	Doc# SEC-2016-0189R01-CR_TS-0003_R2_inlineSimpleACP
Change Request
	[image: image6.png]

	

	CHANGE REQUEST

	Meeting:*
	SEC 26

	Source:*
	Phil Hawkes, Qualcomm, phawkes@qti.qualcomm.com
Wolfgang Granzow, Qualcomm, wgranzow@qti.qualcomm.com

Josef Blanz, Qualcomm, jblanz@qti.qualcomm.com

	Date:*
	2016-12-02

	Contact:*
	As above

	Reason for Change/s:*
	This CR proposes adding an inlineSimpleACP attribute to those resources which already include the accessControlPolicyIDs attribute, as a simple complement to authorization provided by <accessControlPolicy> resources.

	CR against: Release*
	2

	CR against: WI*
	 FORMCHECKBOX
 Active WI-0016
 FORMCHECKBOX
 MNT Maintenance / < Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0003 and 2.5.0

	Clauses/Sub Clauses*
	7.1.1, 7.1.3, 7.1.4, 7.1.5, 7.3.2.2

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 FORMCHECKBOX
 Change to existing feature or functionality
 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO
This CR is a mirror CR? YES FORMCHECKBOX
 if YES, please indicate the document number of the original CR: <Document Number) : NO FORMCHECKBOX

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction
The use of <accessControlPolicy> resources provides great flexibility in defining access control, but have been found to be difficult to use in practice. For example, when a CSE or AE creates a <remoteCSE> or <AE> resource during registration, then it is not clear what value should be assigned to accessControlPolicyIDs attribute for those resources. Anecdotal evidence indicates that implementers are designing work-arounds. Furthermore, correct use of ACPs is difficult without in-depth understanding of how ACPs were intended to use.

This CR proposes adding an optional inlineSimpleACP attribute to those resources which already include the accessControlPolicyIDs attribute.

Note: Further Privileges related to Subscription and Notification are being investigated.

Corresponding updates to TS-0001 "Functional Architecture", TS-0004 "Service Layer Core Protocol" and TS-00011 "Common Terminology", are also being drafted.

-------------Start of Change 1: Apply changes to clause 7.1------------------
7.1
Access Control Mechanism

7.1.1
General Description

The M2M authorization procedure controls access to resources and services hosted by CSEs and AEs. The authorization procedure requires that the originator of the resource access request message has been identified to the Authentication Function, and originator and receiver are mutually authenticated with each other.
The resource addressed in a request message shall have an associated accessControlPolicyIDs attribute (either included explicitly as an attribute of the resource addressed in the request message, implied from the parent of the resource, or set fixed by the system, see clause 9.6.1 of oneM2M TS-0001 [1]), and/or an inlineSimpleACP attribute. The accessControlPolicyIDs attribute contains a list of identifiers of <accessControlPolicy> resources applicable to the resource addressed in the request message.
The overall structure of <accessControlPolicy> resources is described in clause 9.6.2 "Resource Type accessControlPolicy" of oneM2M TS-0001 [1]).

Each of these <accessControlPolicy> resources include privileges and selfPrivileges attributes, which comprise the information, denoted as access control rules in the present document, that is evaluated against the parameters associated with the request message to obtain the access decision.

Figure 7.1.1-1 illustrates the relation between <accessControlPolicy> resource instances (ACP) and the instances of the protected resources, denoted Resource_1 to Resource_N.

[image: image1]
Figure 7.1.1-1: Relation between Resource Instances and Access Control Policies

Access requests to ACP's itself are evaluated against the selfPrivileges attribute of that ACP. Access requests to instances of all other resource types, are evaluated against the inlineSimpleACP attribute (if present) and the privileges attributes of the ACP set associated with the targeted resource (if any), with the following exceptions:
· Update Requests which add, remove or change the accessControlPolicyIDs, inlineSimpleACP and dynamicAuthorizationConsultationIDs attributes: such requests shall be evaluated against the selfPrivileges of the ACP set associated with the targeted resource (if any) and the inlineSimpleACP attribute (if present).

For requests to <accessControlPolicy> resource type, authorization is granted if the request is evaluated to "Permit" for at least one selfPrivileges attribute. For other resource types, authorization is granted if the request is evaluated to "Permit" for at least one privileges attribute.
The privileges and selfPrivileges defined in the accessControlPolicy resource determine which request originator is allowed to access the resource containing this attribute, for which specific operation (i.e. Create, Retrieve, Update, Delete, etc.) and for which specific context constraints (i.e. constraints regarding access time, originator's IP address and originator's location). The inlineSimpleACP is designed to be simple, and provides less flexibility than an <accessControlPolicy> resource by removing context constraints and associating originators with pre-defined sets of authorized operations.
The access control approach specified here conforms to the concept of Attribute Based Access Control (ABAC) as defined in [i.12].

The policies defined in the <accessControlPolicy> resources are enforced by an access control mechanism which employs the authorization logical architecture outlined in clause 6.2.2.

The access control mechanism assembles the information needed to render the access decision which consists of:

· Information included in the resource access request message as defined in clause 7.1.2 (table 7.1.2‑1).
· Contextual information as defined in clause 7.1.2 (table 7.1.2-2).
· Tokens (if any) associated with the resource access request.
· The policies governing the access as defined in clause 7.1.3.

7.1.2
Parameters of the Request message

This clause specifies the parameters of a request message which are evaluated by the access control mechanism.
The data types applicable to these parameters are defined in clause 6.4 of oneM2M TS-0004 [4].

The parameters are listed in table 7.1.2-1.

For case where an AE initiates a new registration request to a CSE and has no preference for an assigned AE-ID value, the fr parameter shall not be sent in the request. All other requests shall have the fr parameter present in the request.

Table 7.1.2-1: Parameters indicated in the request message

	Parameter
	Description
	Mandatory/Optional
	Usage in access control mechanism

	to
	URI of target resource
	M
	Selection of inlineSimpleACP and <accessControlPolicy> resources associated with the target resource

	fr
	Identifier representing the originator of the request
	M (see Note)
	Evaluated against accessControlOriginators in inlineSimpleACP attribute, and the privileges and selfPrivileges attributes in <accessControlPolicy> resources

	role
	Role of the originator
	O
	Evaluated against accessControlOriginators in inlineSimpleACP attribute, and the privileges and selfPrivileges attributes in <accessControlPolicy> resources

	op
	Requested operation
	M
	Evaluated against accessControlOperations in inlineSimpleACP attribute, and the privileges and selfPrivileges attributes in identified <accessControlPolicy> resources

	fc
	filterUsage condition tag in Filter criteria
	O
	Differentiation between Retrieve and Discovery operations

	Tokens

ESData-protected Tokens

O

Contains authorization information (e.g. Role-IDs) to be used in the decision for the request

Token IDs

tokenIDs or Local-Token-ID

O

Identifies Tokens containing authorization information (e.g. Role-IDs) to be used in the decision for the request

NOTE:
From field is Mandatory in all requests except for AE registration procedure where it is optional.

Table 7.1.2-2 lists the context parameters associated with a request message which are evaluated by the access control mechanism. These parameters are not explicitly included in a request message but can be obtained at the receiver and validated against the context policy parameters as given in table 7.1.2-2.

Table 7.1.2-2: Context parameters associated with a request message

	Parameter
	Description
	Usage in access control mechanism

	rq_time
	Time stamp when the request message was received at the hosting CSE. Obtained by the hosting CSE's system time clock.
	Validated against accessControlTimeWindow parameter in an access control rule of identified <accessControlPolicy> resources, see clause 7.1.3

	rq_loc
	Location information about the originator of the request. Obtained over the Mcn reference point.
	Validated against accessControlLocationRegion parameter in an access control rule of identified <accessControlPolicy> resources, see clause 7.1.3

	rq_ip
	IP source address associated with the IP packets that carry the request message. Obtained over the Mcn reference point.
	Validated against accessControlIpAddress parameter in an access control rule of identified <accessControlPolicy> resources, see clause 7.1.3

Tokens, as defined in clause 7.3.3.1 "Token Structure", may be associated with a request message. A Token may be associated with a request as a result of being included in the Tokens primitive parameter of the request message or identified in the Token IDs primitive parameter of the request message. If the Hosting CSE obtained a token from the Dynamic Authorization System (DAS) Server using Direct Dynamic Authorization, then this Token shall associated with a request if the holder parameter in the Token matches the Absolute AE-ID or CSE-ID of the Originator of the request; such Tokens are obtained using. Dynamic Authorization is specified in clause 7.3.

Table 7.1.2-3 lists the security context parameters associated with a request message.
Table 7.1.2-3: Security Context parameters associated with a request message

	Parameter
	Description
	Mandatory/Optional
	Usage in access control mechanism

	rq_authn
	Boolean value (TRUE/FALSE) indicating if the Originator is considered to have been authenticated by the Hosting CSE, and the From matched the authenticated identity of the Originator.
	M
	Validated against accessControlAuthenticationFlag parameter in an access control rule of identified <accessControlPolicy> resources, see clause 7.1.3

The following criteria shall be applied to determine if an Originator is considered to have been authenticated by the Hosting CSE.

· If the Originator is an AE registered to the Hosting CSE, then the criteria for deciding whether the Originator is considered authenticated is deployment and/or implementation specific. In some cases it is appropriate to expect TLS or DTLS to be used to protect primitives. In other cases, TLS or DTLS may be un-necessary.
· If the Originator is a CSE registered with the Hosting CSE, then the Originator shall always be considered authenticated because the Mcc is always required to be protected by TLS or DTLS according to a Security Association Establishment Framework (SAEF) as described in clause 8.2. The other CSE may be the Registrar or Registree with respect to the Hosting CSE.
· If the Originator is an AE or CSE registered with a CSE other than the Hosting CSE, then the Originator is considered authenticated by the Hosting CSE if and only if the request primitive is protected using End-to-End Security of Primitives (ESPrim) as described in clause 8.4.
7.1.3
Format of privileges, selfPrivileges and inlineSimpleACP Attributes

The privileges and selfPrivileges attributes exhibit the same data type format which is specified as follows.
Each privileges or selfPrivileges attribute comprises a set of access control rules. In the following, the set of access control rules is denoted as acrs and an individual access control rule in this set as acr. The access control rules in acrs are indexed with the letter k. The number of access control rules in the set is denoted with the letter K:

acrs = { acr(1), acr(2), ..., acr(k), ..., acr(K) }

Each access control rule acr(k) is comprised of three type of components, denoted accessControlOriginators, accessControlOperations and accessControlContexts. The accessControlContext component is an optional parameter.

Hence, an access control rule acr(k) is either represented as a pair:

acr(k) = {acr(k)_accessControlOriginators, acr(k)_accessControlOperations}

or as a 3-tuple:

acr(k) = {acr(k)_accessControlOriginators, acr(k)_accessControlOperations, acr(k)_accessControlContexts}

The generic term "access-control-rule-tuple" is used when referring to a rule acr(k).

A set acrs of access control rules may consist of a mix of pairs and 3-tuples. For pairs, any context parameters associated with a request message are admissible.

The three component parameters of an access-control-rule-tuple supported in the present document are shown in table 7.1.3-1.

Table 7.1.3-1: Parameters of an access-control-rule-tuple

	Parameter
	Usage Description
	Mandatory/Optional
	Format

	accessControlOriginators
	Set of Originators that can be authorized
	M
	List of CSE-IDs and/or AE‑IDs and/or Role-IDs and/or SP domain, or keyword "all" to grant access to all originators

	accessControlOperations
	Set of Operations that can be authorized
	M
	Enumerated list of operations Create Retrieve, Update, Delete, Discover, Notify

	accessControlContexts
	See table 7.1.3-2
	O
	See table 7.1.3-2

	accessControlAuthenticationFlag
	Indicates whether the rule applies only to Originators which are considered to be authenticated by the Hosting CSE
	O
	Boolean

The accessControlOriginators parameter comprises a list of CSE-IDs and/or AE-IDs of any format defined in oneM2M TS‑0001 [1]. It is allowed to include the wildcard characters, e.g. "*", into the URI string of CSE-ID and AE‑ID at any level. Examples include the following: *.mym2msp.org/mycseID,/mycseID/*, mym2msp.org/mycseID,/mycseID/myAE*. If access for all originators should be allowed, the reserved keyword 'all' can be included into the value space of accessControlOriginators. Granting access to all CSE originators of the same M2M SP domain could be represented as/*, all AE-IDs of all CSEs in the same domain as/*/*.

The data type applicable to accessControlOriginators is defined in oneM2M TS-0004 [4].

The accessControlOperations parameter comprises a list of admissible operations which can be any subset of the following elements: Create, Request, Update, Delete, Discover, and Notify. While Create, Request, Update, Delete, and Notify operation are explicitly indicated in the op parameter of a request message, the Discovery operation is indicated by op = retrieve in combination with the provisioning of fc and Disrestype parameters in the request message.

The data type applicable to accessControlOperations is defined in oneM2M TS-0004 [4].

The accessControlContexts parameters are listed in table 7.1.3-2.

Table 7.1.3-2: Parameters of accessControlContexts

	Parameter
	Usage Description
	Mandatory/Optional
	Formats

	accessControlTimeWindow
	Set of Time Windows that can be authorized
	O
	List of time intervals where access can be granted in extended crontab format

	accessControlLocationRegion
	Set of Location Regions that can be authorized
	O
	1)
Latitude/longitude coordinates, and a radius defining a circular region around the coordinates

2)
Country code

	accessControlIpAddress
	Set of IPv4 and IPv6 addresses that can be authorized
	O
	IPv4: dotted-decimal notation with CIDR suffix

IPv6: colon separated groups of hexadecimal digits with CIDR suffix

The accessControlTimeWindow parameter represents a list of elements that comply with the extended crontab syntax as defined in clause 7.3.8 of oneM2M TS-0004 [4]. It allows definition of periodically recurring time intervals at which access shall be granted, when the rq_time parameter associated with the access request message falls into such interval.

For the elements of accessControlLocationRegion there are two representation choices. These can be represented by a 2‑character country code or a circle with radius R centred at a point defined in terms of longitude and latitude parameters. Refer to Annex F for detailed information. Each element of accessControlLocationRegion defines an admissible location region, which is compared with the rq_loc parameter associated with the access request message.

The data types applicable to accessControlLocationRegion and rq_loc are defined in oneM2M TS-0004 [4].

The accessControlIpAddress parameter represents a list of IPv4 and IPv6 addresses in dotted-decimal notation with CIDR suffix or colon separated groups of hexadecimal digits with CIDR suffix, respectively. If the rq_loc parameter associated with the access request message matches one of these addresses, access max be granted with regard to this criterion.

The data types applicable to accessControlIpAddress and rq_ip are defined in oneM2M TS-0004 [4].
The accessControlAuthenticationFlag parameter is a Boolean value. If the accessControlAuthenticationFlag parameter is not present, then the value is assumed to be FALSE. If the accessControlAuthenticationFlag parameter is TRUE, then this indicates that the access control rule applies only to Originators considered to have been authenticated by the Hosting CSE. Clause 7.1.2 specifies the criteria used to decide whether or not the Originator is considered to have been authenticated by the Hosting CSE.
The inlineSimpleACP attribute exhibits a data type format distinct from the data type format for the privileges and selfPrivileges. However, the inlineSimpleACP attribute is designed so that it is possible to translate any inlineSimpleACP attribute into access control rules which can be evaluated together with access control rules from <accessControlPolicy> resources in the access decision algorithm in clause 7.1.5. The inlineSimpleACP attribute is described in table 7.1.3-2.

Table 7.1.3-2: Elements of inlineSimpleACP
	Parameter
	Usage Description
	Mandatory/ Optional
	Formats

	inlineFullPrivileges
	Originators authorized: (a) to Create child resources of any resource type; (b) to Retrieve any attributes in the resource; (c) to Update the resource to add/delete/change any attributes in the resource; and (d) to Delete the resource.
	M
	As for accessControlOriginators in table 7.1.3-1.

	inlineFullRetrievePrivileges
	Originators authorized to Retrieve any attributes of the resource
	O
	As for accessControlOriginators in table 7.1.3-1.

	inlineBasicUpdatePrivileges
	Originators authorized to Update the resource to add/delete/change attributes other than those attributes influencing authorization (accessControlPolicyID, inlineSimpleACP dynamicAuthorizationConsultationIDs)
	O
	As for accessControlOriginators in table 7.1.3-1.

NOTE 1:
The inlineBasicUpdatePrivileges element is intended for cases where Originators need permission to perform Update operations impacting attributes of a resource which will not influence authorization, but should be denied permission perform Update operations impacting attributes which influence authorization. For example, a resource may have mandatory attribute representing an actuator, and AEs should be able to update this attribute while being denied ability to update attributes which influence authorization.
NOTE 2:
The inlineSimpleACP does not allow access control policies which are as flexible as those allowed with an <accessControlPolicy> resource. This was a design decision to keep the inlineSimpleACP simple to use. If the inlineSimpleACP does not provide the flexibility required to express access control policy, then an <accessControlPolicy> resource must be used.

The remainder of this sub-clause provides an example algorithm for translating any inlineSimpleACP attribute to equivalent access control rules. The Hosting CSE can choose to generate and internally cache these equivalent access control rules.
EXAMPLE 1: The following algorithm will translate an inlineSimpleACP attribute into an equivalent set of access control rules for the purposes of an access decision.

· An inlineFullPrivileges element is translated into a "special" access control rule which is only applicable for Update requests which add/change/remove attributes impacting authorization (the accessControlPolicyIDs attribute, inlineSimpleACP attribute and dynamicAuthorizationConsultationIDs attribute):

· The accessControlOriginators is set to the list of OriginatorIDs in the element.

· The accessControlOperations element is set to indicate the Update operation.

· An inlineFullPrivileges element is also translated into an "ordinary" access control rule which is applicable for those requests which are not impacting authorization:

· The accessControlOriginators is set to the list of OriginatorIDs in the element.

· The accessControlOperations element is set to indicate the Create, Retrieve, Update and Delete Operations.

· The inlineFullRetrievePrivileges (if present) and inlineBasicUpdatePrivileges element (if present) are each translated into an "ordinary" access control rule which are not impacting authorization:

· The accessControlOriginators element is set to the list of OriginatorID in the element.

· The accessControlOperations element is set to indicate the Retrieve operation or Update operation according to whether the element is inlineFullRetrievePrivileges or inlineBasicUpdatePrivileges respectively.
NOTE 3:
There are a variety of other valid translation algorithms generating an equivalent set of access control rules from any inlineSimpleACP attribute.

END of EXAMPLE 1
7.1.4
Access Control Decision

The access decision is derived by comparing the parameters associated with a resource access request message as described in clause 7.1.2 with the access control rules included in the privileges or selfPrivileges attributes of all ACP sets assigned to the protected resource by means of the accessControlPolicyIDs, see figure 7.1.1-1.

Access requests to an ACP is evaluated against the selfPrivileges attribute of that ACP.
Access requests to instances of all other resource types, shall be evaluated against the "ordinary" access control rules generated from the inlineSimpleACP attribute (if present) and the access control rules of the privileges attributes of the ACP set associated with the targeted resource (if any), with the following exception:
· An Update request which add, remove or changes attributes impacting authorization: shall be evaluated against the "special" access control rules generated from the inlineSimpleACP attribute (if present) and the access control rules of the selfPrivileges of the ACP set associated with the targeted resource (if any). The attributes impacting authorization comprise the accessControlPolicyIDs attribute, inlineSimpleACP attribute and dynamicAuthorizationConsultationIDs attribute.
The result of the access control algorithm, i.e. the access decision, is the overall result of evaluating the applicable set of access control rules, acrs, against the parameters associated with the access request message. This access decision can be represented by a value of binary data type. The overall result of the access decision algorithm is denoted here with the variable name res_acrs:

[image: image2.wmf]î

í

ì

=

else

0

or

FALSE

rules

control

access

 the

matches

request

 the

if

1

or

TRUE

res_acrs

The access control algorithm is specified in clause 7.1.5.

If the access control algorithm yields the result res_acrs = TRUE, the access decision for the requested resource is "Permit".

If the result is res_acrs = FALSE, or the access control algorithm is not capable to derive a final result (e.g. due to indeterminate parameters), the access decision for the requested resource is "Deny".

Access decisions that result in indeterminate access control rules should be logged for diagnostics purposes.

7.1.5
Description of the Access Decision Algorithm

The access control algorithm specified in this clause combines partial access control results obtained for each of the applicable individual access control rules, as defined in clause 7.1.4. Further, if multiple ACP instances are assigned to the protected resource, the access control algorithm combines the partial access control results obtained for the individual ACPs of an ACP set.
The algorithm specified in this clause adopts a "Permit-overrides" combining algorithm with respect to access control rules as defined in XACML [i.5]. This algorithm has the following behaviour:

1) If a decision is "Permit" for only a single access control rule from the set of applicable access control rules (as defined in clause 7.1.4), then the result is "Permit".
2) Otherwise, the result is "Deny".

The logic for evaluating a request against a set of access control rules, acrs, which is built as in figure 7.1.5-1.

[image: image3.emf]acrs = { acr(1),arc(2), …, arc(k), …, arc(K) }

acr(k) = {acr(k)_accessControlAuthenticationFlag,

acr(k)_accessControlOriginators, acr(k)_accessControlOperations, acr(k)_accessControlContexts}

Set of originator parameters. Examples:

{CSE-ID1, AE-ID1, AE-ID2, Role-ID1}

{all}

Set of allowed operations. Examples:

{Create, Retrieve, Update, Delete, Discover, Notify}

{Retrieve, Discover, Notify}

Set (list) of M_k context constraints (number of elements M_k can be different

for each acr(k)):

{acr(k)_accessControlContext(k, 1), …

…, acr(k)_accessControlContext(k, m), …

…, acr(k)_accessControlContext(k, M_k)}

Set of context constraints consisting of the 3 elements:

{accessControlTimeWindow(k, m), accessControlLocationRegion(k,m), accessControlIpAddress(k, m)}

Set of time windows defined by start and end time

Example:

{daily 04:30 –06:00, 11:30 –12:30, 22:15 –00:30}

Set of location regions defined by list of objects

representing geographical regions

Example:

{geoRegion1, geoRegion2, geoRegion3}

Set of IP addresses or address blocks

Example (IPv4):

{212.75.201.105, 88.77.0.0/16, 116.27.123.0/24}

Figure 7.1.5-1: Logic to evaluate a set of access control rules
The parameters associated with a request, which are evaluated against the parameters contained in the applicable access control rules are specified in clause 7.1.3.

The access decision res_acrs defined in clause 7.1.4 is derived by evaluating whether or not the parameters associated with the request message listed in tables 7.1.2-1 and 7.1.2-2 match any of the access control rules contained in the applicable access control rule set defined in clause 7.1.4 as follows:

res_acrs = res_acr(1) OR res_acr(2) ... OR res_acr(k) … OR res_acr(K),

where res_acr(k) represents the logical evaluation result (i.e. TRUE/FALSE or 1/0) of the request parameters against the kth access control rule in the set acrs, which can be expressed as follows:

res_acr(k) = res_authn(k) AND res_origs(k) AND res_ops(k) AND res_ctxts(k), k = 1…K.

The first partial logical result variable res_authn(k) on the right side of above equation is evaluated according to Table 7.1.5-1:
Table 7.1.5-1: Evaluating res_authn(k)
	acr(k)_accessControlAuthenticationFlag
	rq_authn
	res_authn

	TRUE
	TRUE
	TRUE

	TRUE
	FALSE
	FALSE

	FALSE
	TRUE
	TRUE

	FALSE
	FALSE
	TRUE

The remaining 3 partial logical result variables on the right side of above equation can be defined by using the following set function:

[image: image4.wmf]î

í

ì

Î

=

else

0

or

FALSE

setX

if

1

or

TRUE

setX)

,

ismember(

x

x

With this definition:

res_origs(k) = ismember(rq_orig, acr(k)_accessControlOriginators)

res_ops(k) = ismember(rq_op, acr(k)_ accessControlOperations)

The third partial logical result res_ctxts(k) is derived as follows

res_ctxts(k) = res_context(k, 1) ... OR res_context(k, m) ... OR res_context (k, M_k),

where:

res_context(k, m) = res_time(k, m) AND res_ip(k, m) AND res_loc (k, m), k = 1…K, m = 1…M_k
and

res_time(k, m) = ismember(rq_time, acr(k)_accessControlTimeWindow(m))

res_ip(k, m) = ismember(rq_ip, acr(k)_accessControlIpAddress(m))

res_loc (k, m) = ismember(rq_loc, acr(k)_accessControlLocationRegion(m))

Thanks to the "Permit-overrides" combining approach, if the access control decision for one access control rule results in res_acr = TRUE, the access control algorithm can stop without evaluating any other applicable access control rules, and the final access decision is "Permit".
----------------------------------- End of Change 1 ------------------------------------
-------------Start of Change 5: Apply changes to clause 7.3.2.2 ------------------
7.3.2.2
Direct Dynamic Authorization

The present document specifies the exchanged parameters and associated processing at the Hosting CSE. The transport of parameters is specified in clause 11.5.2, oneM2M TS-0001 [1].

The message flow for the Direct Dynamic Authorization is shown in figure 7.3.2.2-1, and described in the following text.

[image: image5.emf]Hosting CSEDAS Server2.1. Performs access decision unable to grant access for original request 2.2. Obtain DAS Server dynamicAuthoriztionPoA and collect Role-Ids (if any). 2.3 Original request parameters, (opt) Role-Id(s)3.2. (opt) dynamicACPInfo (opt) Token(s)4.1. Process (opt) dynamicACPInfo, (opt) Token(s)4.2. Repeat access decision4.3. If access is granted, requested operation is performedSteps 3.1: Dynamic Authorization can include issue Token(s) &/or generate dynamicACPInfo AEAEOriginator1. Original requestResponse

Figure 7.3.2.2-1: Message flow for Direct Dynamic Authorization

1.
The Originator sends request (called the request from the Originator for this message flow) to the Hosting CSE. This request may include Tokens or Token-IDs; see the clause 7.3.2.3 "Indirect Dynamic Authorization".

2.
Initial Hosting CSE processing:

2.1
If the request from the Originator includes Tokens or Token-IDs then these are processed as described in clause 7.3.2.3 "Indirect Dynamic Authorization". The Hosting CSE evaluates the access decision algorithm, but is unable to grant access for the request from the Originator based on configured access control policies.

2.2
The Hosting HCSE determines the set of DAS Server with which Direct Dynamic Authorization may be performed:

2.2.1
The HCSE examines all applicable accessControlRules of the requested resource, as described in clause 7.1.4.

----------------------------------- End of Change 5 ------------------------------------
Resource_2

...

ACP_1

ACP_2

ACP_3

ACP_4

Instances of

accessControlPolicy

resources (ACP)

Example:

ACP set = (ACP_1, ACP_2)

assigned to Resource_1

Each ACP includes one privileges and one selfPrivileges attribute.

privileges and selfPrivileges attributes include a set of access control rules (defined in Section 7.3)

List of IDs in accessControlPolicyIDs

attribute of Resource_1

Resource_1

Resource_3

Resource_N

© 2016 oneM2M Partners
 Page 11 (of 11)

[image: image6.png]_1539769455.vsd
Set of originator parameters. Examples:
{CSE-ID1, AE-ID1, AE-ID2, Role-ID1}
{all}

acrs = { acr(1), arc(2), …, arc(k), …, arc(K) }

_1539769456.unknown

_1539769463.vsd
AE

_1539769454.unknown

