SEC-2018-0095R01-TR-0050_solutions

	Input Contribution

	Meeting ID*
	TP#37

	Title:*
	TR-0050 ABAC Rule and Policy Combining Algorithms

	Source:*
	Bob.Flynn; Bob.Flynn@convidawireless.com

	Date:*
	2018-11-26

	Input related to*
	WI-0077

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Impacted other TS/TR(s)
	TR-0050 Attribute Based Access Control Policy, V0_5_0

	Decision requested or recommendation:*
	Approve the proposed text into the TR.

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction

This contribution proposes possible solution for
Key Issue #1.4 Propagate ACPs
Key Issue #1.6 Hard to determine if an entity has authorization
-----------------------Start of change 1---

6.3.n
Solution #1.4 Propagate ACPs
6.3.n.1
Introduction
As described in clause 6.2.4.1, this solution addresses the need to assign default access control policies to resources that are added to a CSE.
Currently we can rely on the default behavior defined in oneM2M, essentially give ONLY the originator access. There is no scalable solution that allows a new device or resource to be safely configured with ACPs. I’ll demonstrate with two examples use cases that a solution should handle.

1. When adding a new child resource to any given resource, what ACPs should be applied? Some options are:
a. The originator specifies – this is the current method supported by oneM2M. This does not allow efficient integration of the new resource unless the device is appropriately configured to do so. Since the oneM2M specification offers no guidance on this aspect, each implementation would determine the method to use. This can lead to inoperable devices in the field with no way to specify a means to make the approach interoperable.
b. The same permissions as the parent – this method is OK, however from an implementation perspective this creates problems that could lead to interoperability concerns. For example, when accessing this resource then finding that the acpi is empty, then another search for the parent is needed. This can lead to traversing the resource tree up to CSEbase (without further definition restricting how far to traverse).
c. Use a policy to specify how the CSE should populate the acpi attribute of a resource if the value is not populated by the creator. – This is the solution presented in this contribution.

The proposed solution extends the current accessControlObjectDetails of the <accessControlPolicyResource>. This parameter is already used for child resources of the targeted resource, so this extension is consistent with current usage.
New Parameters added to accessControlObjectDetails
	Name
	Description

	propagateACP
	Indicates that this ACP can be applied to a descendant of the targeted resource. This ACP can be directly added to the targeted resource’s accessControlPolicyIds attribute by the host CSE or a new ACP can be created by the host CSE based on the attributes of this ACP.

Values – “link” indicates that the acpi of the new resource should include this <accessControlPolicy> resource identifier. “duplicate” indicates that a new <accessControlPolicy> should be created that is a copy of this <accessControlPolicy> and referenced in the acpi of the new descendent resource.

	timeLimit
	If propagateACP indicates that a new ACP is created, this attribute specifies the expirationTime of the new <accessControlPolicy> resource. The default value is that the new expirationTime will be the same as the current <accessControlPolicy> expirationTime.

	levels
	An integer value indicates the number of levels of descendants that this can be applied to (default is 0).

6.3.n.2
Solution details
Editor's Note: This clause will describe the solution.
6.3.n.3
Evaluation
Editor's Note: This clause will contain a variety of evaluations of this solution.
<Text>
-----------------------End of change 1---

-----------------------Start of change 2---

6.3.n
Solution #1.6: Hard to determine if an entity has authorization
6.3.n.1
Introduction
As described in clause 6.2.5.1, there are two requirements described:
1. Enhance the Discovery request to allow the specification of one or more permissions that should be present in the list of resources returned by the discovery.
a. Currently, oneM2M checks that the originator has DISCOVERY permission.

2. Define a primitive that answers the questions “What permissions does ‘originator-ID’ have for ‘resourceXYZ’”?

a. A variation of #2, that supports #1 is “Does ‘originator-ID’ have ‘permission-X’ for ‘resourceXYZ’”?

If we view ‘resourceXYZ’ as the target of a request primitive and ‘originator-ID’ as the originator of a request primitive, then a solution that is consistent with existing oneM2M procedures is adding a new Result Content type:
· Permissions: A representation of the permissions that the originator has for the targeted resource. This would be a consolidated representation of all the ACPs associated with this resource for this originator. (this addresses #2 above – not #1 or #2a)

We can view ‘permission-X’ as a new type of filter Criteria that can be added to Table 8.1.2-2: Filter Criteria conditions. This parameter would be valid only for filterUsage = ‘discovery’.
	Condition tag
	Multiplicity
	Description

	Matching Conditions

	operations
	0..n
	A matched resource has a linked <accessControlPolicy> that grants the originator specified operations. Default is ‘discovery’.

Discovery responses currently provide a list of all matched resources when the “discovery” permission is granted. This behavior could be maintained for backward compatibility by enhancing the result of the discovery response.
For example, child resource References provide additional details about a uri when returned in a response. That behavior can be extended to include a “granted” or “denied” value with each returned URI.

6.2.1.1 m2m:childResourceRef
Table 6.3.5.29‑1: Type Definition of m2m:childResourceRef

	Element Path
	Element Data Type
	Multiplicity
	Note

	(base content)
	xs:anyURI
	1
	URI of the child resource using the addressing format specified by the Desired Address Result Type request attribute.

	@name
	m2m:resourceName
	1
	Gives the name of the child resource pointed to by the URI

	@type
	m2m:resourceType
	1
	Gives the resourceType of the child resource pointed to by the URI

	@specializationID
	xs:anyURI
	0..1
	Gives resource type specialization of the child resource pointed to by the URI in case @type represents a <flexContainer>

	@operations
	Xs:permission
	0..n
	Specifies that permission for the specified operation is either ‘granted’ or ‘denied’. This value is included when “operations” is included in the filterCriteria of the request.

If only the URI list is returned, then only resources that match the requested operations would be returned.
This solution addresses #1 and #2a.
6.3.n.2
Solution details
Editor's Note: This clause will describe the solution.

<Text>
6.3.n.3
Evaluation
Editor's Note: This clause will contain a variety of evaluations of this solution.
<Text>
-----------------------End of change 2---

-----------------------Start of change 3---
-----------------------End of change 3---

© 2017 oneM2M Partners

Page 1 (of 2)

