	Doc# PRO-2014-0584R07-XML_serialization.doc
Change Request
	[image: image1.png]

	Change Request

	Group Name:*
	WG3 (PRO)

	Source:*
	QUALCOMM Incorporated (TIA)

	Format:*
	PRO#15

	Date:*
	2015-01-23

	Contact:*
	Wolfgang Granzow, Qualcomm, wgranzow@qti.qualcomm.com

Nobu Uchida, Qualcomm, nuchida@qti.qualcomm.com

	Reason for Change/s:*
	This CR proposes text for the currently empty section on XML serialization (clause 8.3)
Changes in R02 relative to R01:

· Mandating that XML 1.0 shall be used (rather than XML 1.1)
· Removed all appearances of the term “canonical” from the text
· Added the use case that primitives may be embedded as resource attributes into resource instances in clause 8.1
· Removed last sentence of clause 8.1 about implementation-specific usage of short vs. long names
· Removed the hanging paragraph of clause 8.3 (content is covered by 8.1)
· Merged clauses 8.3.1 and 8.3.2 into a single one and simplified the text. Numbered list has been removed and reference to XSD for the primitives included.
· Included an editor’s note into clause 8.3.2 about using short or long names in the example. This should be resolved prior to approval of this document.
Changes in R03 relative to R02:

· Modifications to text requested at PRO14.3

· Minor tidyups to the JSON clause
· Added sections to remove primitiveType parameter

· Removed editor’s note in 8.3.1 about notification data object (CR will be provided with separate CR)
· Added additional editor’s notes
· Renamed short primitive Content parameter as “pc”
Changes in R04 relative to R03:

· Modifications to text requested at PRO15
· Remove Editor’s notes
· Combine Response Code and Status Code into single RSC parameter
· Remove shortnames from main text

· Update examples
· Added missing sections where primitiveType parameter needs to be removed
· Included definition of short names for primitive root elements into clause 8.2.2 (and removed respective Editor’s note)
· Fixed some typos
· Added text at the end of 8.4.3 how JSON serialized request and response primitives can be differentiated
Changes in R05 relative to R04:

· Updated clauses 6.4.1 and 6.4.2 due to overlap with PRO-2015-0687
This has impact on the already agreed CR PRO-2015-627R01 which has been implemented in PRO-2015-688R01-TS-0004V0_8_2.

Clause 6.2.4.33 must be removed, clause 6.3.4.32 requires name changes which have been included into R06 of this CR (see below).
· Table 7.1.1-1: corrected Original ->Originating Timestamp, presence of Response Type NP->O for Notify
· RETRIEVE -> retrieve

· Removed Ed’s note in 7.1.1.2
Changes in R06 relative to R05:

· Inclusion of the corrected clause 6.3.4.32 from PRO-2015-627R01. This obsoletes PRO-2015-627R01.
· Corrected typo in Table 6.4.1-1. Note to rapporteur: references in Note column need to be updated
· Reordered sequence of response primitive parameters in Table 6.4.2-1. Sequence of parameters is now aligned with TS-0001 and with the other corresponding Tables in TS-0004. Toggled data types between To and From parameters.
· Updated Table 7.2.2.3-1 with changes already agreed and included into TS-0004v0_8_2
· Inclusion of Table 8.5.2 (short names) to correct aggregatedNotifications -> aggregatedNotification

· Correction to Table 8.2.2-1: request -> requestPrimitive, response -> responsePrimitive
Remaining issue: check correctness of notation in the XML and JSON examples given in clauses 8.3.2 and 8.4.3, and remove the respective Editor’s Note and text highlighted yellow
Changes in R07 relative to R06:

· changed “aggregatedResponses” to “aggregatedResponse” replaced anonymous by reference to data type definition in clause 6.4.2
· in response primitive, data type of both To and From parameters set to “m2m:ID”
· updated the XML and JSON examples in clause 8.3
correction to Table 7.1.1.2-1: “Primitive Content” -> “Content” and in that row optionality changed from NP to O for Request and Notify

	CR against: Release*
	1

	CR against: TS/TR*
	TS-0004 - V-0.8.0

	Clauses/Sub Clauses*
	2.1, 6.3.3.2.32 , 6.3.4.32, 6.4.1, 6.4.2, 7.1.1, 7.2.1.4, 7.2.2.3, 8.1, 8.2.2, 8.2.5, 8.3, 8.4

	Type of change:*
	 FORMCHECKBOX
 Editorial change

 FORMCHECKBOX
 Bug Fix or Correction

 FORMCHECKBOX
 Change/correction to existing feature or functionality

 New feature or functionality

	Post Freeze checking:*
	This CR contains only essential changes and corrections
 YES FORMCHECKBOX
 NO FORMCHECKBOX

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.

All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
---------------------------- Start of change 1 ---------------------------------
1.1. Normative references

The following referenced documents are necessary for the application of the present document.

[1]
IETF RFC 5139: "Revised Civic Location Format for Presence Information Data Format Location Object (PIDF-LO)". No normative references to this in the text
[2]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

[3]
W3C XMLSchemaP2: "W3C Recommendation (2004), XML Schema Part 2:Datatypes Second Edition.".

[4]
oneM2M TS-0005 “Management Enablement (OMA)” No normative references to this in the text
[5]
oneM2M TS-0006 “Management Enablement (BBF)” No normative references to this in the text
[6]
oneM2M TS-0001 "Functional Architecture"

[7]
oneM2M TS-0003 “Security Solutions”

[8]
IEEE 754-2008: IEEE. IEEE Standard for Floating-Point Arithmetic. 29 August 2008. http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

[9]
IETF RFC 3548: "The *Base16, Base32, and Base64 Data Encodings". 2003.

[10]
IETF RFC 2045: "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies". 1996.

[11]
IETF RFC 3987: "Internationalized Resource Identifiers (IRIs)" . January 2005.

[12]
IETF BCP 47: "Best Current Practices 47". Concatenation of RFC 4646:" Tags for Identifying Languages"(2006) and RFC 4647: "Matching of Language Tags"(2006).

[13]
IETF RFC 3588: "Diameter Base Protocol". September 2003.

[14]
IETF RFC 6733: "Diameter Base Protocol". October 2012.

[15]
3GPP TS 23.682: "Architecture enhancements to facilitate communications with packet data networks and applications" Release 11.

[16]
3GPP TS 29.368: "Tsp interface protocol between the MTC Interworking Function (MTC-IWF) and Service Capability Server (SCS)" Release 11.

[17]
3GPP TS 23.003: "Numbering, addressing and identification".

[18]
IETF RFC 4282: "The Network Access Identifier".

[19]
IETF RFC 7159: "The JavaScript Object Notation (JSON) Data Interchange Format".

[20]
Unicode: "The Unicode Consortium. The Unicode Standard.”

[21]
IETF RFC 3629: "UTF-8, a transformation format of ISO 10646".

[22]
oneM2M TS-0008 CoAP Binding

[23]
oneM2M TS-0009 HTTP Binding

[24]
oneM2M TS-0010 MQTT Binding

[25]
oneM2M TS-0011 Definitions and Acronyms

[26]
IETF RFC 6837: "Media Type Specifications and Registration Procedures".

[27]
ISO 3601:2004; "Data elements and interchange formats -- Information interchange -- Representation of dates and times".
[xx]
W3C, Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation 26 November 2008
---------------------------- End of change 1 ---------------------------------

---------------------------- Start of change 2 ---------------------------------

6.3.3.2.32 void

	
	
	

	
	
	

	
	
	

	

---------------------------- End of change 2 ---------------------------------

---------------------------- Start of change 3 ---------------------------------
1.1.1.1 m2m:aggregatedResponse
Used when aggregating responses by a group.
Table 6.3.4.32‑1: Type Definition of m2m:aggregatedResponse
	Element Path
	Element Data Type
	Multiplicity
	Note

	responsePrimitive
	See Table 6.4.2-1 for details
	1..n
	

---------------------------- End of change 3 ---------------------------------

---------------------------- Start of change 4 ---------------------------------

6.4.1 Request primitive parameter data types

The data types of request primitive parameters are specified in this clause.

Detailed request primitive parameter descriptions and usage can be found in clause 8.1.2 of the Functional Architecture TS-0001 [6]. Further details on the representation of primitives are specified in clauses 7.1.1.1 and 8.
Table 6.4.1‑1: Data Types for Request primitive parameters
	Primitive Parameter
	Data Type
	Multiplicity
	Note

	Operation
	m2m:operation
	1
	See Clause 6.3.3.2.5

	To
	xs:anyURI
	1
	

	From
	m2m:ID
	1
	See Clause 6.3.2

	Request Identifier
	m2m:requestID
	1
	See Clause 6.3.2

	Resource Type
	m2m:resourceType
	0..1
	See Clause 6.3.3.2.1

	Name
	xs:string
	0..1
	

	Content
	m2m:primitiveContent
	0..1
	 See Clause 6.3.4.6

	Originating Timestamp
	m2m:timestamp
	0..1
	

	Request Expiration Timestamp
	m2m:timestamp
	0..1
	“Result Expiration Timestamp” shall be later than “Request Message Expiration Timestamp”

	Result Expiration Timestamp
	m2m:timestamp
	0..1
	

	Operation Execution Time
	m2m:timestamp
	0..1
	

	Response Type
	m2m:responseTypeInfo
	0..1
	See Clause 6.3.4.30

	Result Persistence
	xs:duration
	0..1
	

	Result Content
	m2m:resultContent
	0..1
	See Clause 6.3.3.2.7

	Event Category
	m2m:eventCat
	0..1
	See Clause 6.3.4.1

	Delivery Aggregation
	xs:boolean
	0..1
	

	Group Request Identifier
	xs:string
	0..1
	

	Filter Criteria
	m2m:filterCriteria
	0..1
	See Clause 6.3.4.1

	Discovery Result Type
	m2m:discResType
	0..1
	See Clause 6.3.3.2.8

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

6.4.2 Response primitive parameter data types

The data types of response primitive parameters are specified in this clause.

Detailed response primitive parameter descriptions and usage can be found in clause 8.1.3 of TS-0001 Functional Architecture [6]. Further details on the representation of primitives are specified in clauses 7.1.1.1 and 8.
Table 6.4.2‑1: Data Types for Response primitive parameters
	Primitive Parameter
	Element Data Type
	Multiplicity
	Note

	Response Status Code
	m2m:responseStatus
	1
	See Clause 6.3.4.14

	Request Identifier
	m2m:requestID
	1
	See Clause 6.3.2

	Content
	m2m:primitiveContent
	0..1
	See Clause 6.3.4.5

	To
	m2m:ID
	0..1
	See Clause 6.3.2

	From
	m2m:ID
	0..1
	

	Originating Timestamp
	m2m:timestamp
	0..1
	See Table 6.3.2-1

	Result Expiration Timestamp
	m2m:timestamp
	0..1
	See Table 6.3.2-1

	Event Category
	m2m:eventCat
	0..1
	See Clause 6.3.4.1

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

---------------------------- End of change 4 ---------------------------------

---------------------------- Start of change 5 ---------------------------------
7.1.1.1
Request primitive format

Table 7.1.1.1‑1 summarizes the primitive parameters of the Request primitive, indicating their presence depending on the C, R, U, D or N operations. "M" indicates mandatory, "O" indicates optional, "NP" indicates not present.
Refer to clause 8.1.2 of TS-0001 [6] for additional information on the request primitive parameters.
Table 7.1.1.1‑1: Request Primitive Parameters
	Primitive Parameter
	CREATE
	RETRIEVE
	UPDATE
	DELETE
	NOTIFY

	
	
	
	
	
	

	Operation
	M
	M
	M
	M
	M

	To
	M
	M
	M
	M
	M

	From
	M
	M
	M
	M
	M

	Request Identifier
	M
	M
	M
	M
	M

	Resource Type
	M
	NP
	NP
	NP
	NP

	Name
	O
	NP
	NP
	NP
	NP

	Content
	M
	O
	M
	NP
	M

	Originating Timestamp
	O
	O
	O
	O
	O

	Request Expiration Timestamp
	O
	O
	O
	O
	O

	Result Expiration Time
	O
	O
	O
	O
	O

	Operation Execution Time
	O
	O
	O
	O
	O

	Response Type
	O
	O
	O
	O
	O

	Result Persistence
	O
	O
	O
	O
	NP

	Result Content
	O
	O
	O
	O
	NP

	Event Category
	O
	O
	O
	O
	O

	Delivery Aggregation
	O
	O
	O
	O
	O

	Group Request Identifier
	O
	O
	O
	O
	O

	Filter Criteria
	NP
	O
	O
	O
	NP

	Discovery Result Type
	NP
	O
	NP
	NP
	NP

7.1.1.2
Response primitive format

Table 7.1.1.2‑1 summarizes the primitive parameters for the Response primitive, indicating their presence depending on the C, R, U, D or N operations of the associated Request primitive and whether this operation was successful or caused an error. "M" indicates mandatory, "O" indicates optional, "NP" indicates not present.
Refer to clause 8.1.3 of TS-0001 [6] for additional information on the request primitive parameters.

·
NOTE: Response Code and Status Code parameters are merged into the Response Status Code parameter.

Table 7.1.1.2‑1 : Response Primitive Parameters
	Primitive parameter
	Ack
	CREATE

Success
	RETRIEVE

Success
	UPDATE

Success
	DELETE
Success
	NOTIFY
Success
	Error

	
	
	
	
	
	
	
	

	Response Status Code
	M
	M
	M
	M
	M
	M
	M

	Request Identifier
	M
	M
	M
	M
	M
	M
	M

	Content
	O
	O
	M
	O
	O
	O
	O

	To
	O
	O
	O
	O
	O
	O
	O

	From
	O
	O
	O
	O
	O
	O
	O

	Originating Timestamp
	O
	O
	O
	O
	O
	O
	O

	Result Expiration Timestamp
	O
	O
	O
	O
	O
	O
	O

	Event Category
	O
	O
	O
	O
	O
	O
	O

---------------------------- End of change 5 ---------------------------------

---------------------------- Start of change 6 ---------------------------------

7.2.1.4
Retrieve the <request> resource
When the Originator needs to retrieve information about an associated previously issued non-blocking request, the Originator shall request to retrieve the attributes of the <request> resource. The Originator shall compose the Request primitive with the following parameters and send the Request to the Receiver CSE. See clauses 7.2.2.1.1 and 7.2.2.1.2.

NOTE: The Originator may include optional parameters described in clause 8.1.2 of TS-0001 Functional Architecture [6].
Table 7.2.1.4-1: Request primitive parameter settings
	Parameter Name
	Value

	
	

	Operation
	Retrieve

	To
	This shall be set to the URI of the <request> resource received in the response (acknowledgement) to the previously issued non-blocking request.

	From
	Id of the Originator

	Request Identifier
	The identifier of this request message.

	Content
	Optionally includes the names of attributes that need to be retrieved.

---------------------------- End of change 6 ---------------------------------

---------------------------- Start of change 7 ---------------------------------

7.2.2.3
Create a success response (acknowledgement)
The Receiver CSE shall create a Response primitive. The Receiver CSE shall include the following parameters in the Response primitive.

Table 7.2.2.3-1: Response primitive parameter settings
	Parameter Name
	Value

	
	

	
	

	Response Status Code
	”ACCEPTED”

	Request Identifier
	The value of the parameter Request Identifier in the associated non-blocking request.

	Originating Timestamp
	Timestamp when this message was built

	Content
	Reference to the <request> of the associated non-blocking request

---------------------------- End of change 7 ---------------------------------

---------------------------- Start of change 8 ---------------------------------

8 Representation of primitives in data transfer
8.1 Introduction

This clause defines the representation of request and response primitives as XML documents or JSON texts. The process of translating objects (i.e. primitives in the present context) into a format that can be stored or exchanged between network entities is commonly denoted as serialization or marshalling.

The serialization described here is used it two places:

1. It can be used when transmitting primitives over communication protocols such as HTTP, CoAP or MQTT. When applying a particular protocol binding, it is permitted to adapt the serialization approach, in order to make use of protocol-specific features. For example, a particular protocol binding may require that one or more primitive parameters be mapped to protocol-specific header fields rather than being included in the protocol-specific serialized JSON or XML which represents the message body.
2. Certain instances of resource types, e.g. instances of the <delivery> resource, include serialized primitives embedded in one of their resource attributes.
In order to enable efficient communication, the short names introduced in clause 8.2 shall be applied in XML and JSON serializations to identify primitive parameters and resource attribute names. This implies that short names are applied in any communication over the Mca, Mcc and Mcc’ reference points.
---------------------------- End of change 7 ---------------------------------

---------------------------- Start of change 8 ---------------------------------

8.2.2
Primitive parameters

In protocol bindings primitive parameter names shall be translated into short names of Table 8.2.2-1.

Table 8.2.2-1: Primitive parameter short names

	Parameter Name
	Occurs in
	Short Name

	
	
	

	Operation
	Request
	op

	To
	Request, Response
	to

	From
	Request, Response
	fr

	Request Identifier
	Request, Response
	rqi

	Resource Type
	Request
	ty

	Name
	Request
	nm

	Content
	Request, Response
	pc

	Originating Timestamp
	Request, Response
	ot

	Request Expiration Timestamp
	Request
	rqet

	Result Expiration Timestamp
	Request, Response
	rset

	Operation Execution Time
	Request
	oet

	Response Type
	Request
	rt

	Result Persistence
	Request
	rp

	Result Content
	Request
	rsc

	Event Category
	Request, Response
	ec

	Delivery Aggregation
	Request
	da

	Group Request Identifier
	Request
	gid

	Filter Criteria
	Request
	fc

	Discovery Result Type
	Request
	drt

	Response Status Code
	Response
	rsc

	
	
	

XML serialized representations of primitives employ root element names to differentiate between request and response primitive types (see clause 8.3). These root element names shall be translated into short names as in Table 8.2.2-2.
Table 8.2.2-2: Primitive root element short names

	Root Element Name
	Occurs in
	Short Name

	requestPrimitive
	Request
	req

	responsePrimitive
	Response
	rsp

---------------------------- End of change 9 ---------------------------------

---------------------------- Start of change 10 ---------------------------------

8.2.5
Complex data types members

In protocol bindings complex data types member names shall be translated into short names of Table 8.2.5-1.

Table 8.2.5‑1:: Complex data types members short names

	Parameter Name
	Occurs in
	Short Name

	createdBefore
	filterCriteria, eventNotificationCriteria
	crb

	createdAfter
	filterCriteria, eventNotificationCriteria
	cra

	modifiedSince
	filterCriteria, eventNotificationCriteria
	ms

	unmodifiedSince
	filterCriteria, eventNotificationCriteria
	us

	stateTagSmaller
	filterCriteria, eventNotificationCriteria
	sts

	stateTagBigger
	filterCriteria, eventNotificationCriteria
	stb

	expireBefore
	filterCriteria, eventNotificationCriteria
	exb

	expireAfter
	filterCriteria, eventNotificationCriteria
	exa

	labels
	filterCriteria, eventNotificationCriteria
	lbl

	resourceType
	filterCriteria
	rty

	sizeAbove
	filterCriteria, eventNotificationCriteria
	sza

	sizeBelow
	filterCriteria, eventNotificationCriteriay
	szb

	contentType
	filterCriteria
	cty

	limit
	filterCriteria
	lim

	attribute
	filterCriteria, eventNotificationCriteria
	atr

	resourceStatus
	eventNotificationCriteria, notificationEvent
	rss

	operationMonitor
	eventNotificationCriteria, notificationEvent
	om

	filterUsage
	filterCriteria
	fu

	eventCatType
	eventCat
	ect

	eventCatNo
	eventCat
	ecn

	number
	batchNotify
	num

	duration
	batchNotify
	dur

	singleNotification
	aggregatedNotification
	sgn

	notificationEvent
	singleNotification
	nev

	verificationRequest
	singleNotification
	vrq

	subscriptionDeletion
	singleNotification
	sud

	subscriptionReference
	singleNotification
	sur

	creator
	singleNotification
	cr*

	notificationForwardingURI
	singleNotification
	nfu*

	operation
	operationMonitor
	opr

	originator
	operationMonitor
	org

	accessId
	externalID
	aci

	MSISDN
	externalID
	msd

	action
	actionStatus
	acn

	status
	actionStatus
	sus

	childResource
	All except execInstance, announced resource, management resources from firmware
	ch

	aggregatedNotification
	Primitive Content
	agn

	aggregatedResponse
	Primitive Content
	agr

NOTE: * marked short names have been already assigned in attribute Table 8.2.3-1.
---------------------------- End of change 10 ---------------------------------

---------------------------- Start of change 11 ---------------------------------

8.2 XML serialization
9
9.1.1
10
11
12
12.1.1 Method
XML serialization of request or response primitives refers to the process of representing the primitive as an XML document.

The XML document shall be a well-formed XML document compliant with W3C XML 1.0 [xx]. It shall be restricted to Unicode characters defined in [20] and encoded using UTF-8 as described in RFC 3629 [21].
The structure and data types of XML serialized request and response primitives shall be consistent with the XSD defined in CDT-requestPrimitive-v1_0_0.xsd and CDT-responsePrimitive-v1_0_0.xsd, respectively. The data types used in these XSD files comply with the definitions in clause 6 and clause 7 of this specification.
Note that the XSD files included in the present release employ the long names for primitive parameters and other XML elements and attributes, but the primitive serialization is required to use the corresponding short names (as defined clause 8.2 of this specification).
NOTE: XML Schema files that use short names might be made available at a future date.

The primitive Content parameter is serialized just like any other element of complex type. Generally, the Content parameter may include only a partial set of attributes specified for the resource type as indicated in the Resource Type parameter, e.g. for partial Update or Retrieve Request procedures. For Notification Request primitives, the Content parameter includes a Notification data object as defined in clause 7.4.1.1 and the datatype definition given in CDT-notification-v1_0_0.xsd.
13
13.1.1 Examples
An example that shows a request primitive serialized into an XML document is shown below. This example shows the create request for an instance of a <contentInstance> resource. Only mandatory primitive parameters and resource attributes are shown.

i)
ii)

iii)

<?xml version="1.0" encoding="UTF-8"?>
<m2m:req xmlns:m2m="http://www.onem2m.org/xml/protocols"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.onem2m.org/xml/protocols CDT-requestPrimitive-v1_0_0.xsd">
 <op>1</op>
 <to>//cse1.mym2msp.org/</to>
 <fr>//cse1234/app567</fr>
 <ri>0002bf63</ri>
 <ty>4</ty>
 <pc>
 <cin rn="temp754">
 <cnf>application/xml:1</cnf>
 <con>PHRpbWU+MTc4ODkzMDk8L3RpbWU+PHRlbXA+MjA8L3RlbXA+DQo=</c
 </cin>
 </pc>
</m2m:req>
The XML elements have the following meaning:
· req: Root element of the Request primitive, which includes a reference to an XSD file which defines its datatype.
· op:
Operation parameter of datatype m2m:operation: in this example value = 1 indicates a “Create” operation.
· to:
To parameter of type m2m:anyURI: URI of the target resource.
· fr:
From parameter of type m2m:ID: ID of the Originator (either AE-ID or CSE-ID).
· ri:
Request Identifier parameter of type m2m:requestID: this could e.g. represent a counter number.
· ty:
Resource Type parameter of datatype m2m:resourceType: indicating type of the resource to be created (value = 4 indicates that a <contentInstance> resource shall be created).
· pc:
Content parameter of datatype m2m:primitiveContent: the attributes of the resource to be provided by the Originator.
· cin: Root element of the <contentInstance> resource of datatype m2m:contentInstance: this includes the mandatory attributes (and optional attributes not shown in this example) supplied by the request Originator. The instance name is given in the XML name attribute, here rn="temp754". In this example, the cn parameter includes an instance of a <contentInstance> resource which consists of two attributes: contentInfo (toc) – which specifies base64 encoding - and the content (con) itself.
13.2 JSON serialization
14
14.1.1 Terminology
The following conventions are used in the clause that follows.

· The italicized terms object, member, name, array, number, string, boolean and null are to be interpreted as in RFC 7159 [19]

· The italicized term element is to be interpreted to encompass oneM2M Primitive Parameters, Resource Attributes and other elements or attributes used inside oneM2M complex type definitions
14.1.2 Method
The primitive shall be encoded as a JSON object, conforming to the requirements of RFC 7159 [19]. This JSON object shall be restricted to Unicode characters defined in [20] and encoded using UTF-8 as described in RFC 3629 [21]. The names in each object in the JSON shall be unique.
The structure of the top-level primitive object shall be determined by the datatype definitions in clause 6 and clause 7 of this specification, as follows:

1. Each primitive parameter appears as a member of the top-level primitive object.

2. The top-level member’s name shall be the short name of the parameter, as defined in clause 8.2.

3. The top-level primitive object shall contain only members that correspond to oneM2M primitive parameters.

4. If an element is defined in this specification as having a complex type, then it is serialized in the JSON member as an object and its children are recursively serialized as members of that object, using short names as defined in clause 8.2.

5. The membership of each nested object shall respect the cardinality constraints from the corresponding XSD complex type definition.
6. If an element is defined in this specification as having an atomic data type that is numeric in nature (e.g. xs:integer or a type derived from it) then its value is serialized into the JSON member as a number.

7. If an element is defined as having an atomic data type that is non-numeric then its value is serialized into the JSON member as a string.

8. If an element is defined as xs:boolean (or a type derived from xs:boolean) then it is serialized in the JSON member as a boolean.

9. If an element is defined as having an xs:list type in the corresponding XSD then it is serialized in the JSON member as an array.

10. If an element instance has a null value then it is serialized into the JSON member as a null, regardless of the datatype that it has in the corresponding XSD.
11. If an element is defined as having maxOccurs > 1 in the corresponding XSD then its parent JSON member is serialized as an array.
12. If an element has an XSD data type that is a simple type with XML attributes, then it is serialized in the JSON member as an object. The XML attributes appear as members of that object (using their short names) and the value of the element is serialized as a member of that object with the special name “val”.
13. The members (at each level) may be serialized in any order. The order in which they appear in the corresponding XSD file is immaterial.

The Content parameter is treated just like any other parameter of complex type. It is serialized as an object and its members are the attributes and/or child resource references of the Resource that is being transferred. The Content parameter is not required to contain all the attributes of the Resource.

15
15.1.1 Examples
Here is an example that shows the payload of a request message serialized using JSON:
{“op”: “1”, “fr”: “//xxxxx/2345”, “to”: “//xxxxx/99”, “ri”: “A1234”, “pc”: {“se”: “* 0-5 2,6,10 * * *”}, “ty”: 20}

· op: operation (in this case it’s Create)

· fr: ID of the Originator (either the AE or CSE)

· to: URI of the target resource
· ri: request identifier (this is a string)
· pc: attributes of the resource to be provided by Originator. This is serialized as a nested JSON object

· ty: type of resource to be created (in this case a Schedule resource). This is a number.
Note that the Operation (op) parameter is present only in Request primitives. The presence of this parameter in JSON serialized primitive representations allows to differentiate Request primitives from Response primitives.
---------------------------- End of change 11 ---------------------------------

CHECK LIST

· Does this change request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Does this change request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable?
· Does this change request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
�This sentence can be deleted when we agree to remove "canonical". In this case the above paragraph

© 2014 oneM2M Partners
 Page 20 (of 20)

[image: image1.png]