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Abstract

In this manuscript, we study the security of static Diffie-Hellman key exchange based on ECCSI
(Elliptic Curve-Based Certificateless Signatures for Identity-Based Encryption) specified in RFC 6507,
where the private keys are obtained essentially as Schnorr signatures (a variant).

1 Introduction

IETF RFC 6507 specifies an elliptic curve-based certificateless signature scheme, ECCSI (Elliptic Curve-
Based Certificateless Signatures for Identity-Based Encryption). A Key Management Service (KMS) pro-
vides the root of trust for all users, and the global public key and secret key are called Public Authentication
Key (KPAK) and Secret Authentication Key (KSAK), respectively. For each user, the key issued by KMS
includes two components: one is Secret Signing Key (SSK) and the other is Public Validation Token (PVT).

This manuscript studies the security of static Diffie-Hellman key exchange using ECCSI’s keys. Specif-
ically, the static DH key exchange is described as follows.

ECCSI works in a subgroup G with prime order q, of an elliptic curve defined over Fp, where p is a
prime. Let g be a generator of G. For convenience of understanding, we denote arithmetic operations in G’s
as multiplicative. There are two hash functions: H onto the full domain Zq, andH′ onto the `-bit strings, to
generate the session keys with the static Diffie-Hellman key exchange.

• The setup algorithm of ECCSI is: the KMS chooses a random secret non-zero element x R← Z∗q , and
sets X ← gx. The latter is the Public Authentication Key, KPAK = X and the former is the Secret
Authentication Key, KSAK = x;

• The key issuance algorithm of ECCSI works as follows: for a new identity id, the KMS chooses a
random non-zero element r R← Z∗q , computes R ← gr and sets s ← x + r · H(g,X, id, R) mod q.
The PVT for id is pvtid ← R, while the SSK is sskid ← s. It can be seen that (R, s) is a variant of
Schnorr Signature;

• In order to agree on a common session key with id′, the user with identity id will compute v =

(X · pvtH(g,X,id′,pvtid′ )
id′

)sskid and K = H′(id, id′, v). His partner can do the same as v′ = (X ·
pvtH(g,X,id,pvtid)

id )sskid′ and K ′ = H′(id, id′, v′):

v = (X · pvtH(g,X,id′,pvtid′ )
id′

)sskid = (gx+r
′·H(g,X,id′,pvtid′ ))sskid

= gsskid′sskid = (X · pvtH(g,X,id,pkid)
id )sskid′ = v′
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One can note that v = v′ = DH(X · pvtH(g,X,id,pvtid)
id , X · pvtH(g,X,id′,pvtid′ )

id′
).

2 Security Analysis

We consider a security model where there is a target user id# pre-determined, with keys (ssk#,pvt#), and
the adversary would like to generate, with id#, a public validation token pvt∗ for some identity id∗ together
with the common key: given (id#, R# = pvt#), it can output a new public validation token pvt∗ so that
it can distinguish the real key K from a random one, with possible access to the KMS for many identities.
We just want id∗ to be a new identity. Trivially, the adversary is not allowed to get the secret signing key
corresponding to (id∗,pvt∗).

The semantic security of K means that no adversary is able to generate such a new pvt∗ for which it can
distinguish the real session key from a random session key.

Note that we are in the random oracle model, and so, the only way to distinguish K is to query v to the
random oracle H′, and so we can extract DH(X · (pvt#)H(g,X,id#,pvt#), X · (pvt∗)H(g,X,id∗,pvt∗)) from the
list of H′-queries. Hence, we can hope to make the security rely on the CDH assumption: for a bias ε on
this guess, the Diffie-Hellman value must be in the list with probability ε.

More precisely, we can prove the following security result:

Theorem 2.1 (Semantic Security of the Static ECCSI-Authenticated Diffie-Hellman Key Exchange). If an
adversary can break the semantic security of the key K within time t and advantage ε, then one can break
the CDH problem within time 4t and probability ε4/16Q6Q′4, where Q and Q′ are the number of queries
to the random oraclesH andH′ respectively.

Proof. As said above, the proof holds in the random oracle model, so we consider the lists Λ and Λ′ of all
the query-answer pairs for H and H′ respectively. We first show how to compute gx

2
= DH(X,X), given

X = gx.

• Set X to be the KPAK.

• Let us first simulate the target public key pvt# = R# for id#: R# ← Xρ# , for ρ# R← Z∗q .

• Let us now simulate key queries: for an identity id, the simulator chooses a random s
R← Zq and a

random h
R← Zq, it then sets R ← gs/hX−1/h, as well as H(g,X, id, R) ← h. The simulation is

perfect, unless the query (g,X, id, R) has already been asked to H which is quite unlikely since R is
uniformly distributed (we ignore this bad case).

• Let us now assume that the adversary outputs (id∗,pvt∗) so that he can later distinguish the real
key K from a random one. This means that the adversary outputs (id∗,pvt∗), and asks the query
DH(X · (pvt#)H(g,X,id#,pvt#), X · (pvt∗)H(g,X,id∗,pvt∗)) to the random oracle H: by choosing it at
random, with probability 1/Q′, we extract the correct value, where Q′ is the number of queries toH′.
Hence, our extractor succeeds with probability ε/Q′.

We can note H# = H(g,X, id#,pvt#) and H∗ = H(g,X, id∗,pvt∗). Among the Q H-queries,
there is an index I for which the success probability with H∗ corresponding to the I-th H-query
is at least ε/QQ′. We choose this index at random, and with probability greater than 1/Q, this
is the good choice. Then, using the Forking Lemma, with probability ε/2QQ′ we have a success
with a good beginning, and then just replaying the same execution with a new random value H ′ for
H(g,X, id∗, pk∗), we obtain a second success with probability ε/2QQ′. Hence, with probability
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ε2/4Q3Q′2 and 2 executions of the attack, we obtain pvt∗, H∗ and H ′ such that

v = DH(X · (pvt#)H
#
, X · (pvt∗)H

∗
) = DH(X · (pvt#)H

#
, X) · DH(X · (pvt#)H

#
, Xρ∗·H∗)

= DH(X · (pvt#)H
#
, X) · DH(X1+ρ#·H#

, Xρ∗·H∗)

v′ = DH(X · (pvt#)H
#
, X · (pvt∗)H

′
) = DH(X · (pvt#)H

#
, X) · DH(X · (pvt#)H

#
, Xρ∗·H′)

= DH(X · (pvt#)H
#
, X) · DH(X1+ρ#·H#

, Xρ∗·H′)

By computing vH
′

v′H∗
, we obtain

vH
′

v′H∗
=

DH(X · (pvt#)H
#
, X)H

′

DH(X · (pvt#)H# , X)H∗
= DH(X1+ρ#·H#

, XH′−H∗) = DH(X,X)(1+ρ
#·H#)(H′−H∗).

This leads to DH(X,X).
Next, one can note that from an algorithm A that solves the Square Diffie-Hellman problem with prob-

ability ε̂ within time t̂, one solves the usual Diffie-Hellman problem: given X = gx and Y = gy, one runs
A on XY , and gets g(x+y)

2
with probability ε̂; one then runs A on X/Y , and gets g(x−y)

2
with probability

ε̂. Hence, with probability ε̂2, within time 2t̂, one can compute (g(x+y)
2
/g(x−y)

2
)1/4 = gxy.
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