlgSet verification & key

establishment

1.b (o) Short-term Source EEP params

(E.g. random values, short term secrets)

Target ESF End-Point

ESF Security Layer

Processing

Figure 6.2.2.3-1 Processing flow for single envelope session type (S1).
1. EEPs can interact with Facilitators to provide the Facilitators with long-term parameters (that is, parameters with long lifetime) and/or short-term parameters (that is, parameters with a short lifetime). This step is not expected to be mandatory.
a. (Optional). EEPs could provide interaction with one or more Facilitators to provide long-term parameters (that is, parameters with long lifetime) that the other EEPs can use either for
· Generating S1 session envelopes, as Source EEPs, or

· Processing received envelopes, as Target EEPs.
Example long-term parameters include

· List of supported Key Establishment Algorithm-Sets (keAlgSets)
· List of supported Payload Security Algorithm-Sets (psAlgSets)
· Certificates
· Security Profile

This interaction is expected to happen relatively infrequently – possibly only once in the lifetime of the EEP. The Facilitator(s) store the parameters and make them available for retrieval.

Editor’s note: access to the parameters may be controlled

b. (Optional). EEPs could provide interaction with one or more Facilitators to update short-term parameters that can be provided to other EEPs either for
· Generating S1 session envelopes, as Source EEPs, or

· Processing received envelopes, as Target EEPs.
Example, short-term parameters include

· Random values with short lifetime; these might be used as challenges for authentication.
· Secret keys with short lifetime; these might be used as challenges for authentication.
The Facilitator(s) store the parameters and make them available for retrieval.

This interactions are expected to happen relatively infrequently – possibly only once in the lifetime of the EEP.

Editor’s note: access to the parameters may be controlled
2. The Source EEP provides the Security Layer Functions with
· Target Data, and

· (Optional) Security profile applicable to the Target Data,

Editor’s note: The security profile text might need expanding.
· Identifiers for the intended Target EEPs. This could include individual identifiers and group identifiers.

This triggers the resulting call flow.

3. Source EEP Key Establishment processing:
Editor’s note: It could be appropriate to discuss here how the Source EEP determines the minimum security levels to be applied and what session type should be applied. It is worth discussion where the decision is made – Preparation Function, Security Function etc.. Interaction with security profiles should be considered.
a. (Optional) The Source EEP could retrieve the Target EEP(s)’ long-term and/or short-term parameters from the Facilitator(s).
Editor’s note: access to the parameters may be controlled

Editor’s note: How the Key Establishment identifies the appropriate Facilitators to contact is FFS. (may just be provisioned in CSE, with overriding option by AE, in this release?)
b. The Source EEP selects one or more Key Establishment Algorithm-Sets (keAlgSet) and Payload Security Algorithm-Set (psAlgSet).
NOTE: Multiple keAlgSets could be needed only in some (but not all) scenarios involving multiple Target EEPs.

The selection of Algorithm Sets could be influenced by

· The combinations of keAlgSets and psAlgSets supported by the Source EEP.
· Preferences configured to the Source EEP .
· The combinations of keAlgSets and psAlgSets supported by the Target EEP(s), which may have been either configured to the Source EEP or retrieved by the Source EEP from the Facilitators in (optional) step 3.a.
The choices of keAlgSet(s) and psAlgSet are somewhat dependent on each other; in particular, if the psAlgSet includes encryption and/or symmetric-key based integrity protection of the target data, then the keAlgSet(s) must include an algorithm for generating a secret key to be used for this protection. A high level overview of possible psAlgSet Options is found in clause 6.2.2.2.2.2 “ESF-S1 Payload Security Requirements”. A high level overview of possible keAlgSet options is found in clause 6.2.2.2.2.3 “ESF-S1 Key Establishment Requirements”.

c. The Source EEP applies the selected keAlgSet(s), which can include

· Proof of the Source EEP’s identity,

· Proof of the integrity of the selected keAlgSet(s) and psAlgSet, and

· Generation of keys for processing the target data.

d. (Optional) The Source EEP provides the Facilitator(s) with updated Short-term Key establishment parameters. This may include configuring access controls at the Facilitator to limit access only to the set of intended Target EEPs.
4. Source EEP Payload Security processing. The Source EEP applies the selected psAlgSet to the input payload using the key(s) provided by the Source EEP, resulting in the ESF-treated target data.

5. Source EEP Envelope Serialization: The Source EF serializes the keAlgSet(s), psAlgSet, key establishment parameters and ESF-treated target data into an envelope.
6. The envelope is obtained by the Target EEP(s). The Security Layer does not address how the Target EEP(s) obtain the envelope.

NOTE: The following discussion shows processing at one of the potentially multiple Target EEPs.
7. Target EEP Envelope Serialization processing: The Target EF extracts the keAlgSet(s), psAlgSet, key establishment parameters and ESF-treated target data from the received envelope.
8. Target EEP Key Establishment processing: In the case that there are multiple Key Establishment Algorithm Sets present, the Target EEP identifies a Key Establishment Algorithm Set that it expects to process successfully.

a. (Optional) The Target EEP could retrieve the Source EEP’s long-term and/or short-term parameters from the Facilitator(s). The Facilitator(s) could authorize access based on configured access controls.
b. The Target EEP applies the selected Key Establishment Algorithm Set, which can include

· Verifying the identity of Source EEP,

· Verifying the selected keAlgSet(s) and psAlgSet, and

· Generation of keys for processing the input payload.
9. Target EEP Payload Security processing : The Target EEP applies the selected psAlgSet to the secured payload using the established key(s), resulting in the verified target data.

10. The Target EEP outputs:
· The verified target data, and

· Source EEP’s identity.

6.2.2.4
ESF-Sm Processing Flow
The ESF-Sm reference model allows establishing multi-envelope sessions between a single Initiating EEP (analogous to a TLS/DTLS Client) and a single Terminating EEP (analogous to a TLS/DTLS Server).

An ESF-SM security session has two phases:

· ESF-Sm handshake phase: in which the Initiating EEP and Terminating EEP – optionally assisted by Facilitator(s), and under the influence of a security profile – accomplish the following:
· Negotiating a key establishment cryptographic algorithms and payload security cryptographic algorithms.
· Apply the negotiated key establishment cryptographic algorithms to
· Authenticate the Terminating EEP,
· (Optionally) Authenticate the Initiating EEP,
· Establish secret session keys to be used in for payload security.
A processing flow would depend on the handshake details, and the handshake details are beyond the scope of a high level description. For this reason, a processing flow is not provided.
· ESF-Sm payload security phase, in which the sending EEP (which can be the Initiating EEP and Terminating EEP) apply the negotiated payload security cryptographic algorithms transform the target data into ESF-treated target data which is then serialized in an envelope. At the receiving EEP, the ESF-treated target data is extracted from the envelope and the negotiated payload security cryptographic algorithms transform the ESF-treated target data into verified target data. Due to the simplicity of this processing, a processing flow diagram is not provided.
6.2.3 ESF Preparation Layer and ESF Integration Layer Processing
6.2.3.1
ESF Specifications for ESF Target Data Class 1

6.2.3.1.1
Profile for ESF Target Data Class 1

Table 6.2.3.1.1-1 “Profile for ESF Target Data Class 1” contains the profile for ESF Target Data Class 1.
	Aspect
	Description

	ESF Target Data
Class Identifier
	1

	Input item
	A request or response

	Target data
	A serialization of the entire request or response

	Treated Item
	A new encapsulating request or response whose Content parameter is the envelope produced by the ESF Security Layer. The Originator and Hosting CSE of the encapsulating message are the ESF End-Points for this message.

	EEP Constraints
	The present document allows an EEP to be the Originator or Hosting CSE of the input message or any other CSE on the oneM2M path between the Originator and Hosting CSE of the input message.

	Security Layer Constraints
	There can be only one Target EEP.

	Target Data-class specific parameters for ESF Policy
	Parameters for the encapsulating message (e.g. To, From)

Table 6.2.3.1.1-1 Profile for ESF Target Data Class 1
6.2.3.1.2
ESF Target Data Class 1 Processing at the Sending EEP
The following steps occur at a Sending EEP when applying this ESF Target Data Class to an outbound request or response

1. The EEP’s Preparation Function serializes the request or response into a binary data object.

2. The EEP’s Preparation Function passes to the EEPs Security Function

a. The applicable ESF Target Data Class identifier.

b. Target data set to the binary data object and

c. There is no additional data for this ESF Target Data Class.

3. The EEPs Security Function applies the applicable processing according to the security session type, generating an envelope.

NOTE: If ESF-Sm is applied, and the security session is not yet established, then the ESF-Sm handshake phase must be applied prior to transmitting any target data. Consequently, the first two outbound envelopes in this case will typically contain handshake phase key exchange parameters, and not the message.

4. The EEPs Security Function provides the envelope and applicable ESF Target Data Class identifier to the EEP’s Integration Function. The envelope is serialized as is XML or JSON.

5. The EEP’s Integration Function forms a request or response (according to if the protected message was a request or response) including the envelope in the content:

6. The EEP’s Integration Function passes the request or response to the next step in processing outbound messages.

6.2.3.1.3
ESF Target Data Class 1 Processing at the Receiving EEP
The following steps occur at a Receiving EEP when applying this ESF Target Data Class to an inbound request or response

1. The EEP’s Integration Layer parses the received message to identify the sending EEP and extract the envelope which is the Content parameter of the message. The envelope is serialized as is XML or JSON.

2. The EEP’s Integration Function passes to the EEPs Security Function

a. The applicable ESF Target Data Class identifier.

b. Envelope.

c. There is no additional data for this ESF Target Data Class.

3. The EEPs Security Function applies the applicable processing according to the security session type, generating a verified target data. This processing includes verification that the provided ESF Target Data Class identifier is correct.

NOTE: If ESF-Sm is applied, and the security session is not yet established, then the ESF-Sm handshake phase must be applied prior to transmitting any target data. Consequently, the first two inbound envelopes in this case will typically contain handshake phase key exchange parameters, and not the message.

4. The EEPs Security Function provides the verified target data and to the EEP’s Preparation Layer.

5. The EEP’s Preparation Function parses the binary data object to form the verified request or response.

6. The EEP’s Preparation Function passes the request or response to the next step in processing inbound messages.

6.2.3.2
ESF Specifications for ESF Target Data Class 2
6.2.3.2.1
Profile for ESF Target Data Class 2
Table 6.2.3.2.1-1 “Profile for ESF Target Data Class 2” contains the profile for ESF Target Data Class 2.
	Aspect
	Description

	ESF Target Data
Class Identifier
	2

	Input item
	A request or response

	Target data
	A serialization of the Content parameter of the input request or response

	Treated Item
	The input request or response with the original Content parameter replaced by the envelope produced by the ESF Security Layer.

	EEP Constraints
	The present document allows an EEP to be the Originator or Hosting CSE of the input request or response or any other CSE on the oneM2M path between the Originator and Hosting CSE of the input request or response.

	Security Layer Constraints
	There can be only one receiving EEP.

Table 6.2.3.2.1-1 Profile for ESF Target Data Class 2
6.2.3.2.2
ESF Target Data Class 2 Processing at the Sending EEP
The following steps occur at a Sending EEP when applying this ESF Target Data Class to an outbound request or response

7. The EEP’s Preparation Function extracts the Content parameter of the request or response, and serializes the Content parameter to form the target data.

8. The EEP’s Preparation Function passes to the EEPs Security Function

· The applicable ESF Target Data Class identifier.

· Target data, and

· There is no additional data for this ESF Target Data Class.

9. The EEPs Security Function applies the applicable processing according to the security session type, generating an envelope.

NOTE: If ESF-Sm is applied, and the security session is not yet established, then the ESF-Sm handshake phase must be applied prior to transmitting any target data. Consequently, the first two outbound envelopes in this case will typically contain handshake phase key exchange parameters, and not the message.

10. The EEPs Security Function provides the envelope and applicable ESF Target Data Class identifier to the EEP’s Integration Function. The envelope is serialized as is XML or JSON.

11. The EEP’s Integration Function forms the ESF-treated request or response from the input request or response by updating values of the following parameters

· Content: The original value is replaced with the envelope received from the ESF Security Function.

· Resource Type: replacing this with a reserved identifier for ESF-protected Content parameter.

12. The EEP’s Integration Function passes the ESF-treated request or response to the next step in processing outbound messages.

6.2.3.2.3
ESF Target Data Class 2 Processing at the Receiving EEP
The following steps occur at a Receiving EEP when applying this ESF Target Data Class to an inbound request or response

7. The EEP’s Integration Layer parses the received message to identify the sending EEP and extract

· Content: comprises the envelope. The envelope is serialized as is XML or JSON.

· Resource Type: a reserved identifier for protected requests and responses protected by ESF Target Data Class 2.

8. The EEP’s Integration Function passes to the EEPs Security Function

· The applicable ESF Target Data Class identifier.

· Envelope.

· There is no additional data for this ESF Target Data Class.

9. The EEPs Security Function applies the applicable processing according to the security session type, generating a verified target data. This processing includes verification that the provided ESF Target Data Class identifier is correct.

NOTE: If ESF-Sm is applied, and the security session is not yet established, then the ESF-Sm handshake phase must be applied prior to transmitting any target data. Consequently, the first two inbound envelopes in this case will typically contain handshake phase key exchange parameters, and not the message.

10. The EEPs Security Function provides the EEP’s Preparation Layer with

· Verified target data, comprising a serialization of the original value of the Content parameter.

· There is no additional data for this ESF Target Data Class

11. The EEP’s Preparation Function

a. Parses the target data to form the value of the verified Content parameter.

b. (If the Content parameter contains a resource) Determines the resource type of the verified Content parameter.

c. Forms the verified request or response by updating values of the following parameters

· Content: The value in the received request or response is replaced with the value received from the ESF Security Function in the target data.

· (if the verified Content parameter contains a resource) Resource Type: replacing this with the resource type of the resource in the verified Content parameter.
12. The EEP’s Preparation Function passes the verified request or response to the next step in processing inbound messages.

6.2.3.3
ESF Specifications for ESF Target Data Class 3
6.2.3.3.1
Profile for ESF Target Data Class 3
Table 6.2.3.3.1-1 “Profile for ESF Target Data Class 3” contains the profile for ESF Target Data Class 3.
	Aspect
	Description

	ESF Target Data
Class Identifier
	3

	Input item
	A <contentInstance> resource

	Target data
	A serialization of

· The content attribute in the input <contentInstance> resource.

· (Optionally) A contentInfo attribute if it is applicable to the input <contentInstance> resource, regardless of whether the contentInfo attribute is explicitly included in input <contentInstance> resource, or whether ontologyRef is inherited from the parent of the input <contentInstance> resource.

· (Optionally) An ontologyRef attribute applicable to the input <contentInstance> resource, regardless of whether the ontologyRef attribute is explicitly included in input <contentInstance> resource, or whether ontologyRef is inherited from the parent of the input <contentInstance> resource.

	Treated Item
	The input <contentInstance> resource, with the original content attribute value replaced by the envelope produced by the ESF Security Layer.

	EEP Constraints
	The EEPS could be any entities on the data path of the content attribute value - including CSEs, AEs or an entities in another system with which oneM2M interworks.

	Security Layer Constraints
	Multiple Target EEPs are allowed.

Table 6.2.3.3.1-1 Profile for ESF Target Data Class 3
6.2.3.3.2
ESF Target Data Class 3 Processing at the Sending EEP
The following steps occur at a Sending EEP when applying this ESF Target Data Class to an outbound <contentInstance> resource.

13. The EEP’s Preparation Function processes the outbound <contentInstance>

a. The EEP’s Preparation Function parses the outbound <contentInstance> the extract the attributes to be protected, which comprises:

· The content attribute.
· (Optionally) The contentInfo attribute.

· (Optionally) The ontologyRef attribute.

b. The EEP’s Preparation Function serializes these attributes to form the target data.

14. The EEP’s Preparation Function passes to the EEPs Security Function

· The applicable ESF Target Data Class identifier.

· Target data.

· There is no additional data for this ESF Target Data Class.

15. The EEPs Security Function applies the applicable processing according to the security session type, generating an ESF envelope.

NOTE: If ESF-Sm is applied, and the security session is not yet established, then the ESF-Sm handshake phase must be applied prior to transmitting any target data. Consequently, the first two outbound envelopes in this case will typically contain handshake phase key exchange parameters, and not the message.

16. The EEPs Security Function provides the envelope and applicable ESF Target Data Class identifier to the EEP’s Integration Function. The ESF envelope is serialized as in XML or JSON.

17. The EEP’s Integration Function forms the ESF-treated <contentInstance> from the input <contentInstance> by updating values of the following attributes

· content: The original value is replaced with the ESF envelope received from the ESF Security Function.

18. The EEP’s Integration Function passes the ESF-treated resource to the next step in processing outbound resources.

6.2.3.3.3
ESF Target Data Class 3 Processing at the Receiving EEP
The following steps occur at a Receiving EEP when applying this ESF Target Data Class to an inbound request or response

13. The EEP’s Integration Layer parses the received message to identify the sending EEP and extract

· content: comprising the ESF envelope received from the ESF Security Function.

14. The EEP’s Integration Function passes to the EEPs Security Function

· The applicable ESF Target Data Class identifier.

· Envelope.

· There is no additional data for this ESF Target Data Class.

15. The EEPs Security Function applies the applicable processing according to the security session type, generating a verified target data. This processing includes verification that the provided ESF Target Data Class identifier is correct.

NOTE: If ESF-Sm is applied, and the security session is not yet established, then the ESF-Sm handshake phase must be applied prior to transmitting any target data. Consequently, the first two inbound envelopes in this case will typically contain handshake phase key exchange parameters, and not the message.

16. The EEPs Security Function provides the EEP’s Preparation Layer with

· Verified target data, comprising a serialization of the original value of the content, (optionally) contentInfo and (Optionally) ontologyRef.

· There is no additional data for this ESF Target Data Class

17. The EEP’s Preparation Function

a. Parses the verified target data to form the verified values of content, (optionally) contentInfo and (Optionally) ontologyRef.

b. Forms the verified resource by updating values of the following attributes

· Content: The value in the received resource is replaced with the value of content received from the ESF Security Function in the target data.

· contentInfo: If the verified target data contains contentInfo, then this value replaces the value received in the verified target data.
· ontologyRef: If the verified target data contains ontologyRef, then this value replaces the value received in the verified target data.
18. The EEP’s Preparation Function passes the verified resource to the next step in processing inbound resources.

·
·

·

·
·
·
·
·

·
·
·
·
·
·

·
·
·
·
·
·
·

·
·
·
·
·

·
·

·
·
·
·
·

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

·
·

·
·
·

	
	

	
	

	
	

	
	

	
	

3.
·
·
·

4.
·
·

·
·
·

·
·

·
·

·

·

·
·

·
·

·
·

·
·

·
·
·
·

·
·

·
·

7
Available Options

7.1
Review of Existing Technology

7.1.1
Review of Object-Based Security Technology
7.1.1.1
Introduction to Object-Based Security Technology

NOTE: this clause borrows heavily from the introduction to [i.3].

Channel-based security technologies such as IPsec [i.15], Transport Layer Security (TLS) [i.12] and Datagram TLS (DTLS) [i.13] create a secure channel at the IP layer or transport layer over which data can flow. In protocols with application-layer intermediaries, channel-based security protocols would protect messages from attackers between intermediaries, but not from the intermediaries themselves.
In the present oneM2M security specifications, the only protection afforded by oneM2M messages is provided by the channel-based TLS or DTLS. Some of the use cases in clause 5 require protecting messages from CSEs acting as intermediaries, and the existing oneM2M security mechanisms cannot offer this protection. Additional technology is required.

Object-based security technologies (see definitions) embed data within “secure object” that can be safely handled by untrusted intermediaries in the scenarios discussed above. Clause 7.1.1 provides a review of well-known standardized object-based security technologies including

· Secure/Multipurpose Internet Mail Extensions (S/MIME) [i.17] was proposed as a mechanism for providing an email with end-to-end security protection in the presence of untrusted Mail Transfer Agents en route to its destination. S/MIME provides confidentiality, integrity, and data origin authentication. S/MIME assumes a hierarchical PKI. These specifications are discussed in clause 7.1.1.2.

· OpenPGP [i.16] provides security services similar to S/MIME. Open PGP supports both hierarchical PKIs (as used in S/MIME) and a decentralized PKI known as a “Web-of-Trust” [i.18]. OpenPGP is discussed in clause 7.1.1.3.

· The XML security specifications XML Signature [i.10] and XML Encryption [i.11] can be applied to any content type, with the result represented in an XML object. These mechanisms are used by several security token systems (e.g., Security Assertion Markup Language (SAML) [i.19), and the Common Alerting Protocol (CAP) emergency alerting format [i.20]. XML security discussed in clause 7.1.1.4.

· The IETF JSON Object Signing and Encryption (JOSE) working group [i.21] has been chartered to develop a secure object format based on JSON with roughly equivalent features to the XML security specifications in the preceding bullet. JSON Security is discussed in clause 7.1.1.5.

In addition to a high level description of the protocols, the following issues are considered:

oneM2M Protocol Binding support for natively identifying the object-based security protocol media type. Internet media types [i.22] are identified by a string, such as "application/xml", registered in the IANA Media Types registry [i.23]. All the above object-based security protocols use one of the registered media types. Note that the media types currently supported by oneM2M systems are defined in clause 6.7 of TS-0004 [i.9].

· HTTP [i.24]: HTTP natively supports identification of all registered media string-based identifiers, including the media type for the above object-based security protocols.

· CoAP [i.25]: CoAP In order to minimize the overhead of using the string-based media type identifiers, CoAP natively recognizes only the small set of Internet media types recorded in the "CoAP Content-Formats" sub-registry of the IANA "CoRE Parameters" registry (see [i.26]). Recognition of the object-based security protocol media type in CoAP is examined on a case by case basis.

· MQTT [i.27]: MQTT leaves identification of the media type to the application layer. For all choices of object-based security protocol, oneM2M would be required to specify how the object-based security protocol media type is identified when MQTT is used.

Formatting and Parsing Complexity: some of the above object-based security protocols include complex rules for formatting and parsing of messages. This is worth consideration, because application developers that lack the tools or motivation to handle complex rules are likely to avoid developing applications using such security protocols. Execution environments could provide function calls that apply complex formatting and/or parsing on behalf of AEs– thus reducing the burden on the application developers. However, it is unclear if the scope of oneM2M includes defining function calls. Consequently, it is unclear if the formatting and parsing complexity is a factor in making decisions. This review (clause 7.1.1) only reports on the formatting and parsing complexity; the review avoids drawing any recommendations based on the complexity.

Canonicalization: Consider a scenario where a signed object of some media type (e.g. XML) is parsed at an intermediary server, with the information later reconstructed same media type before being forwarded to another entity. For many media types, there are multiple legitimate equivalent serializations (representations) of the original signed object, so the second serialization of the object may differ slightly from the original serialization in the object. If the serializations differ, then a signature on the original serialization of the object would no longer apply for the second serialization– even though the serializations are logically equivalent. Consequently, an entity who receives the second serialization of the object cannot use the original signature to verify the origin of the object.

For example, in XML the nature of the whitespace may not convey any meaning – so the intermediary server may reconstruct XML with different whitespace to the original serialization. Similarly, the order of attributes in XML does not convey any meaning, so the intermediary server may reconstruct XML with attributes in a different order to the original serialization. In both cases, a signature on the original serialization of the object would no longer apply for the second serialization– even though the serializations are logically equivalent.

To address this issue, some media types define a canonical form that is uniquely and unambiguously representable in the environment where the signature is created and the environment where the signature will be verified. The process of producing the canonical form from a particular serialization is called canonicalization.
Canonicalization has the advantage that signatures can always be verified, even if the object gets parsed and reconstructed by an intermediary. This benefit does not come for free, since canonicalization can add to the complexity of formatting and parsing. Furthermore, if the original serialization of the object is always sent with the digital signature, then the complexity of canonicalization provides no technical benefit. Consequently, canonicalization can be an advantage in some scenarios and disadvantage in others.

In summary: canonicalization is required in scenarios where the object is parsed and reconstructed at an intermediate server. However, if objects are not parsed and reconstructed then canonicalization simply adds an un-necessary and complex step. This review (clause 7.1.1) only reports whether the object-based security technologies provide canonicalization; the review does not investigate which scenarios warrant canonicalization, and avoids drawing any recommendations based on the support for canonicalization.

7.1.1.2
Secure/Multipurpose Internet Mail Extensions (S/MIME)

7.1.1.2.1
High Level Description of S/MIME

NOTE: This description borrows heavily from the S/MIME specification [i.17].

S/MIME [i.17] (Secure/Multipurpose Internet Mail Extensions) provides a consistent way to send and receive secure MIME data. S/MIME provides authentication, message integrity and non-repudiation of origin (using digital signatures), and data confidentiality (using encryption). As a supplementary service, S/MIME provides for message compression.

S/MIME is not restricted to mail; it can be used with any transport mechanism that transports MIME data, such as HTTP or SIP. As such, S/MIME takes advantage of the object-based features of MIME and allows secure messages to be exchanged in mixed-transport systems.
S/MIME defines the creation and processing of a MIME body part that has been cryptographically enhanced according to the Cryptographic Message Syntax (CMS) [i.28]. CMS is used to digitally sign, digest, authenticate, or encrypt arbitrary message content. The CMS values are generated using ASN.1 [i.29], using BER-encoding (Basic Encoding Rules) [i.30].

7.1.1.2.2
Considerations regarding of S/MIME

7.1.1.2.2.1
CoAP identification of S/MIME media types
S/MIME [i.17] registers the internet media type identifiers “application/pkcs7-mime” and “application/pkcs7-signature” in the IANA Media Types registry [i.23].

At the time of writing, the S/MIME media types are not in the “CoAP Content-Formats” registry [i.26], so CoAP cannot natively identify the S/MIME media types. If oneM2M decides to use S/MIME, then oneM2M will need to specify how the CoAP binding indicates that S/MIME has been used.

7.1.1.2.2.2
Formatting, Parsing and Canonicalization Complexity for S/MIME

Recall that S/MIME uses CMS which in turn uses ASN.1 [i.29], with BER-encoding (Basic Encoding Rules) [i.30].
 [i.3] states the following opinion regarding the use of ASN.1
“In recent years, usage of ASN.1 has decreased (along with other binary encodings for general objects), while more applications have come to rely on text-based formats such as the Extensible Markup Language (XML) [W3C.REC-xml] or the JavaScript Object Notation (JSON) [RFC7159].

“Many current applications thus have much more robust support for processing objects in these text-based formats than ASN.1 objects; indeed, many lack the ability to process ASN.1 objects at all.”

S/MIME provides simple guidance for canonicalization of text. Otherwise, S/MIME does not impose any canonicalization rules, but requires that the original MIME entity is already canonicalized according to the media type and subtype of the original MIME entity. The complexity of this canonicalization then depends on the media type of the original MIME entity.

For example, if S/MIME is used to secure XML, then XML canonicalization must be applied (see clause 7.1.1.4.2.3). XML Security also requires canonicalization, so the overhead of canonicalization is the same where S/MIME or XML security is applied.
7.1.1.3
OpenPGP
7.1.1.3.1
High Level Description of OpenPGP
The OpenPGP message format specification [i.16] uses a combination of strong public-key and symmetric cryptography to provide security services for electronic communications and data storage. These services include confidentiality, key management, authentication, and digital signatures.
OpenPGP supports both hierarchical PKIs (as used with S/MIME) and a decentralized PKI known as a “Web-of-Trust”. The web-of-trust model is mostly useful for authenticating people, but has not gained significant momentum.
7.1.1.3.2
Considerations for OpenPGP

7.1.1.3.2.1
CoAP identification of the OpenPGP media type

MIME Security with OpenPGP [i.31] defines three content types in the IANA Media Types registry [i.23] for implementing security and privacy with OpenPGP: "application/pgp-encrypted", "application/pgp-signature" and "application/pgp-keys".

At the time of writing, the OpenPGP media types are not in the “CoAP Content-Formats” registry [i.26], so CoAP cannot natively identify the OpenPGP media types. If oneM2M decides to use OpenPGP, then oneM2M will need to specify how the CoAP binding indicates that OpenPGP has been used.
7.1.1.3.2.2
Formatting, Parsing and Canonicalization Complexity for OpenPGP
OpenPGP messages are ASCII radix-64 representations of binary data. The data elements have (type, length, value) format with registered types recorded at IANA Pretty Good Privacy (PGP) registry [i.32].

The opinion about binary encodings in clause 7.1.1.2.2.1 “Formatting and Parsing Complexity for S/MIME” would also be relevant to OpenPGP formatting and parsing.
OpenPGP provides simple guidance for canonicalization of text, and all other data is treated as binary data.
7.1.1.4
XML Security

7.1.1.4.1
High Level Description of XML Security
XML security specifications are generated by the W3C’s XML Security Working Group [i.33] in the form of “W3C recommendations”. The latest recommendations, published in in 2013, are described below - (the descriptions borrow heavily from the respective documents).

· XML Encryption Syntax and Processing Version 1.1 [i.11] specifies how to encrypt data and represent the result in XML. The result of encrypting data is an XML Encryption EncryptedData element that contains (via one of its children's content) or identifies (via a URI reference) the cipher data. The data may be in a variety of formats, including octet streams and other unstructured data, or structured data formats such as XML documents, an XML element, or XML element content.
· XML Signature Syntax and Processing Version 1.1 [i.10] provides integrity, message authentication, and/or signer authentication services for data of any type, whether located within the XML that includes the signature or elsewhere. An XML Signature may be applied to the content of one or more resources. Enveloped or enveloping signatures are over data within the same XML document as the signature; detached signatures are over data external to the signature element.
· XML Signature Properties [i.34] defines a namespace and three properties to be used in XML Signatures: a Profile Property (a URI) identifying how in the signature is to be used (e.g. constraining the choice of algorithms); a Role Property (a URI) specifying an application specific role for the signature; and an Identifier Property enabling use cases where a unique identifier needs to be associated with the signature.

NOTE: There are a variety of additional technical reports on “XML Security 2.0”, but these have status of “WG Notes”, and are not endorsed as “W3C Recommendations”.

XML Encryption and XML Signatures can be applied to provide desired combinations of confidentiality, integrity, message authentication, and/or signer authentication.
7.1.1.4.2
Considerations for XML Security
7.1.1.4.2.1
CoAP identification of the XML Security media type
The output of XML encryption and XML signatures are represented in XML. XML parsers processing the XML will be able to identify the XML encryption elements and XML signature elements. Consequently, an oneM2M Protocol binding can support transporting XML encryption and XML signatures provided the protocol can identify the XML media type.
XML uses the media type “application/xml” in the IANA Media Types registry [i.23].
CoAP identities the XML media type using the CoAP Content-Format ID “41” (see [i.26]).
7.1.1.4.2.2
Formatting, Parsing and Canonicalization Complexity for XML Security

XML formatting and parsing is relatively easy and well supported. However, the need for XML canonicalization [i.2] in XML Encryption and XML Signatures introduces significant complexity.

The JOSE use cases document [i.3] expresses this opinion on formatting and parsing complexity for XML Security:
In practice, however, XML-based secure object formats introduce similar levels of complexity to ASN.1 (e.g., due to the need for XML canonicalization), so developers that lack the tools or motivation to handle ASN.1 aren’t likely to use XML security either.”
This quote should be interpreted as an opinion, rather than technical fact, but it worthy of consideration.
7.1.1.4.2.3
Canonicalization and XML Security
Canonical XML is specified in recommendation [i.2]. XML encryption and XML Signature convert all XML to the Canonical XML prior to applying cryptographic processes. See clause 7.1.1.4.2.2 for discussion on the impact of canonicalization on formatting and parsing complexity for XML security.
7.1.1.5
JSON Security

7.1.1.5.1
High Level Description of JSON Security

The IETF JSON Object Signing and Encryption (JOSE) working group [21] has been chartered to develop a secure object format based on JSON. The JOSE working group has published the following documents:
· JOSE use cases and requirements. [i.3]. The use cases include security tokens, OAuth, OpenID Connect, XMPP, emergency alerting, constrained devices (including object security for CoAP).
· JSON Web Algorithms (JWA) [i.35] registers cryptographic algorithms and identifiers to be used with JOSE specifications.
· [i.36] JSON Web Key (JWK) defines JSON-based data structures that represent a cryptographic key (JWK) and a set of JWKs (JWK set).”

· [i.37] JSON Web Encryption (JWE) represents encrypted content using JSON based data structures. The JWE cryptographic mechanisms encrypt and provide integrity protection for an arbitrary sequence of octets.
· [i.38] JSON Web Signature (JWS) represents content secured with digital signatures or Message Authentication Codes (MACs) using JSON-based data structures. The JWS cryptographic mechanisms provide integrity protection for an arbitrary sequence of octets.”

The JOSE cookbook [i.21] provides a representative set of examples of protecting content using JOSE.

The secured objects produced using JOSE specifications can use either a JSON serialization or a compact, URL-safe text serialization (intended for space constrained environments such as HTTP Authorization headers and URI query parameters).
7.1.1.5.2
Considerations for JSON Security
7.1.1.5.2.1
CoAP identification of the JSON Security media type
The output of JWK, JWE and JWS can use a JSON serialization. JSON parsers processing the JSON will be able to identify the JWK, JWE and JWS elements. Consequently, an oneM2M Protocol binding can identify JWK, JWE and JWS provided the protocol can identify the JSON media type.
JSON uses the media type “application/json” in the IANA Media Types registry [i.23].
CoAP identities the JSON media type using the CoAP Content-Format ID “50” (see [i.26]).

7.1.1.5.2.2
Formatting, Parsing and Canonicalization Complexity for JSON Security
The formatting and parsing complexity of XML is comparable to the formatting and parsing complexity of JSON; formatting and parsing is relatively easy and well supported. JWK, JWE and JWS do not use canonicalization, which makes the formatting and parsing of JWK, JWE and JWS less complex than formatting and parsing for XML Security (which requires canonicalization).

7.2 Group Authentication

7.2.1 Group Authentication Solution 1
Figure 7.2.2-1 illustrates the sequence of events when using the group authentication solution 1 for the static group which corresponding to Clause 6.1.1. In this description, "Entity Ax" or "Entity Ay" corresponds to either a CSE or AE in a group, "Entity B" corresponds to MN-CSE, and "Entity C" corresponds to IN-CSE.

Credential Configuration: The Provisioned Credential for M2M Security Association Establishment (Kpsaxm, Kpsaym, Kpsami, Kpsaxi, and Kpsayi) and the corresponding Provisioned Credential for M2M Security Association Establishment Identifier, denoted KpsaxmId, KpsaymId, KpsamiId, KpsaxiId, and KpsayiId are provisioned to both entities either with pre-provisioning or remote provisioning.
NOTE 1: The provisioning (by definition) uses mechanisms not specified by oneM2M. The remote provisioning is performed thanks to Security Bootstrap Frameworks described in clause 7.3 in TS0003 [i.8].

NOTE 2: Entity Ax, Entity Ay, Entity B, and Entity C shall be configured with the information needed for the authentication and identification during the Inner/Outer Group Authentication and Group Security Association Handshake. For instance, Entity Ax is configured with Entity B identity (IdB) associated with the Provisioned Credential for M2M Security Association Establishment identifier KpsaxmId to establish security context by using Kpsaxm. Entity Ax is to use this identity IdB for Entity B authenticating using the related arguments. This identity is also used to route the (D)TLS exchange.
Inner Group Authentication:

· Each Entity Ax (or Ay) in a group and the Entity B perform a (D)TLS-PSK handshake [i.39] to establish a secure session:

Take Entity Ax as example:
· The "psk_identity" parameter [i.39] is set to the value of the Provisioned Credential for M2M Security Association Establishment identifier KpsaxmId between the Entity Ax and the Entity B.

· The "psk" parameter [i.39] is set to the value of the Provisioned Credential for M2M Security Association Establishment Kpsaxm between the Entity Ax and the Entity B.
· The Entity Ax and the Entity B authenticate each other by verifying Message Integrity Codes (MIC) which was generated using the symmetric key (Kpsaxm) to make mutual authentication.

NOTE 3: Each Entity in a group shall perform inner group authentication with the Entity B.
NOTE 4: This is just an example to use (D)TLS-PSK here, it is not limited to (D)TLS-PSK only.
Outer Group Authentication: Due to the successful Inner Group Authentication, Entity B could be on behalf of all entities in the group to make mutual authentication with the Entity C.

· The Entity B and Entity C perform a (D)TLS-PSK handshake [i.39] to establish a secure session:
· The "psk_identity" parameter [i.39] is set to the value of the Provisioned Credential for M2M Security Association Establishment identifier KpsamiId between the Entity B and the Entity C.

· The "psk" parameter [i.39] is set to the value of the Provisioned Credential for M2M Security Association Establishment Kpsami between the Entity B and the Entity C.
· The Entity B and Entity C authenticate each other by verifying Message Integrity Codes (MIC) which was generated using the symmetric key (Kpsami) to make mutual authentication. After that, each Entity in the group has carried out the authentication with the help of the Entity B.

· The Entity C generates the M2M Group Secure Connection Key for each Entity in the group. Especially, in the IN’s database, there is a mapping between the identifier of MN (e.g. IdB) and each Entity’s identifier (e.g. IdAx) in the group. For instance, Entity C generates Ksx for Entity Ax from the Provisioned Credential (Kpsaxi) between the Ax and C, a random number (Rand) and the identifier of Ax (IdAx). Moreover, Entity C sets the Group Secure Connection Key Identifier (KsxId) equal to KpsaxiId, and stores the M2M Group Secure Connection Key (Ksx) and the related Identifier (KsxId).

NOTE 5: The derivation of the M2M Group Secure Connection Key, e.g. Ksx := HMAC-SHA-256(Kpsaxi, “oneM2M Group Secure Connection Key derivation” || Enrolee-Ax-ID || Rand), where Kpsaxi is the value of the Provisioned Credential between the Enrolee Ax and the IN; Rand is a random number generated by the Entity C; Enrolee Ax’s CSE-ID or AE-ID (Enrolee-Ai-ID), which shall be encoded to an octet string according to UTF-8 encoding rules as specified in IETF RFC 3629 [i.40] and apply Normalization Form KC (NFKC) as specified in [i.41]; HMAC-SHA-256 is defined in RFC 2014 [i.42].
Group Security Association Handshake: The Group Security Association Handshake enables the establishment of the M2M Group Secure Connection Key (e.g. Ksx) and the associated Key Identifier (e.g. KsxId) shared between each Entity Ax (or Ay) in the group and the Entity C.

Take Entity Ax as example:

· Entity C sends the random number (Rand) to Entity B.

· Entity B forwards the Rand to the Entity Ax.
· Entity Ax generates the M2M Group Secure Connection Key (Ksx) from the Provisioned Credential (Kpsaxi) between the Entity Ax and the Entity C, the random number (Rand) and the identifier of Ai (IdA), sets the Group Secure Connection Key Identifier (KsxId) is KpsaxiId, and stores the M2M Group Secure Connection Key (Ksx) and the related Identifier (KsxId). After that, Entity Ax sends the Service Request Message to Entity B.

· Entity B forwards the Service Request Message to Entity C.

NOTE 6: The Service Request Message is sent by the entity in a given group when the entity requires the IN to provide the services.

· Upon the Service Request Message, Entity B forwards this message to IN.
NOTE 7: After each Entity in a group (e.g. Ax) sets up security association with IN using the same key (e.g. Ksx), each Entity could be seen as authenticated when the security association works, since the mutual authentication between each Entity (e.g. Ax) and the IN is fulfilled through the proof of possessing the M2M Group Secure Connection Key (e.g. Ksx).

[image: image4.emf]Ay B=MN-CSE C=IN-CSE

Credential Configuration

Ay approaches a TLS with B using TLS_PSK or

TLS_DHE_PSK ciphersuite (RFC4279):

Set TLS psk_parameter asKpsa

ym

Set TLS psk_identity as Kpsa

ym

Id

Ay and B make the mutual authentication by

using MICcalculated by Kpsa

ym

Outer Group Authentication

B on behalf of Ax, Ay... in the group to make the mutual

authentication with C by using MICcalculated by Kpsa

g

·

Generate Ks

x

from

Kpsa

xi

, RandandIdAx

·

Set Ks

x

Id = Kpsa

xi

Id

·

Store Ks

x

& Ks

x

Id

·

Generate Ks

y

from

Kpsa

yi

,Randand IdAy

·

Set Ks

y

Id = Kpsa

yi

Id

·

Store Ks

y

& Ks

y

Id

Group Security Association Handshake

·

Generate Ks

y

from Kpsa

yi

,

Rand and IdAj

·

Set Ks

y

Id = Kpsa

yi

Id

·

Store Ks

y

& Ks

y

Id

Rand

Service Request

Service Request

Parameter

Parameter

Generation of parameter

Mutual authentication is fulfilled through the proof of possessing Ks

y

Ax

Ax approaches a TLS with B using TLS_PSK or TLS_DHE_PSK ciphersuite (RFC4279):

Set TLS psk_parameter asKpsa

xm

Set TLS psk_identity as Kpsa

xm

Id

Ax and B make the mutual authentication by using MICcalculated by Kpsa

xm

Kpsa

xm

& Kpsa

xm

Id

are provisioned to Ax and B;

Kpsa

ym

& Kpsa

ym

Id

are provisioned to Ay and B;

Kpsa

mi

& Kpsa

mi

Id

are provisioned to B and C;

Kpsa

xi

& Kpsa

xi

Idare provisioned to Ax and C;

Kpsa

yi

& Kpsa

yi

Idare provisioned to Ay and C

Pre-provisioned or remotely provisioned:

Inner Group Authentication

Ax configured withIdBto be

associated with Kpsa

xm

Id;

Ax configured withIdCto be

associated with Kpsa

xi

Id;

Ay configured withIdBto be

associated with Kpsa

ym

Id;

Ayconfigured withIdCto be

associated with Kpsa

yi

Id;

B configured withIdAxto be associated with Kpsa

xm

Id;

B configured withIdAyto be associated with Kpsa

ym

Id;

B configured withIdCto be associated with Kpsa

mi

Id;

C configured withIdBto be associated with Kpsa

mi

Id;

C configured withIdAxto be associated with Kpsa

xi

Id;

C configured withIdAyto be associated with Kpsa

yi

Id

Communication of parameter

Mutual authentication

……

Group

…

…

…

…

·

Generate Ks

x

from Kpsa

xi

,

Rand and IdAi

·

Set Ks

x

Id = Kpsa

xi

Id

·

Store Ks

x

& Ks

x

Id

Rand

Service Request

Service Request

Mutual authentication is fulfilled through the proof of possessing Ks

x

Rand

B approaches a TLS with C using TLS_PSK or

TLS_DHE_PSK ciphersuite (RFC4279):

Set TLS psk_parameter as Kpsa

mi

Set TLS psk_identity asKpsa

mi

Id

…

…

Figure: 7.2.1-1: The sequence of events When using Group Authentication Solution 1
Editor’s note: 1) Credential Configuration part is corrected, Ax/Ay should be configured with IdC ; 2) the last part of this figure is re-organized to avoid confusion, ie. “Mutual authentication is fulfilled …” should be a remark rather than a message.

The benefits of using Group Authentication Solution 1 are twofold:

1) End to end security and privacy between individual M2M Device and M2M Server is protected even with a third party M2M Gateway standing in between.

Each device shares with the server a secret key Ksx after authentication, which is used to protect the end to end communication. These secret keys are unknown to the gateway and other devices in the group.

2) Number of messages the server and the gateway have to handle is decreased compared to the case where the gateway acts as a transparent proxy.

As illustrated in Figure 7.2.1-2, if group authentication solution 1 is used, to fulfil mutual authentication for all the n devices in the group, the server needs to handle n+1 incoming messages and only one outgoing message, the gateway needs to handle 2n+1 incoming messages and 2n+1 outgoing messages. If the gateway acts as a transparent proxy, the server needs to handle 2n incoming messages and n outgoing messages, the gateway needs to handle 3n incoming messages and 3n outgoing messages. As long as n>1, group authentication solution 1 can always leads to a message number deduction for both the server and the gateway.

[image: image5.emf]B=MN-CSE C=IN-CSE A

1,2, …, n

...

...

... ...

B=MN-CSE C=IN-CSE A

1,2, …, n

...

...

... ...

...

...

Incoming:n+1

Outgoing:1

Incoming:2n

Outgoing:n

Incoming:2n+1

Outgoing:2n+1

Incoming:3n

Outgoing:3n

(a) Group Authentication solution 1

(b) Gateway acting as transparent proxy

Figure: 7.2.1-2: Comparison of message-handling when using Group Authentication Solution 1
7.3
A Solution for providing security of data “at-rest”
7.3.1
General procedure for hosting and accessing secure data

The generic procedure for hosting and accessing secure data is illustrated in Figure 7.3.2-1 and described as follows:

[image: image6.emf]Originator

(AE)

M2M Trust

Enabler

Function (TEF)

Hosting

CSE

(HCSE)

6. Associate Credential-Id(s) with the protected data

3. Register Credential(s)

4.a. Generate Credential-Id(s)

4.b. Associate and store the credential(s) and Credential-Id(s)

5. Response (Credential-Id(s))

1.a. Generate data

1.b. Generate Credential(s) for securing data

1.c. Encrypt and / or integrity protect the data

8. Request to host protected data and Credential-Id(s)

9. Check Authorization and host the protected data

along with associated Credential-Id(s)

7. Security Association Establishment

10. Response (“Success”)

2. Security Association Establishment

Client

(AE)

12. Request to access data

14. Response (protected data and

Credential-Id(s))

13. Check authorization if Client is allowed to retrieve the

protected data

16. Request to obtain credential (Credential-Id(s))

17. Check for authorization based on the rules that were

established during the credential registration process

15. Security Association Establishment

18. Response (Credential(s))

19. Use the credential(s) in order to verify the

integrity / authenticity of the data and / or decrypt

the data

11. Security Association Establishment

Figure 7.3.2-1: Hosting and accessing secure data

Editor’s note: The above flow has to be further investigated.
1. The Originator of data (AE) would like to provide protection (integrity /authenticity and / or confidentiality) to the data that it generates and hosts onto a Hosting CSE.

a) Data is generated by an originator

b) It also generates appropriate credential(s) for protecting the data. Alternatively, the Originator may not generate the credential(s) but instead request credential(s) from a Credential Registry.

c) The originator then either encrypts, integrity protects or performs both to the data using the credential(s) that it generated

d) The data originator may optionally provide access control rule(s) associated with the credential(s)

2. The Originator establishes a secure communications channel with an M2M Trust Enabler Function (TEF)

3. The Originator then requests to register the credential(s) that it generated with the TEF along with optional access control rule(s), that are used to govern an entity’s access to the credentials

4. The TEF registers the credential(s)

a) The TEF generates or creates unique Credential-Id(s)

b) The TEF associates the Credential-Id(s) with respective credential(s) and stores them securely

c) The TEF sets an expiration to the credential registration

d) The TEF also associates access control rules to the credential(s) that were either provided by the originator or created by the TEF.

5. The TEF sends a response containing the associated Credential-Id(s) to the Originator

6. The Originator then associates the Credential-Id(s) with the respective protected data

7. The Originator establishes a secure communications channel with a Hosting CSE (HCSE)

8. The Originator sends a request to register and host the protected data along with the associated Credential-Id(s) with the HCSE.

9. The HCSE checks to ensure that the Originator is authorized to perform registration of protected data. If the Originator is deemed to be authorized then the HCSE registers and hosts the data along with the associated Credential-Id(s)

10. The HCSE sends a response indicating “Success”

11. A Client application (AE) that would like to access the secure data produced by an Orignator AE, performs a security association establishment process with the HCSE

12. The Client AE would like to retrieve the protected data that was created by the Originator AE and therefore sends a request to the HCSE

13. The HCSE checks to see if the Client AE is authorized to perform retrieval of the protected data

14. If the Client AE has been authorized then the HCSE sends the protected data along with the Credential-Id(s) associated with the protected data to the Client AE.

15. The Client AE establishes a secure communications channel with the TEF

16. The Client AE requests to retrieve the credential(s) by sending the respective Credential-Id(s) to the TEF

17. The TEF checks to see if the Client AE has been authorized to retrieve the credential(s) identified by the respective Credential-Id(s)

18. If the Client AE has been authorized then the TEF responds with the corresponding credential(a) using the secure channel

19. The Client AE uses the credential(s) in order to verify the integrity / authenticity and / or decrypt the data if it has been encrypted using appropriate credential(s)
It should be noted that the TEF function may be implemented as part of the CSE or as part of a centralized entity (e.g. MEFy)

7.3.2
Bootstrapped procedure for providing data security
7.3.2.1
Overall Description

This section provides detailed description on mechanisms that can be employed for providing security of data both “at-rest” and “in-transit” in an end-to-end manner. If an entity (e.g. AE) has a trust relationship with an M2M Trust Enabling Function (TEF), then that trust can be leveraged in order to generate credentials for integrity / authenticity and or confidentiality of data. Here, the term “data” is used in a generic manner may represent an oneM2M resource, which may be a system resource (e.g. <mgmtObj>) resource or application generated data or instances of application generated data (e.g. <contentInstance>).

7.3.2.2
Detailed Description

Figure 7.3.2.2-1 illustrates a message between entities involved in data generation, data hosting, and generating credentials for data security as well consumer of protected data. The functional roles associated with each entity is further described below:

· Originator (AE1):
· Has a trust relationship with a M2M Trust Enabler Function (TEF) and associated credentials

· Ability to generate data security-specific credentials based on a bootstrapping procedure with the TEF

· Ability to request registration of Credential-Id with a TEF and associated ACPs

· Generates protected (integrity and or encrypted) data or data instances (contentInstances) using the data-security-specific credentials

· Has a trust relationship with a Hosting (HCSE) and establish a secure communications channel with the HCSE
· Ability to request hosting of protected data onto a HCSE

· Hosting CSE (HCSE):
· Has a trust relationship with an Originator AE1 and also a separate trust relationship with Client application AE2 and associated credentials

· Ability to process request by Originator AE1 for hosting of protected data and the ability to host protect data and data instances.

· Ability to process a Retrieve request by a Client application AE2 for protected data or data instances

· Trust Enabler Function (TEF):
· Has a trust relationship with an Originator AE1 and also a separate trust relationship with Client application AE2 and associated credentials

· Ability to process request by Originator AE1 for performing a bootstrapping process and generate data-security-specific credentials.

· Ability to perform Credential-Id registration request from Originator AE1

· Ability to process a Retrieve request by a Client application AE2 for data-security-specific credential(s)

· Client (AE2):
· Has a trust relationship with a M2M Trust Enabler Function (TEF) and associated credentials

· Has a trust relationship with a HCSE and associated credentials in order to establish a secure connection with it.

· Ability to request a “Retrieve” operation on protected data hosted on a HCSE

· Ability to request “Retrieve” operation for credentials identified by a Credential-Id with a TEF

· Ability to verify authenticity / integrity of data or data instances and or the ability to decrypt the data or data instances obtained from HCSE using the credentials that were retrieved from TEF.

The detailed messaging steps are provided below:
0. The bootstrapping process described within TS-0003 (Release 1) specifications is further enhanced by using the bootstrapping process in order to derive “data security”-specific credentials. The shared credential KpmId / Kpm between an AE and a MEF or a TEF is used to generate session credentials KeId / Ke, as described in TS-0003 (Release 1). The credential Ke is then used to generate data security-specific credentials between the AE and the TEF. Similar mechanisms may be used if the bootstrapping process is used between an AE and CSE leveraging existing security association between AE and CSE. The security association identified by KpsaId / Kpsa as described in oneM2M TS-0003. The Kpsa is then used instead of Ke. Similarly, KmId / Km that is used for establishing security association between an AE and MAF may be used to generate data security credentials between AE and MAF. It must be noted that a more preferable approach is for the AE and TEF to generate the data security credentials.
1. A Salt that is a random value that is used as part of the key generation mechanism may have been shared during the bootstrapping process or may computed as a hash value of the initial communications between the AE and the TEF during the bootstrapping process. The Salt may be a cryptographic representation of the channel that is bound between AE1 and the TEF. The channel may be a secure connection established using TLS or DTLS. As part of the “Data Security Credential Generation” process, the AE1 (Enrolee) and the TEF (Enrollment Target) generates data security credentials using the Ke, (Ke_AE1-TEF refers the Ke that is associated between AE1 and TEF) as the master key in order to generate the data security master key, K_AE1_TEF_data_sec_master. Alternatively, if the target is a MAF, then the Km would be used as the master key for the generating the data security master key. An Example of data security Key Generation using RFC 5869 [i.43], where the Enrollee is AE and the Enrollment Target is TEF, is provided below:
K_AE1_TEF_data_sec_master = HMAC-Hash (Salt, Ke_AE1_TEF)

T(0) = empty string (zero length)

Once the K_AE1_TEF_data_sec_master has been generated it is then used for Key Expansion in order to generate unique data authenticity and data confidentiality keys. In some cases, only a single key is generated if the data authenticity as well confidentiality is provided by an algorithm such as the AEAD (e.g. AES-CCM or AES-GCM)

K_AE1_TEF_data_auth = T(1) = HMAC-Hash (K_AE1_TEF_data_sec_master, T(0) | “Data Authenticity and Integrity”| 0x01)

The K_AE1_TEF_data_auth key is used for providing data authenticity and data integrity and is referred to as data authenticity or data integrity key.

K_AE1_TEF_data_conf = T(2) = HMAC-Hash (K_AE1_TEF_data_sec_master, T(1)| “Data Confidentiality Key”|0x02)
The K_AE1_TEF_data_conf key is used for providing data confidentiality and is referred to as the data confidentiality key.
In certain cases, the Kpsa_AE1_CSE1 (which is the Kpsa between AE1 and CSE1) is used instead of Ke_AE1_TEF, and the process described above is used to generate unique keys for data security protection, namely, data authentication / integrity and data confidentiality. Kpsa is used if a CSE is used by the AE as the data security credential registry in place of a TEF.

In certain other cases, only a single session key, K_AE1_TEF_data_auth_conf that is generated from Ke or Kpsa or Kpm is used for providing both data authenticity as well as data confidentiality, when used with AEAD class of algorithms.

2. The TEF performs a similar process of key generation. The negotiation of the algorithm, key generation mechanisms, types and number of keys to be generated etc.. are assumed to have been performed during step 0, when the bootstrapping process was carried out between AE1 and TEF.
3. AE1 generates content / data, where each instance of the content / data may be protected by unique set of data authenticity and data confidentiality keys or all instances of the content is protected by a single data authenticity key and by a single data confidentiality key. An example key generation where only a single data authenticity and a data confidentiality key for a container that may contain multiple content instances is generated is shown below:
K_AE1_Container-x_data_auth = HMAC-Hash (K_AE1_TEF_data_auth, “Data Authenticity and Integrity”| “Container-x”| Nonce or creationTime) and

K_AE1_Container-x_data_conf = HMAC-Hash (K_AE1_TEF_data_conf, “Data Confidentiality”| “Container-x”| Nonce or creationTime)

Alternatively for each instances of content within a container, a unique set of keys may be generated:

K_AE1_ContentInstance-x_data_auth = HMAC-Hash (K_AE1_TEF_data_auth, “Data Authenticity and Integrity”| “Container-x”| Nonce or creationTime) and

K_AE1_ContentInstance-x_data_conf = HMAC-Hash (K_AE1_TEF_data_conf, “Data Confidentiality”| “ContentInstance”| Nonce or creationTime)

The content is encrypted and or integrity protected using the above generated keys. For encrypting the content a random IV may be generated by AE1 and uses it along with the encryption algorithm and the content (data) in order to generate the encrypted content (R1-EC, the encrypted resource).

If content instance are being encrypted separately, then each content instance has a unique confidentiality key and a new IV is generated each time an encryption process is carried out generating an encrypted content instance; therefore each content instance has an associated separate encrypted content instance.

For integrity protecting or adding authenticity to content / data, a random Nonce along with Time component is used in order to generate an Authentication Tag (AT) of the content.

If each content instance is being protected separately then each content instance has an associated AT. In the case of providing data authenticity in certain cases, it may be preferable to use a single key for generating each individual ATs.

The encrypted content may be represented as the modified oneM2M container or <contentInstance> resource as depicted in Figure 7.3.3.2-2. Alternatively, The encrypted content R1-EC that is created may be based upon the JSON Web Encryption (JWE) specified in [i.37], while the R1-AT that is created may be based upon the JSON Web Signature specified in [i.38]. The appropriate algorithms may be represented in the form as specified in the JSON Web Algorithms (JWA) standards [i.35].

As a general case, each key that is generated and used is associated with a unique Credential-Id. The Credential-Id may be generated by the AE1 or provided by the TEF to AE1. In certain cases, the Credential-Id may carry characteristics of the content id or content instance id and the type of credential. An example of a Credential-id may be of the form:

K_AE1_Container-x_data_conf-Id@TEF.com, which is associated with the key, K_AE1_Container-x_data_conf
4. AE1 registers the Credential-Id with the TEF. The AE1 Requests to create a Credential resource identified by a Credential-Id and associated Access Control Policies (ACP). The Credential-Id may alternatively be generated and provided by the TEF in order to avoid collision of Credential-Ids that are associated with the TEF. Collisions of Credential-Ids may be avoided if a hash is carried out of the generated id by AE1:

H1 = Hash (K_AE1_Container-x_data_conf-Id)

Credential-Id = H1@TEF.com

5. The TEF checks to ensure that AE1 has been authorized to register the credentials with the TEF also verifies the Credential-Id as well as optional Cryptographic Parameters (CryptoParams) that may have been included. The TEF then creates a <credential> resource type and populates it with the necessary attributes, such as, the <accessControlPolicy> values.

6. The TEF sends a Response that indicates successful creation of the Credential (<credential>) resource to AE1.
7. AE1 and HCSE establishes a secure connection as per TS-0003 security solutions using (D)TLS.

8. AE1 Requests to create a secure resource R1, that is encrypted (encrypted resource denoted as: R1-EC) and integrity protected using R1-AT. AE1 also provides the necessary CryptoParams, Credential-Id. The CryptoParams details the type of algorithm to be used, the length of the keys, mechanisms on how the protection is to be carried out etc. The Credential-Id may be part of the CryptoParams or may be sent as separate child resource associated with R1. AE1 also includes the associated ACPs. The ACP may be integrity protected.
9. HCSE verifies the request and checks to ensure that AE1 has been authorized to create a resource at HCSE
10. HCSE responds with a success message.
11. At some point a client (AE2) would like to retrieve R1. The AE2 and HCSE performs a mutual authentication and sets up a secure connection using (D)TLS.
12. AE2 sends a Request to “Retrieve” the resource R1, to HCSE. Mechanisms involved in discovering R1 is outside the scope and it is assumed that the AE2 is able to discover the location of a secure version of R1.
13. HCSE verifies the authorization of whether AE2 is allowed to perform a retrieve operation using the information within the ACP that was created by AE1.
14. The HCSE sends a Response containing the R1-EC, EC-AT as well as R1-CryptoParams. The R1-EC may be represented using e.g. JSON-based notation, JWE, while the EC-AT may be represented using JWS and the R1-CryptoParams may be represented using JWA. Alternatively, both the EC-AT and R1-EC may be represented as JWE especially if the algorithm used for encryption and integrity protection is based on AEAD algorithm (e.g. AES-GCM, AES-CCM). Alternatively, the encrypted content, R1-EC as well the R1-AT may be represented as an oneM2M resource along with the appropriate CryptoParams.
15. If the Credential-Id was included as part of the CryptoParams, AE2 extracts the Credential-Id from it.
16. The AE2 and TEF performs mutual authentication and sets up a secure connection using (D)TLS.
17. AE2 sends a Request message to the TEF in order to perform a retrieve operation by including the Credential-Id as the resource-id within the message. The Credential-Id may be sent using e.g. JSON-based notation such as JWK or using the oneM2M resource structure. The AE2 may also extract a Salt or Nonce from the CryptoParams that is associated with the resource R1 (data). AE2 may also send the Salt or Nonce along with the Credential-Id in order to retrieve resource-specific credentials.
18. TEF verifies authorization of AE2 based on the ACP that was created by the AE1 during the credential registration process in 2.
19. If AE2 is authorized to retrieve, then the TEF computes the resource-specific credentials sends the credentials over a secure channel to the AE2. In addition the TEF may also send usage info, on how the credentials may be used and the associated algorithms that are to be used. The AE2 may already have possession of the usage info that it obtained from the HCSE as part of the CryptoParams. However, in certain cases where a container may contain a number of contentInstance resources and each with its own encrypted contentInstance and authentication tags and associated credentials then the TEF may be able to provide additional guidance on how the credentials may be used in order to verify contentInstance integrity as well how it may be used to decrypt the contentInstances. If the Salt is sent by then the TEF may generate the:

K_AE1_TEF_data_sec_master, which is then provisioned to the AE2. The AE2 uses the K_AE1_TEF_data_sec_master in order to generate container-specific or contentInstance-specific credentials. The mechanisms to generate K_AE1_TEF_data_auth and K_AE1_TEF_data_conf and associated container or contentInstance-specific credentials may follow similar to the mechanisms detailed earlier.

Alternatively, the TEF may provision either K_AE1_TEF_data_auth and / or K_AE1_TEF_data_conf to the AE2, which then generates the container-specific or contentInstance-specific credentials. In other cases, the TEF may only provision just the container-specific or contentInstance-specific credential(s) to the AE2. The AE2 does not perform any key generation since it is provisioned with the keys and thereby limiting the AE2 from having cryptographic access to specific container or contentInstance(s). It should be noted that for each of the keys the associated Nonce(s) and or creation time associated with the container or content instances may have to be provided to the TEF. In certain cases, when the AE1 performs registration of the credential process in step 4, the AE1 may include the CryptoParams associated with the Credential-Id with the TEF.

From a performance and security perspective, the more preferred approach may be for the TEF to only provision the K_AE1_TEF_data_auth and / or K_AE1_TEF_data_conf to the AE2. It should be noted that all the credentials have an associated life-time associated with it. After the expiration of lifetime, new credentials may have to be generated.

20. Using the credentials AE2 verifies the integrity using R1-AT and decrypts R1 using the provisioned or generated container or contentInstance credentials.

[image: image7.emf]Originator

AE1

HCSE

12. Request (op:Retrieve; Res-id:R1)

Client

AE2

9. HCSE verifies the request and checks authorization of

AE1 before hosting the resource

13. Verifies Authorization of AE2

14. Response (Res-id=R1; Resource=EC-R1, R1-AT, R1-CryptoParams; Credential-Id)

15. Extracts the Credential-Id

17. Request (op:Retrieve; Res-id: Credential-Id;

Salt or Nonce and or CreationTime)

18. Verifies Authorization of AE2; Generates appropriate

Resource-specific credentials

19. Response (Res= Credential(s))

20. Uses the credentials to verify the authenticity /

integrity of data and decrypt the data

5. TEF authorizes the AE1 and creates the resource; optionally

verifies the AT. Registers the Credential-Id

6. Response (ok)

1. Share salt that is known to both TEF and AE1

Generate a master key for data security

K_AE1_TEF_data_sec_master; Perform Key

Expansion and generate keys according to RFC

5869 : K_AE1_TEF_data_conf,

K_AE1_TEF_data_auth

8. Request (op=cr; res-id=R1; fr:

AE1; to:/HCES/R1; Resource= (R1-

EC, R1-AT, R1-CryptoParams, R1-

Credential-Id; R1-ACP)

10. Response (success)

0. Mutually Authenticate and Bootstrap Credentials for Data Security

2. Share salt that is known to both TEF and AE1

Generate a master key for data security

K_AE1_TEF_data_sec_master; Perform Key

Expansion and generate keys according to RFC

5869: K_AE1_TEF_data_conf,

K_AE1_TEF_data_auth

3. Generate content / data; Generate data-

specific (content-specific) credential(s) and

Credential-Id and use the credential to protect

the data (encrypt and or integrity)

7. Security Association

Establishment Process

11. Security Association Establishment Process

16. Security Association Establishment Process

M2M Trust Enabler

Function (TEF)

Figure 7.3.2.2-1: Message flow depicting hosting and retrieval of protected content
An example of a protected <contentInstance> is depicted in Figure 7.3.2.2-2. The contentInstance has an encryptedContent as a child resource and associated cryptoParams, the cryptographic parameters that are to be used in order to be able to decrypt the contentInstance. In addition, an authenticationTag or digitalSignature resource and associated cryptoParams, the parameters that are to be used in order to be able to verify the authentication tag or digital signature are added to the existing contentInstance resource.

[image: image8.emf]<contentInstance>

contentSize

1

0..1

0..1

timeOfCreation

1

<cryptoParams>

<cryptoParams>

authenticationTag or DS

encryptedContent

Figure 7.3.2.2-2: Resource structure of a protected <contentInstance>
7.4
A Solution for providing End-to-End Message Authentication using Symmetric Key
7.4.1
End-to-End Security Credential(s) Generation Process
7.4.1.1
Overall Description

This section provides description on mechanisms that can be employed for generation of credential(s) that are to be used for end-to-end security. Based on security requirements associated with an Entity (e.g. AE), appropriate end-to-end security credentials may be generated.

7.4.1.2
Detailed Description

Table 7.4.1.2-1 illustrates the end-to-end security requirements that have been determined and provided by the entity (e.g. AE1) or determined based on a security profile associated with AE1. The table illustrates that AE1 provides or requires the following:

· End-to-End message authentication using a Message Integrity Code (MIC)

· Also provides for or requires the ability to verify the integrity of data in-transit

· End-to-End message confidentiality in transit and thereby also provides for end-to-end data confidentiality in-transit.

	Security Requirement
	End-to-End

	Message Originator Authenticity / Integrity
	Message Integrity Code (MIC): 256 bits

	Message Re-play protection
	Nonce / Random / Time Component

	Non-repudiation capability
	None

	Message Confidentiality
	Encryption: 256 bit encryption

	Confidentiality of Data in Transit
	Encryption: 256 bit encryption

	Confidentiality of Data at Rest
	None

	Integrity of Data in Transit
	Message Integrity Code (MIC): 256 bits

	Integrity of Data at Rest
	None

Table 7.4.1.2-1 End-to-End Security Requirements

Based on the higher-level requirements appropriate end-to-end credentials may be generated using either bootstrapping process (preferable approach) or by using pre-provisioned end-to-end credentials. Illustrated in Figure 7.4.1.2-1 is a high-level key generation process.

As part of the “Generation of End-to-End Key Generation” Phase, the enrolee and the enrolment target generates End-to-End credentials using the Kpsa as the master key in order to generate the End-to-End master key. If the enrolee is an AE, and the Enrolment Target is a CSE, then an end-to-end master credential, Ke2e_AE_CSE_master is generated. An Example of End-to-End Key Generation using RFC 5869 is provided below:

Ke2e_AE_CSE_master = HMAC-Hash (Salt, Kpsa_AE_CSE)

Using the generated end-to-end master key, the associated end-to-end message authentication and or end-to-end message confidentiality keys are generated in the following manner:

T(0) = empty string (zero length)

Ke2e_AE_CSE_msg_auth = T(1) = HMAC-Hash (Ke2e_AE_CSE_master, T(0) | “E2E Message Authentication Key”| 0x01)

Ke2e_AE_CSE_msg_conf = T(2) = HMAC-Hash (Ke2e_AE_CSE_master, T(1)| “E2E Message Confidentiality Key”|0x02)

This process is repeated by each Enrolee and associated Enrolment Target based on a unique Enrollee-EnrolmentTarget_Ke2e_master that is shared between the Enrolee and the Enrolment Target (e.g. AE and CSE specific end-to-end keys).

[image: image9.emf]Enrolment

Key

Generation

Bootstrap

Credential

Configuration

GBA-Based Remote Provisioning

Framework

(Enrolee= UE, MEF = GBA BSF)

Certificate-Based Remote Provisioning Framework

Bootstrap

Instruction

Configuration

Bootstrap

Enrolment

Handshake

Enrolee

Ke:=Ks, KeId:=B-

TID

UN specific

Pre-Provisioned Symmetric

Key Remote Provisioning

Framework

Ke,

KeId

Enrolment

Target ID

MEF

Enrolee (UE)

MEF (BSF)

KpmId

Kee, KeeId

Enrolee

MEF

Enrolee Cert+ (O) Chain

MEF Cert+ Chain

Enrolment

Phase

KeID (Clause 8.2.3), Salt, Content

Info (optional), Label (optional)

KeID

Km/Kpsa, (o) Enrolee’s assigned CSE-ID

or AE-ID, (in USS), Send Context info, label

for Key Extraction and Expansion

Communication of [parameters]

Mutual authentication

Key

[parameter] Internal generation of [parameters]

[parameter]

Ke:=Ks, KeId:=B-

TID

Ke,

KeId

Ke,

KeId

Ke,

KeId

Enrolee MEF/BSF

Derive Km/Kpsa (Ks..NAF) from Ke (Ks) and

Enrolment Target Identity

Enrolment

Target ID

In UNSP (in GBA USS):

Enrolment Target-ID

Enrolment Target

ID

Kpm, KpmId,

MEF URI

MEF – Enrolment Target authn is not shown

UE- BSF authn is out of scope. Providing

MEF URI (BSF URI) to UE is also out of

scope.

MAF-BSF authn is out of scope

Enrolee Private

Key, Enrolee

Cert +(O)Chain

MEF

Private Key, MEF

Cert +(O)Chain

Enrolment Target

ID, MEF URI, MEF

Trust Anchor Info

Enrolment Target-ID,

Enrolee Cert Info

Derive Km/Kpsa (Ks..NAF) from Ke (Ks) and

Enrolment Target Identity

Set KmId/KpsaId=KeId Set KmId/KpsaId=KeId

Mutual Authentication – details elsewhere

Enrolment Target

(MAF/ Enrolee B)

End-to-End Key Generation Phase

Derive Ke2e credential(s) from Kpsa / Km using

the Salt and Label by means of key extraction and

expansion as per RFC 5869

Derive Ke2e credential(s) from Kpsa / Km using

the Salt and Label by means of key extraction and

expansion as per RFC 5869

Figure: 7.4.1.2-1: End-to-End Key Generation Phase
An example list of generated keys illustrated in Table 7.4.1.2-2:
	Security
	Symmetric Keys Generated and Used
	Parameters

	Message Originator Authenticity / Integrity
	Ke2e_EntityA_EntityN_msg_auth
	None

	Message Re-play protection
	Ke2e_EntityA_EntityN_msg_auth
	Nonce / Time / Seq#

	Non-repudiation capability
	N/A
	N/A

	Message Confidentiality
	Ke2e_EntityA_EntityN_msg_conf
	IV

	Confidentiality of Data in Transit
	Ke2e_EntityA_EntityN_msg_conf
	IV

	Confidentiality of Data at Rest
	None
	None

	Integrity of Data in Transit
	Ke2e_EntityA_EntityN_msg_auth
	Nonce / Time / Seq#

	Integrity of Data at Rest
	None
	None

Table 7.4.1.2-2: Depicting example keys that generated and associated parameters
7.5
Proposal for determining detailed Security Requirements, Features and associated Algorithms
7.5.1
Security Determination Process
7.5.1.1
Overall Description

This section provides description on mechanisms that can be employed for determining the appropriate security requirements, features, and algorithms and associated credentials in order that the security mechanisms that are employed are adequate but at the same time efficient for the type of service offered by the entity and also does not drain valuable resources from the entity.

7.5.1.2
Detailed Description

Table 7.5.1.2-1 illustrates Entity Profile (EP) associated with an entity (e.g. AE1). The EP may be obtained or provided explicitly during the registration phase. It may be obtained as part of the M2M Subscription Profile associated with an entity. The EP provides a very high-level security requirement of the Entity. It may be used to derive and generate a more granular security requirement as illustrated in Figure 7.5.1.3-4. However, since the profile of the entity does not provide details of the device, the selection of the features may not be appropriate from a performance perspective.

	Entity Profile
	Values

	Class of Service
	Healthcare

	Type of Service
	Real-time

	Impact
	Critical (Life and Limb)

	Security Level
	High

Table 7.5.1.2-1 Entity Profile of an Entity (e.g. AE1)

An example Device Profile (DP) is illustrated in Table 7.5.1.2-2. Using the DP as well as the EP, a more appropriate security requirements and features may be generated. So, a low-powered, low-memory device that only provides a service that requires “low” Security, then the security function(s), the algorithms selected and the key sizes may be selected appropriately. E.g. the message authentication mechanism selected may be HMAC-SHA1 with 160 bit keys whereas an entity with more processing and memory and requiring a higher security would be provisioned with 256 bit keys that may be used with HMAC-SHA2 mechanism.
	Device Capability
	Values

	Processing Capability
	900 MHz

	RAM
	500 Kb

	Flash
	1MB

	Battery
	5.0 Micro-W/MHz

	Wireless Capability
	Bluetooth, WiFi

	Sleep Mode
	Sleep / Deep-Sleep

	Secure Environment
	Yes

	OS / version
	Android / Kitkat

Table 7.5.1.2-2 Device Profile of an Entity (e.g. AE1)
An example Security Profile (SP) is illustrated in Table 7.5.1.2-3. Even if both the EP and DP are available, in certain cases, it may not be enough to determine, for example, whether end-to-end security is required or if data at-rest security is required or not. In such cases, it would be preferable to be provided with an SP.
	Security Requirement
	Within Security domain (at HCSE or RCSE)
	End-to-End

	Message Originator Authenticity / Integrity
	High
	Very High

	Message Re-play protection
	High
	Very High

	Non-repudiation capability
	Low
	Low

	Message Confidentiality
	Medium
	Medium

	Data Confidentiality in Transit
	High
	High

	Data Confidentiality at Rest
	Medium
	High

	Data Integrity in Transit
	High
	Very High

	Data Integrity at Rest
	Medium
	Very High

	Service Availability
	High
	Very High

	Data Availability
	High
	Very High

Table 7.5.1.2-3 Security Profile of an Entity (e.g. AE1)

An example security features that have been determined based upon the information provided in the SP, DP and EP is illustrated in Table 7.5.1.2-4.
	Entity ID
	Security Features
	Within Security Domain
	End-to-End

	
	
	Algorithms
	Sizes
	Protocol(s)
	Algorithms
	Sizes

	AE1
	Message Originator Authenticity / Integrity
	HMAC-SHA-2
	256 / 512
	(D)TLS, JWS
	HMAC-SHA-2
	256 / 512

	
	Message Replay Protection
	Nonce
	256
	N/A
	Timestamp / Nonce + Sequence Number
	256 bits

	
	Non-Repudiation
	None
	
	N/A
	None
	

	
	Message Confidentiality
	AES
	112
	(D)TLS
	AES
	192

	
	Confidentiality of Data in Transit
	AES
	192
	(D)TLS, JWE
	AES
	192

	
	Confidentiality of Data at Rest
	AES
	256
	N/A
	AES
	256

	
	Integrity of Data in Transit
	HMAC-SHA-2
	256
	(D)TLS, JWS
	HMAC-SHA-2
	256

	
	Integrity of Data at Rest
	HMAC-SHA-512
	512
	N/A
	HMAC-SHA-512
	512

	
	Authentication Mechanism
	Symmetric Key
	256
	(D)TLS
	Symmetric Key
	256

	
	Authentication Process
	Direct
	
	
	
	

	
	Presence of Secure Element
	YES
	
	
	
	

Table 7.5.1.2-4: An example of detailed security features determined based on SP, EP and DP
-----------------------End of change---

�@Phil, please:

check the modifications and remarks in clause 6.2 and clause 7.4;

try to remove the editor’s notes you put there

�

�

�@Phil

�Delete this clause

�Need double check

�Need double check

© 2016 oneM2M Partners
 Page 1 (of 46)

[image: image10.png]_1508700259.vsd
sending ESF End-Point (EEP)

Verified Target Data

receiving ESF End-Point (EEP)

ESF Security processing

ESF Integration processing

ESF Security Layer

ESF Treated Item (Request, Response or Resource)

ESF Integration processing

ESF Treated Item

ESF Security processing

ESF Treated Item (Request, Response or Resource)

Verified Input Item (Request, Response or Resource)

Envelope

Integration Layer

Input Item (Request, Response or Resource),

ESF Preparation processing

Target Data

ESF Preparation processing

ESF Preparation Layer

Input Item

Envelope

_1518265373.vsd
B=MN-CSE

C=IN-CSE

A1,2, …, n

...

...

...

B=MN-CSE

C=IN-CSE

A1,2, …, n

...

...

...

...

...

...

...

Incoming:n+1
Outgoing:1

Incoming:2n
Outgoing:n

Incoming:2n+1
Outgoing:2n+1

Incoming:3n
Outgoing:3n

(a) Group Authentication solution 1

(b) Gateway acting as transparent proxy

_1519654772.vsd
Ay

B=MN-CSE

C=IN-CSE

Credential Configuration

……

Communication of parameter

Ay approaches a TLS with B using TLS_PSK or TLS_DHE_PSK ciphersuite (RFC4279):
Set TLS psk_parameter as Kpsaym
Set TLS psk_identity as KpsaymId

Ay and B make the mutual authentication by using MIC calculated by Kpsaym

Outer Group Authentication

B approaches a TLS with C using TLS_PSK or TLS_DHE_PSK ciphersuite (RFC4279):
Set TLS psk_parameter as Kpsami
Set TLS psk_identity as KpsamiId

B on behalf of Ax, Ay... in the group to make the mutual authentication with C by using MIC calculated by Kpsag

Ax

Generate Ksx from Kpsaxi, Rand and IdAx
Set KsxId = KpsaxiId
Store Ksx & KsxId

Generate Ksy from Kpsayi, Rand and IdAy
Set KsyId = KpsayiId
Store Ksy & KsyId

Group Security Association Handshake

…

…

Generate Ksy from Kpsayi, Rand and IdAj
Set KsyId = KpsayiId
Store Ksy & KsyId

Rand

Service Request

Service Request

Mutual authentication is fulfilled through the proof of possessing Ksy

Parameter

…

Parameter

Generation of parameter

Generate Ksx from Kpsaxi, Rand and IdAi
Set KsxId = KpsaxiId
Store Ksx & KsxId

Inner Group Authentication

Ax approaches a TLS with B using TLS_PSK or TLS_DHE_PSK ciphersuite (RFC4279):
Set TLS psk_parameter as Kpsaxm
Set TLS psk_identity as KpsaxmId

Ax and B make the mutual authentication by using MIC calculated by Kpsaxm

 Rand

Service Request

Service Request

Mutual authentication is fulfilled through the proof of possessing Ksx

Rand

Mutual authentication

……

Kpsaxm& KpsaxmId
 are provisioned to Ax and B;

Kpsaym & KpsaymId
are provisioned to Ay and B;

Kpsami & KpsamiId
are provisioned to B and C;

Kpsaxi & KpsaxiId are provisioned to Ax and C;
Kpsayi & KpsayiId are provisioned to Ay and C

Pre-provisioned or remotely provisioned:

Ax configured with IdB to be associated with KpsaxmId;
Ax configured with IdC to be associated with KpsaxiId;

Ay configured with IdB to be associated with KpsaymId;
Ay configured with IdC to be associated with KpsayiId;

B configured with IdAx to be associated with KpsaxmId;
B configured with IdAy to be associated with KpsaymId;
B configured with IdC to be associated with KpsamiId;

C configured with IdB to be associated with KpsamiId;
C configured with IdAx to be associated with KpsaxiId;
C configured with IdAy to be associated with KpsayiId

Group

…

_1512393844.vsd
ESF Security Layer Processing

Facilitator(s)
E.g. TEF, MEF, MAF, MN-CSE

Source ESF End-Point

1.a (o) Long term Target EEP Params.  (E.g. keAlgSets, psAlgSets, certs, security profile)

Store parameters

4. Apply psAlgSet to target data using established keys, producing ESF-treated target data

3.a (o) Retrieve Target EEP Parameters

Target ESF End-Point

3.b Select keAlgSet & psAlgSet

9 Apply psAlgSet to ESF-treated target data using established keys, producing ESF-treated target data

1.a (o) Long-term Source EEP Params.
(E.g. keAlgSets, psAlgSets, certs, security profile)

1.b (o) Short-term Target EEP params
(E.g. random values, short term secrets)

3.c Apply keAlgSet for source authentication, AlgSet integrity & key establishment

3.d (o) Short-term Source EEP Params
(E.g. random values, short term secrets)

2. Target data,  (o) Target data security profile, Target EEP Identity(ies)

5. Serialize AlgSets, key params and secured payload in envelope

10. verified target data,  Source EEP Identity

7. Extract AlgSets, key params and ESF-treated target data from envelope

6. Security Layer does not address how envelope gets to Target

8.a (o) Retrieve Source EEP Parameters

Store parameters

8.b Apply keAlgSet to obtain source verification, AlgSet verification & key establishment

1.b (o) Short-term Source EEP params
(E.g. random values, short term secrets)

ESF Security Layer Processing

Originator
(AE)
M2M Trust Enabler Function (TEF)
Hosting CSE (HCSE)

6. Associate Credential-Id(s) with the protected data
3. Register Credential(s)
4.a. Generate Credential-Id(s)
4.b. Associate and store the credential(s) and Credential-Id(s)

5. Response (Credential-Id(s))
1.a. Generate data
1.b. Generate Credential(s) for securing data
1.c. Encrypt and / or integrity protect the data

8. Request to host protected data and Credential-Id(s)
9. Check Authorization and host the protected data along with associated Credential-Id(s)

7. Security Association Establishment

10. Response (“Success”)

2. Security Association Establishment
Client (AE)

12. Request to access data

14. Response (protected data and
Credential-Id(s))
13. Check authorization if Client is allowed to retrieve the protected data

16. Request to obtain credential (Credential-Id(s))
17. Check for authorization based on the rules that were established during the credential registration process

15. Security Association Establishment
18. Response (Credential(s))

19. Use the credential(s) in order to verify the integrity / authenticity of the data and / or decrypt the data

11. Security Association Establishment

Originator AE1
HCSE

12. Request (op:Retrieve; Res-id:R1)
Client AE2

9. HCSE verifies the request and checks authorization of AE1 before hosting the resource
13. Verifies Authorization of AE2
14. Response (Res-id=R1; Resource=EC-R1, R1-AT, R1-CryptoParams; Credential-Id)
15. Extracts the Credential-Id

17. Request (op:Retrieve; Res-id: Credential-Id; Salt or Nonce and or CreationTime)
18. Verifies Authorization of AE2; Generates appropriate Resource-specific credentials
19. Response (Res= Credential(s))
20. Uses the credentials to verify the authenticity / integrity of data and decrypt the data
4. Request (op=cr; res-id=; Resource= (R1-Credential-Id; ACP)
5. TEF authorizes the AE1 and creates the resource; optionally verifies the AT. Registers the Credential-Id
6. Response (ok)
1. Share salt that is known to both TEF and AE1
Generate a master key for data security K_AE1_TEF_data_sec_master; Perform Key Expansion and generate keys according to RFC 5869 : K_AE1_TEF_data_conf, K_AE1_TEF_data_auth
8. Request (op=cr; res-id=R1; fr: AE1; to:/HCES/R1; Resource= (R1-EC, R1-AT, R1-CryptoParams, R1-Credential-Id; R1-ACP)
10. Response (success)
0. Mutually Authenticate and Bootstrap Credentials for Data Security
2. Share salt that is known to both TEF and AE1
Generate a master key for data security K_AE1_TEF_data_sec_master; Perform Key Expansion and generate keys according to RFC 5869: K_AE1_TEF_data_conf, K_AE1_TEF_data_auth
3. Generate content / data; Generate data-specific (content-specific) credential(s) and Credential-Id and use the credential to protect the data (encrypt and or integrity)
7. Security Association Establishment Process
11. Security Association Establishment Process
16. Security Association Establishment Process
M2M Trust Enabler Function (TEF)

Enrolment
Key
Generation
Bootstrap
Credential
Configuration
GBA-Based Remote Provisioning Framework  (Enrolee= UE, MEF = GBA BSF)
Certificate-Based Remote Provisioning Framework
Bootstrap
Instruction
Configuration
Bootstrap
Enrolment
Handshake
Enrolee
Ke:=Ks, KeId:=B-TID
UN specific
Pre-Provisioned Symmetric Key Remote Provisioning Framework
Ke, KeId
Enrolment Target ID
MEF
Enrolee (UE)
MEF (BSF)
KpmId
Kee, KeeId
Enrolee
MEF
Enrolee Cert+ (O) Chain
MEF Cert+ Chain
Enrolment
Phase
KeID (Clause 8.2.3), Salt, Content Info (optional), Label (optional)
KeID
Km/Kpsa, (o) Enrolee’s assigned CSE-ID or AE-ID, (in USS), Send Context info, label for Key Extraction and Expansion
Communication of [parameters]
Mutual authentication
Key
[parameter]
Internal generation of [parameters]
[parameter]
Ke:=Ks, KeId:=B-TID
Ke, KeId
Ke, KeId
Ke, KeId
Enrolee
MEF/BSF
Derive Km/Kpsa (Ks..NAF) from Ke (Ks) and Enrolment Target Identity
Enrolment Target ID
In UNSP (in GBA USS): Enrolment Target-ID
Enrolment Target ID
Kpm, KpmId, MEF URI
MEF – Enrolment Target authn is not shown
UE- BSF authn is out of scope. Providing MEF URI (BSF URI) to UE is also out of scope.
MAF-BSF authn is out of scope
Enrolee Private Key, Enrolee Cert +(O)Chain
MEF  Private Key, MEF Cert +(O)Chain
Enrolment Target ID, MEF URI, MEF Trust Anchor Info
Enrolment Target-ID, Enrolee Cert Info
Derive Km/Kpsa (Ks..NAF) from Ke (Ks) and Enrolment Target Identity
Set KmId/KpsaId=KeId
Set KmId/KpsaId=KeId
Mutual Authentication – details elsewhere
Enrolment Target (MAF/ Enrolee B)
End-to-End Key Generation Phase
Derive Ke2e credential(s) from Kpsa / Km using the Salt and Label by means of key extraction and expansion as per RFC 5869
Derive Ke2e credential(s) from Kpsa / Km using the Salt and Label by means of key extraction and expansion as per RFC 5869

<contentInstance>
contentSize
1
0..1
0..1
timeOfCreation
1
<cryptoParams>
<cryptoParams>
authenticationTag or DS
encryptedContent

_1480488742.vsd
.
.
.

Group

Mcc

ASN-AE

ASN

Mcc

ASN-CSE

Mcc

Mca

ADN-AE

ADN

ADN-AE

ADN

ASN-AE

MN-AE

MN-CSE

Mca

MN

IN-AE

IN-CSE

Mca

IN

ASN-CSE

.
.
.

Group

Mca

ASN

ASN-AE

ASN-CSE

Mca

ASN

MN-AE

MN-CSE

Mca

MN

Mcc

Mca

Mcc

MN

MN

ADN-AE

ADN

Group

.
.
.

MN-AE

MN-CSE

Mca

MN

Mca

Mca

Mcc

