
	CHANGE REQUEST

	Meeting ID:*
	SEC 31

	Source:*
	François Ennesser, Gemalto, francois.ennesser@gemalto.com

	Date:*
	2017-09-15

	Reason for Change/s:*
	Editorial corrections and clarification on TR-0038

	CR against: Release*
	Rel-3

	CR against: WI*
	 FORMCHECKBOX
 Active (Developers Guides WI)

 FORMCHECKBOX
 MNT maintenance / < Work Item number(optional)>
Is this a mirror CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

mirror CR number: (Note to Rapporteur - use latest agreed revision)
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TR-0038 v0.2.0

	Clauses *
	1, 7.1.1, 7.1.2, Annex A

	Type of change: *
	 FORMCHECKBOX
 Editorial change

 FORMCHECKBOX
 Bug Fix or Correction

 Change to existing feature or functionality

 New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	None

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separate “mirror CR” should be posted at the same time of this CR

Mirror CR: applies only when the text, including clause numbering are exactly the same.

Companion CR: applies when the change means the same but the baselines differ in some way (e.g. clause number).
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.

All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction

TR-0038 v0.2.0 needs some refinements and clean-up of editor’s notes before finalization.
-----------------------Start of change 1---

1
Scope

This Technical Report aims at providing guidelines to developers to implement security as specified by oneM2M TS-0003, using a simple use case as example. It addresses the initial security provisioning for enrolment with a Service Provider, and the operational phase relying on a Security Association Establishment process to implement secure connection and access control services for basic use cases.

As example, the considered use cases are implementing a home door lock service with:-

· Authentication

· Authorisation
· Secure communications

----------------------- End of change 1---
----------------------- Start of change 2---

7
Procedures and call flows

7.1
Security Association Establishment
7.1.1
Security Requirements
M2M services are offered by CSEs to AEs and/or other CSEs. To be able to use M2M services offered by one CSE, the AEs and/or CSEs need to be mutually identified and authenticated by that CSE, in order to provide protection from unauthorized access and Denial of Service attacks.

This mutual authentication enables to additionally provide encryption and integrity protection for the exchange of messages across a single Mca, Mcc or Mcc' reference point. In addition, communicating AEs that require similar protection for their own information exchanges can be provisioned to apply the same security method to their communications. This is the purpose of the Security Association Establishment (SAE) procedure.

When CoAP binding of oneM2M primitives is used, i.e. the Underlying Network communication uses UDP/IP transport, Authentication is performed by means of a DTLS Handshake.

When HTTP, MQTT or WebSocket binding of oneM2M primitives is used, i.e. the Underlying Network communication uses TCP/IP transport, Authentication is performed by means of a TLS Handshake.

For the use cases in this guideline document it is assumed that HTTP binding is employed between all applicable pairs of entities (see also TR-0025 [i.6])

In order to exemplify the use of all three Security Association Establishment Frameworks (SAEF) defined in TS-0003 [i.4] the following use cases are described:

· Provisioned Symmetric Key SAE between Door Locks and Home Gateway,

· Pre-provisioned Certificate Based SAE between Home Gateway and IN-CSE,

· MAF Based Symmetric Key SAEF between the smartphone and IN-CSE.

Communication between the MN-AE and MN-CSE internally to the Home Gateway is assumed to not require Security Association Establishment.
7.1.2
Provisioned Symmetric Key SAE between the Locks and the Home Gateway
In this example it is assumed that authentication between the Locks (ADN-AE1 and ADN-AE2) and the Home Gateway (MN-CSE) is performed using provisioned keys (Kpsa) and key identifiers (KpsaID).
Configuration of ADN-AE1 and ADN-AE2:

· The AEs are configured with the set of allowed TLS ciphersuites when using TLS-PSK as defined in clause 10.2.2 of TS-0003 [i.4]. The set of ciphersuites includes TLS_PSK_WITH_AES_128_CBC_SHA256.

· The AE is assumed to be configured with the CSE-ID of the Home Gateway which is a unique identifier within the M2M-SPs domain. The CSE-ID value is assumed as mn-cse-123456.
· The AE is assumed to be configured with a pair of credentials (psk, psk_identity) associated with the CSE-ID. An example of credential configuration is given in Table 7.1.2-1. The length of the keys Kpsa is not mandated by TS-0003 [i.4] and left to implementation. In this example the key length of 8 bytes (64 bits) is chosen. The key identifiers comply with the format specified in clause 10.5 of TS-0003 [i.4].
Table 7.1.2-1: Example Credentials configured on ADN-AE1 and ADN-AE2

	Entity
	Kpsa (hex format)
	KpsaID

	ADN-AE1
	1a2b3c4d5e6f7a8b
	AE123456789012-Lock@in.provider.com

	ADN-AE2
	12345678abcdefab
	AE123456789015-Lock@in.provider.com

Configuration of MN-CSE (Home Gateway):

· The MN-CSE is configured with the set of allowed TLS ciphersuites when using TLS-PSK as defined in clause 10.2.2 of TS-0003 [i.4]. The set of ciphersuites includes TLS_PSK_WITH_AES_128_CBC_SHA256.

· The MN-CSE is assumed to have a psk-lookup-table with columns for (client identity, psk, psk_identity), such that when a TLS client provides a particular psk_identity, then the MN-CSE uses the corresponding psk for establishing a TLS session, and the client identity is associated with the established TLS session. This needs to be integrated to the TLS server. Table 7.1.2-2 shows an example of credentials configured on the Home Gateway to serve ADN-AE1 and ADN-AE2, containing AE-ID, KpsaID, Kpsa. A new row would need to be added to this table for each additional AE allowed to register to the MN-CSE by using TLS_PSK. .

NOTE: Some open source libraries, e.g. OpenSSL, do not provide a psk-lookup-table, but do indicate a spot in the source code where a psk-lookup could be implemented. The psk-look-up-table values could then be provided in a configuration file.
Table 7.1.2-1: Credentials configured on MN-CSE

	AE-ID
	Kpsa (hex format)
	KpsaID

	Clock-AE1
	1a2b3c4d5e6f7a8b
	AE123456789012-Lock@in.provider.com

	Cllock-AE2
	12345678abcdefab
	AE123456789015-Lock@in.provider.com

Operation of ADN-AE1 and ADN-AE2
When the AE is triggered to establish a TLS-PSK session with the MN-CSE using some pair (Kpsa, KpsaID), the following should occur automatically based on the AE’s configuration:

· AE’s TLS Client is triggered to perform a TLS-PSK handshake with the TLS values (psk, psk_identity) set to the values of (Kpsa, KpsaID), and with the configured list of TLS ciphersuites.

· On completion of the TLS handshake, the AE associates the established TLS session with the MN-CSE’s CSE-ID.

Operation of MN-CSE

The MN-CSE’ TLS Server is listening on the TLS Server port and the following should occur automatically based on the MN-CSE’s configuration:

· A TLS handshake is started at the MN-CSE TLS Server on receiving a TLS handshake Client_Hello message. In the case of the AE, this includes the list of TLS-PSK ciphersuites supported by the AE for use with the MN-CSE. The MN-CSE will select a ciphersuite that is also in its configured list.

· A later TLS handshake message will include the psk_identity element set to KpsaID.

· The MN-CSE’s TLS Server looks up the psk-lookup-table using KpsaID as an index, and retrieves the AE’s (AE-ID, Kpsa). If AE-ID is not available, then the MN-CSE may query the node’s <serviceSubscribedAppRule> resource.
· The MN-CSE’s TLS client continues the TLS handshake with the TLS value psk set to the value of Kpsa.

· On completion of the TLS handshake, the MN-CSE associates the established TLS session with the AE’s AE-ID.

Annex A provides details for implementing the TLS handshake procedure.
7.1.3
Certificate-based SAE between Home Gateway and IN-CSE

<Text
>
7.1.4
MAF-based SAE between Smartphone and IN-CSE

<Text
>
7.1.5
Registration upon successful SAE

Editor’s note: this clause will provide an example of the registration procedure following successful Security Association Establishment. This procedure is independent of the SAE procedures described in clauses 7.1.2 to 7.1.4. It will also include an example of AE impersonation checking procedure.
<Text>
7.2
Authorisation

<Text>
7.3
Secure communications

<Text>
8
Implementation
8.1
Definition and assumption
<Text>
8.2
Resource structures

<Text>

8.3
Roles of entities
<Text>

8.4
Procedures

<Text>
9
Conclusions
<Text>
----------------------- End of change 2---
-----------------------Start of change 3---

Annex A:
Security Association Establishment Message Flows

A.1 Introduction

This Annex presents some example message flows which are useful to understand the operation of the oneM2M security establishment frameworks, to verify correct operation or to identify the cause of misbehavior.

Some details of TLS message flows and message content depend on the employed SSL/TLS implementation. Implementations of oneM2M entities will typically make use of SSL/TLS libraries to enable support of the required security functions specified in TS-0003. Examples of open source SSL/TLS libraries include OpenSSL, gnuSSL and mbed TLS.

Such SSL/TLS libraries implement the basic cryptographic functions and provide various utility functions such as e.g. TLS clients and servers which may be executed from a command line.

The message flows shown here have been produced using OpenSSL Version 1.1.1 on an Ubuntu 14.04 computer using the s_client and s_server utility functions, and employing Wireshark for capturing and analyzing the exchanged data packets.

The commands given in the subsections below may be used to reproduce these flows.

A.2 PSK-Based Security Association Establishment
A typical flow of messages and actions for a successful PSK-Based Security Association Establishment is shown in figure A.1-1. The message content described in the steps below applies to the example described in clause 7.1.2.

Subsequent to TCP connection establishment (not shown in the Figure), the following messages are exchanged between ADN-AE1 and the MN-CSE:

1. The TLS client on ADN-AE1 sends a Client Hello Handshake message which is encapsulated in a TLS Record layer frame. The record layer message includes the following fields:
i. Record layer header fields:
· Content type 0x16 (Handshake)
· Version 0x0301 (indicating TLS 1.0)
· Length of the message (2 bytes, value depending on the message content)
ii. Application data (handshake message):
· Handshake Type 0x01 (Client Hello)
· Length of the message (3 bytes, value depending on the message content)

· Client Version 0x0303 (TLS 1.2)
· (Client) Random (32 bytes, generated by the TLS client’s pseudo random number generator (PRNG))
· Number of cipher suites supported by the client (value at least 1)
· List of cipher suites. Must include identifier for TLS_PSK_WITH_AES_128_CBC_SHA256 (0x00ae)
· Extension length and Extensions (irrelevant for this example)
2. The TLS server handshake protocol responds with Server Hello and Server Hello Done messages. For the implementation employed here, each of these messages is encapsulated into a dedicated record layer frame.
i. Record layer header fields:
· Content type 0x16 (Handshake)

· Version 0x0303 (indicating TLS 1.2)
· Length of the application data field (2 bytes, value depending on the message content)
ii. Application data (“Server Hello” handshake message):
· Handshake Type 0x02 (Server Hello)
· Length of the message (3 bytes, value depending on the message content)

· Server version 0x0303 (indicating TLS 1.2)

· (Server) Random (32 bytes, generated by the TLS server’s PRNG)
· Session-Id length (0x00, no session ID supplied)
· Number of cipher suites supported by the client (at least 1)

· Cipher suite selected by the server, shall be TLS_PSK_WITH_AES_128_CBC_SHA256 (0x00ae)
· Compression method (null, no compression)
· Extension length and Extensions (irrelevant for this example)
iii. Record layer header fields:
· Same as in step 2.i

iv. Application data (“Server Hello Done” handshake message):
· Handshake type 0x0e (Server Hello Done)

· Length of the message (0x0000, message has no content)

3. The TLS client responds with Client Key exchange, Change Cipher Spec, Finished messages. For the implementation employed here, each of these messages is encapsulated into a dedicated record layer frame.
i. Record layer header fields:
· Same as in step 2.i

ii. Application data (“Client Key Exchange” handshake message):
· Handshake Type 0x10 (Client Key Exchange)

· Length of the message (3 bytes, value depending on the message content)
· PSK client parameters:

· Identity length (0x00000f in this example)

· PSK Identity (here binary equivalent of “Client_identity”)
iii. Record layer header fields:
· Content type 0x14 (Change Cipher Spec)
· Version 0x0303 (TLS 1.2)

· Length of the message (0x0001)
iv. Application data (“Change Cipher Spec” message):
· Change Cipher Spec message 0x01 (1 byte)

v. Record layer header fields:
· Same as in step 2.i

vi. Application data (encrypted “Finished” handshake message)
· Handshake type 0x14 (Finished)

· Length of the message 0x00000c (12)
· Verify Data (12 bytes), see RFC 5246, section 7.4.9.

4. The server retrieves Kpsa associated with the PSK Identity, computes the master secret and authenticates the client by validating Verify Data

5. The TLS server responds with New Session Ticket, Change Cipher Spec, Finished messages. For the implementation employed here, each of these messages is encapsulated into a dedicated record layer frame.
i. Record layer header fields:
· Same as in step 2.i

ii. Application data (“New Session Ticket” handshake message):
· Handshake Type 0x04 (New Session Ticket)

· Length of the message (3 bytes: 0x0000b6)
· Session Ticket:

· Lifetime Hint (4 bytes: 0x00001c20, 7200 in this example)

· Session Ticket Length (2 bytes, 0x00b0, 176 in this example)

· Session Ticket (176 bytes), see RFC 4507, server session state enabling session resumption
iii. Record layer header fields:
· Content Type 0x14 (Change Cipher Spec)
· Version 0x0303 (TLS 1.2)
· Length of the message (0x0001)

iv. Encrypted application data (“Change Cipher Spec” message):
· Change Cipher Spec message 0x01 (1 byte)

v. Record layer header fields:
· Same as in step 2.i

vi. Application data (encrypted “Finished” handshake message, to verify that the key exchange and

authentication processes were successful):
· Handshake Type 0x14 (Finished)

· Length of the message 0x00000c (12)
· Verify Data (12 bytes), see RFC 5246, section 7.4.9.

6. The client authenticates the server by validating Verify Data

7. Application data encrypted by the TLS record layer is exchanged between ADN-AE1 and MN-CSE

[image: image1.emf]ADN-AE1 MN-CSE

7. Application data

1. Client Hello

2. Server Hello, Server Hello Done

3. Client Key Exchange, Change Cipher Spec,

Finished

5. New Session Ticket, Change Cipher Spec,

Finished

4. Server retrieves Kpsa and

authenticates the client

6. Client authenticates the

server

Figure A.1-1: PSK-Based Security Association Establishment
The message flow described above (excluding step 7) can be reproduced with the following commands under Linux OS using localhost IP address and port 443:

TLS server on MN-CSE:

$ sudo openssl s_server -accept 443 -psk 1a2b3c4d5e6f7a8b
TLS Client on ADN-AE1:

$ openssl s_client -connect 0.0.0.0:443 -psk_identity Client_identity \

 -psk 1a2b3c4d5e6f7a8b -cipher PSK-AES128-CBC-SHA256
NOTE:
The OpenSSL s_server utility does not support table lookup of pre-shared keys when using the option

 -psk_identity AE123456789015-Lock@in.provider.com

as required for the example in clause 7.1.2. Therefore the above command line for the server includes the used PSK itself. The client command line provides the PSK identity “Client_identity” which is expected by the server for this PSK.
Note that in order to enable Wireshark to decrypt application data which has been encrypted by the TLS record layer, it must be configured as follows:

In the Wireshark configuration menu Edit -> Preferences -> Protocols -> SSL,

1) In the “Pre-Shared-Key” field, enter Kpsa, i.e. 1a2b3c4d5e6f7a8b
2) In the (Pre)-Master-Secret log filename field, enter the name of a text file which includes Client Random (32 bytes as 64 hex characters) and the Master Secret (48 bytes as 96 hex characters) as a text line as follows:
 CLIENT_RANDOM <space> 64-characters-random <space> 96-characters-Master-Secret

The master secret is provided as log information in the terminal window, where s_client is started. The value of Client Random can be retrieved from the Wireshark packet capture in the Client Hello handshake message.

First the data captured with Wireshark must be stored into a file. Then, after configuring Wireshark as described above, the messages in the saved data file can be decrypted by Wireshark.

Editor’s note: relation between credential identifiers, entity identifiers and service subscription information needs to be clarified
----------------------- End of change 3---

�Text will be provided once we have agreed on Clause 7.1.2 which should serve as a template for the general documentation style and the level of detail to be described

�MAF-base SAE shall be added when TS-0032 (MAF and MEF Interface specification is somewhat stable)

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)
Page 10 of 10
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

_1552911340.vsd
�

ADN-AE1

MN-CSE

7. Application data

