	Doc# PRO-2015-0880-Clarification_on_XSD_usage(R2mirror).doc
Change Request
	[image: image3.png]

	CHANGE REQUEST

	Meeting:*
	PRO#18

	Source:*
	Qualcomm Inc. (TIA), FUJITSU

	Date:*
	2015-07-22

	Contact:*
	Wolfgang Granzow, Qualcomm, wgranzow@qti.qualcomm.com
Nobu Uchida, Qualcomm, nuchida@qti.qualcomm.com
Josef Blanz, Qualcomm jblanz@qti.qualcomm.com
Fujimoto, Shingo shingo_fujimoto@jp.fujitsu.com

	Reason for Change/s:*
	Clarification on use of XSD to generate data objects with short names

	CR against: Release*
	Release-2

	CR against: WI*
	 FORMCHECKBOX
 Active <Work Item number>
 FORMCHECKBOX
 MNT Maintenance / < Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>

Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0004v2.0.0

	Clauses/Sub Clauses*
	New informative Annex

	Type of change: *
	 FORMCHECKBOX
 Editorial change

 FORMCHECKBOX
 Bug Fix or Correction

 Change to existing feature or functionality

 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR is a mirror CR? YES FORMCHECKBOX
 NO FORMCHECKBOX
 if YES, please indicate the document number of the original CR:
<Document Number)<CR Number of the original CR to the current Release>

	Template Version:23 February 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR

Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.

All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction

This contribution outlines an implementation example where the present oneM2M developed XSD files, featuring long names for data type elements, are used in AE and CSE implementations while still the short names defined in clause 8.2 of TS-0004 are applied in any representations of data transferred over the Mca, Mcc and Mcc’ reference points.
The approach described here has been tested and proven viable in practical AE and CSE implementations.
We therefore conclude that there is no need for the PRO WG to publish and maintain a second set of XSD files which would use the short names in addition to the present set of XSD files
Instead of providing just a discussion document, this contribution is written in form of a proposed new informative Annex to TS-0004, providing guidelines to implementers how the present XSD can be used in AE and CSE implementations.
The approach proposed here essentially employs mapping between long and short names. Such mapping relies on one or more mapping table(s) that must be applied in both directions. Therefore each individual mapping table must have one-to-one correspondence between long and short names.
Clause 8.2 differentiates between following type of mapping tables between long and short names:
1. primitive parameters

2. primitive root elements

3. resource attributes
4. resource (and resource specialization) types

5. complex data type members

Although it is on principle possible to apply several different mapping tables in a mapping function, its implementation would become significantly more complex. In this case, first the element type must be identified, before the applicable mapping table can be selected. Using just a single mapping table enables much simpler implementation.
However, when merging the short and long names defined in clause 8.2 of TS-0004 into a single table, the one-to-one correspondence is lost, since there exist presently a number of duplicated long and short names. In the companion CR PRO-2015-0758R01, besides some general corrections and additions, changes to some specific long/short name pairs are suggested which enable more simple mapping schemes.
-----------------------Start of change 1---

Annex A (informative):
Guidelines for using XSD files in AE and CSE code
A.1. Usage of the oneM2M developed XSD files
The primary purpose of the XSD files developed by oneM2M is described in clause 6.1. This informative Annex provides an example of potential usage of the XSD in practical implementations of oneM2M entities (AE and CSE).

As has been specified in clause 8, to enable efficient communication, the short names introduced in clause 8.2 shall be applied in XML and JSON serializations of request and response primitives to identify primitive parameters, and to identify resource names, resource attribute names and their complex data type members when included in the Content primitive parameter. This implies that short names are applied in any communication over the Mca, Mcc and Mcc’ reference points. Nevertheless, the XSD files included in the present release employ the long names for primitive parameters and any other XML elements and attributes.
This annex provides a possible use case of the oneM2M developed XSD files for information.

A.2. Example AE/CSE implementation featuring mapping between short and long names for XML serialization
Figure X.2-1 shows an example where the oneM2M defined XSD files are used as input to a code generator. Such code generators are available for most object-oriented programming languages such as e.g. Java, C++ and Python. The following descriptions include some code examples given in Python syntax. However, corresponding expressions in C++ or Java look very similar.

Code generators generate a library of XSD binding classes corresponding to each of the data types defined in the input XSD files. This library can then be imported into the source code of the respective programming language which implements an AE or CSE.
For example, if this library is denoted schemaLib, instances of a request primitive and of a resource type <contentInstance>, denoted in the Python source code fragment below as reqPrimInstance (internal representation of m2m:requestPrimitive) and contentInstance1 (as internal representation of m2m:contentInstance), respectively, can simply be generated as follows:

 import schemaLib

 …
 reqPrimInstance = schemaLib.requestPrimitive()

 contentInstance1 = schemaLib.contentInstance()

Each of the instances created in this way represents a data object reflecting the same tree structure as defined in the XSD files that served as input to the code generator.

Any request primitive parameter in reqPrimInstance as defined above can be addressed and assigned values as follows:

 reqPrimInstance.operation = operation #e.g. operation = 1 for CREATE
 reqPrimInstance.to = path #path = address of target resource
 reqPrimInstance.from_ = originator #originator=identifier representing the originator

 reqPrimInstance.requestIdentifier = str(requestIDCounter) #counter in string format
 reqPrimInstance.resourceType = resourceType #e.g. resourceType = 4 for <contentInstance>
Parameters defined as complex type in the XSD such as e.g. the Filter Criteria primitive parameter can be assigned values as follows:

 reqPrimInstance.filterCriteria.createdBefore = ‘20161201T000000’
 reqPrimInstance.filterCriteria.createdAfter = ‘20150501T123000’
 reqPrimInstance.filterCriteria.labels = ‘label1 label2 label3’
 reqPrimInstance.filterCriteria.attribute.append(pyxb.BIND())
 reqPrimInstance.filterCriteria.attribute[0] = schemaLib.attribute("name0","value0")

Note that the class attribute names in the source code are identical with the XML element or attribute names as used in the XSD files (sometimes minor exceptions can occur, for instance in case that a name used in the XSD represents a reserved name in the source code. In such case the code generator typically would append a special suffix to the name, e.g. “_”). Since the XSD uses the long parameter and resource attribute names, these also appear as class attributes in the source code. From an implementation perspective, this is preferable compared to using short names. Using short names in the XSD would result in short names in the source code. However, these short names have essentially lost their semantics and are therefore more difficult do memorize. Any misspelling in the code may easily result in another well-defined short name such that identifying errors in the source code becomes more difficult.
A code generator as considered here, typically also provides a set of class methods and utility functions which allow to generate code objects from a given XML representation, and inversely, to generate XML representations from a code object. For example, consider that a string variable, denote reqPrimXML represents a serialized request primitive as follows (note that this representation corresponds to the example given in clause 8.3.2 but with long names used here):

 reqPrimXML =

 ‘<?xml version="1.0" encoding="UTF-8"?>
 <m2m:requestPrimitive xmlns:m2m="http://www.onem2m.org/xml/protocols"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.onem2m.org/xml/protocols CDT-requestPrimitive-v1_1_0.xsd">
 <operation>1</operation>
 <to>//cse1.mym2msp.org/</to>
 <from>//cse1234/app567</from>
 <requestIdentifier>0002bf63</requestIdentifier >
 <resourceType>4</resourceType>
 <primitiveContent>
 <contentInstance resourceName="temp754">
 <contentInfo>application/xml:1</contentInfo>
 <content>PHRpbWU+MTc4ODkzMDk8L3RpbWU+PHRlbXA+MjA8L3RlbXA+DQo=</content>
 </contentInstance>
 </ primitiveContent>
 </m2m:requestPrimitive>’
Assuming that the auto-generated library schemaLib includes a utility function createFromDocument(), the following code statement creates an instance reqPrimInstance from the XML serialized request primitive in the string variable reqPrimXML:

 reqPrimInstance = schemaLib.createFromDocument(reqPrimXML)
The root element of the XML string (i.e. m2m:requestPrimitive in this example) identifies the template (class) that need to be used to create the data object reqPrimInstance. All value settings of the parameters are taken from the XML string, e.g. reqPrimInstance.operation is set to 1.
The reverse operation, i.e. generation of an XML string from the data object reqPrimInstance is typically possible with a class method toxml() as follows:

 reqPrimXML = reqPrimInstance.toxml()
If any value settings of reqPrimInstance have not been changed in the given code, the above statement generates the same XML string as given above. Both operations, createFromDocument() and toxml(), also allow to verify the compliance of the XML representations with the XSD that was used as input when generating the schemaLib source code.

The question arises, if there is a way to generate XML or JSON representations that include the short names as defined in clause 8.2 when employing XSD with the long names as described above.

The following outlines two possible ways to resolve this issue.

The first straightforward approach is to use a text parser which replaces the long names used in XML or JSON strings with their corresponding short names, or vice-versa. We denote such functions as map_L2S() and map_S2L()
. This approach is illustrated in the box labelled “AE or CSE source code” in Figure X.2-1 for an XML serialized string.

Given a string reqPrimXML representing an XML serialized request primitive with long names as described above, the statement

 reqPrimXML_sh = map_L2S(reqPrimXML)
would produce an XML string that includes the short names as shown in the representation already given in clause 8.3.2.

The reverse operation, generating an XML representation with long names from a representation with short names could be done with

 reqPrimXML = map_S2L(reqPrimXML_sh)

Both mapping functions require a mapping table which includes all long names and their associated short names. The required mapping table can be derived from Tables 8.2.2-1, 8.2.2-2, 8.2.3-1 to 8.2.3-5, 8.2.4-1 and 8.2.5-1.

In order to work in both mapping directions, the mapping table must represent a one-to-one relationship between short and long names.

The second approach is essentially a code-optimized variant of the above first approach.

The source code of the described createFromDocument() and toxml() functions could be extended by the programmer by including the functionality of map_S2L() directly into createFromDocument() and including the functionality of map_L2S() directly into toxml(). An additional function argument could be included which allows to enable and disable the mapping function.

[image: image1]
Figure X.2‑1: Example AE or CSE implementation: processing based on long names, XML representations using short names
A.3. Example AE/CSE implementation featuring mapping between short and long names for JSON serialization
Figure X.3-1 shows an example implementation which employs JSON serialization. The core of this example implementation is identical with the one described above for XML serialization. In the example it is assumed that for producing a JSON representation which is valid against its associated XSD, an XML file is generated first by means of the toxml() function described in clause X.2 above. In this case the mapping from long to short names can be accomplished also with the map_L2S() function used in the XML serialization example. This XML file can then be converted into a structured data representation that allows direct conversion into JSON. When using Python programming language, the most suitable representation is the dictionary format. In Figure X.3-1, the function denoted as xml2dict(), generates a Python dictionary object which in the final operation step is serialized into the XSD-valid JSON representation by means of the json.dumps() function. In order to comply with the requirements for the JSON representation as defined in clause 8.4, it is necessary to adjust the data type of numeric and list-type elements.
At the receiving side of the described implementation example, received JSON data is converted into a Python dictionary object by means of the json.loads() function. This dictionary object is unparsed by means of a function denoted dict.unparse() in Figure X.3-1 which generates directly an instance of the class applicable to the received data which is defined in SchemaLib. During the unparse operation, the mapping is accomplished between the short names included in the received JSON data object and the long names employed in the class definition included in SchemaLib. The unparse operation also implements validation of the compliance of the received JSON data with the XSD.
[image: image3.png]
[image: image2]
Figure X.3‑1: Example AE or CSE implementation with processing based on long names
-----------------------End of change 1---

Set of

XSD files

Code

Generator

AE or CSE source code

library of XSD binding classes and functions

map_S2L()

map_L2S()

createFromDocument()ent

toxml()

processing

objects

with long names

messages including

serialized XML with short names

messages including

serialized XML with short names

JSON

with

short

names

Code

Generator

AE or CSE source code

json.loads()

map_L2S()

dict.unparse()

toxml()

processing

objects

with long names

xml2dict()

json.dumps()

JSON

with

short

names

Set of

XSD files

library of XSD binding classes and functions

�If desired, we could publish executable (Python) code for these functions, or include the code as text in another subclause of this Annex.

© 2015 oneM2M Partners
 Page 8 (of 8)

