	ARC-2015-2043R01-CR_for_subscription-_notificationContentType_attribute(R1)
Change Request
	[image: image3.png]

	

	CHANGE REQUEST

	Meeting:*
	ARC 18

	Source:*
	Huawei Technologies
China academy of information and communications technology

	Date:*
	2015-07-10

	Contact:*
	Jiang Yanping, Huawei, jiangyanping@huawei.com
Mitch Tseng, Huawei, mitch@T-infoserv.com
Tao Yuan, Huawei, taoyuang.tao@huawei.com
Yu Qi , Huawei, yuqi@huawei.com
Luo Song, CAICT, luosong@ritt.cn
Liu Yang, CAICT, liuyang1@ritt.cn

	Reason for Change/s:*
	to correct errors in TS-0001 V1.9.0
R01:change the front page of the contribution

	CR against: Release*
	Release 1

	CR against: WI*
	 FORMCHECKBOX
 Active WI-0041

 FORMCHECKBOX
MNT Maintenace / < Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0001 v1.9.0

	Clauses/Sub Clauses*
	10.2.12.1

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
Bug Fix or Correction
 Change to existing feature or functionality
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES
 NO
This CR may break backwards compatibility with the last approved version of the TS? YES
 NO
This CR is a mirror CR? YES FORMCHECKBOX
 if YES, please indicate the document number of the original CR: <Document Number) : NO FORMCHECKBOX

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
According to TS-0001 V2.2.0, the notificationContentType attribute of subscription resource is modified (Table 9.6.8-2: Attributes of <subscription> resource), but in clause 10.2.12.1, the detailed description of notificationContentType attribute has not been updated accordingly. This contribution is to align the text with the aforementioned Table.
Table 9.6.8-2: Attributes of <subscription> resource

	Attributes of <subscription>
	Multiplicity
	RW/

RO/

WO
	Description

	notificationContentType
	0..1
	RW
	Indicates a notification content type that shall be contained in notifications. The allowed values are:
· “modified attributes”
· “all attributes”
· “ID” of the resource indicated in the eventType condition
If it is not given by the Originator at the creation procedure, default is “all attributes”.

-----------------------Start of change 1---
10.2.12.1
Procedure for Originator of Notifications and Hosting CSEs
When a Hosting CSE receives a <subscription> creation request which needs verification (see clause 10.2.11.2), the Hosting CSE may send a notification to perform subscription verification. In this case, the notification shall include the ID of the Originator of the <subscription> resource creation.
When there is an event for a <subscription> resource, the <subscription> Hosting CSE sends a notification with the following procedures. If the <subscription> resource has creator attribute, the notification shall include the creator.
Further detailed of Hosting CSE related notification policies follow:
The expirationCounter shall be decreased by one when the Hosting CSE successfully sends the notification request to Receiver(s). If the counter meets zero, the corresponding subscription resource is deleted.
In the case when a Originator wants to create batches of notifications rather than have the Hosting CSE send notifications one by one, it may set the batchNotify attribute to express its notification policy. The batchNotify attribute (notification policy) is based on two values, the number of notifications to be batched for delivery, and/or a duration. When the Hosting CSE generates a notification event it checks the batchNotify policy, if a duration value is specified then a timer is started which expires after the duration value. If a number of notifications is specified then notification events are accumulated until the accumulated notification events reaches the specified number. If only the number of notifications is specified then the accumulated notifications are sent as a batch when that number has been reached. If only the duration is specified, then the accumulated notifications are sent as a batch when the timer expires. If both values are set then accumulated notifications are sent as a batch where the Originator specified when either the timer expires or the number is reached whichever happens first. For example, a batchNotify policy having a duration of 10 minutes and a number of 20 notifications will accumulate notifications which is sent when the first of these two conditions are satisfied. The sending order is first-in first out (FIFO). The batch timer is reset upon the batch being sent. notificationEventCat is checked at the time of batch transmission and applied to each notification in the batch. Stored notification events may be dropped according to the notificationStoragePriority and the notificationCongestionPolicy (see clause 9.6.3). When the batchNotify and latestNotify attributes (notification policies) are used together, they enable two ways of sampling notification events. If the number of notification is set high then the duration value will drive the policy, and the latestNotify policy will cause a single event notification every duration period, e.g. send the latest event notification every hour. If the duration value is set high then the number of notifications will drive the policy, and the latestNotify policy will cause a single notification for every specified number of notifications, e.g. send the latest event notification for every 500 events notifications generated. The scope of the batchNotify policy is the Hosting CSE for the one subscription it is set in, it does not extend to transit CSEs.
In the case when an Originator wants to limits the rate at which notifications are sent, it may set the rateLimit attribute (notification policy) to express its notification policy. The rateLimit policy is based on two values, a maximum specified number of events (e.g. 10, 000) that may be sent within some specified rateLimit window duration (e.g. 60 seconds), and the rateLimit window duration. When the Hosting CSE generates a notification event it checks the rateLimit policy and whether the current total number of events sent is less than the maximum number of events within the current rateLimit window duration. If the current total is less than the maximum number then the notification may be sent, if it is equal or more then it is temporarily stored until the end of the current window duration, when the sending of notification events restarts in the next window duration. The sending of notification events continues as long as the maximum number of notification events is not exceeded within the window duration. The rateLimit windows are sequential (not rolling). The rateLimit policy may be used simultaneously with batchNotify and notificationStoragePriority policies. The scope of the rateLimit policy is the Hosting CSE for the one subscription it is set in, it does not extend to transit CSEs.
The pendingNotification attribute (notification policy) indicates the notification procedure to be followed following a connectionless period (due to lack of notification schedule or reachability schedule). When the Hosting CSE generates a notification with the pendingNotification, it shall check the notification schedule of the subscription and the reachability schedule associated with theNotification Target. If there is no restriction then the notification is immediately sent, otherwise the notification may be cached according to the pendingNotification. If caching of retained notifications is supported on the Hosting CSE and contains the subscribed events then pending notification (those that occurred during the period on connectionless) will be sent to Notification Target per the pendingNotification policy. If it is set to the "sendLatest", most recent notification should be sent and it shall have the Event Category set to "latest". If it is set to "sendAllPending", all the missed cached notifications should be sent in the order they occurred. The Hosting CSE may use the pendingNotification policy to determine whether and how many interim notifications to retain in its cache. The pendingNotification policy may be used simultaneously with any other notification policy. The scope of the pendingNotification is the Hosting CSE for the one subscription it is set in, it does not extend to transit CSEs.

[image: image1.emf]time

Noti.1

becomes

eligible

12n

∼∼

Connectionless

(Noti. can’t sent)

n

Connection

If the value of

pendingNotificationis set

to “sendLatest”, the

notification n is only sent

among pending

notifications.

Noti.n is sent

Noti.2

becomes

eligible

Noti.n

becomes

eligible

n+1

n+1

Noti.n+1

becomes

eligible

Noti.n+1 is sent

Figure 10.2.12-1: Notification Mechanism when pendingNotification (sendLatest) is used

[image: image2.emf]time

Noti.1

becomes

eligible

12n

∼∼

Connectionless

(Noti. can’t sent)

Connection

Noti.2

becomes

eligible

Noti.n

becomes

eligible

n+1

n+1

Noti.n+1

becomes

eligible

Noti.n+1 is sent

If the value of

pendingNotificationis set to

“sendAllPending”, the

aggregated notification is sent.

12n

Agg.

Noti.Agg. is sent

Figure 10.2.12-2: Notification Mechanism when pendingNotification (sendAllPending) is used
In the case when a Originator wants (for example in the case where notification events occur on an irregular basis) that notifications are sent for events generated prior to the creation of this subscription, it may set the preSubscriptionNotify attribute (notification policy) to express its notification policy. The preSubscriptionNotify policy is based upon a number of prior notifications that the Originator wants to be sent. When creating a subscription the Hosting CSE checks the preSubscriptionNotify policy. If caching of retained notifications is supported on the Hosting CSE and contains the subscribed events then prior notification events will be sent to Receiver(s) up to the number requested by the preSubscriptionNotify policy. If caching of retained notifications is supported but the available number of prior notification events is less than the number requested then the Hosting CSE shall send those notifications. If caching of retained notifications is not supported the response to the subscription creation request shall contain a warning. The preSubscriptionNotify policy may be used simultaneously with any other notification policy. The scope of the preSubscriptionNotify policy is the Hosting CSE for the one subscription it is set in, it does not extend to transit CSEs.
The latestNotify attribute (notification policy) indicates if the Originator is only interested in the latest state of the subscribed-to resource. If the latestNotify attribute is set, the Hosting CSE shall assign Event Category parameter of value 'latest' of the latest notifications generated pertaining to the subscription created. In the case the Receiver is a transit CSE which forwards or aggregates the notifications before sending to the Originator or the other transit CSEs, upon receiving the notification with the Event Category set to 'latest', the Notification Target shall identify the latest notification with the same subscription reference while storing the notifications locally. When the Receiver as a transit CSE needs to send the pending notifications, it shall send the latest notification. The scope of the latestNotify policy is the Hosting CSE as well as transit CSEs.
The notificationContentType attribute (notification policy) indicates the notification content type that shall be contained in notifications. The notificationContentType values shall be " modified attributes " (i.e. send a modified attribute only), or "all attributes" (i.e. send to all attributes of the surscription resource), or -
“ID” of the resource indicated in the eventType condition. If it is not given by the Originator at the creation procedure, the default is “all attributes”. The scope of the notificationContentType policy is the Hosting CSE for all of a Originator's subscriptions, it does not extend to transit CSEs.
The notificationEventCat attribute (notification policy) indicates an event category of the subscription that will be included in the notification request to be able for the Notification Target to correctly handle the notification. When the notificationEventCat policy is not configured by the Originator, it shall be determined as a default value by the CMDH policy. The scope of the notificationEventCat policy is the Hosting CSE for all of a Originator's subscriptions, it does not extend to transit CSEs.
When the Hosting CSE receives unsuccessful Notify response with subscription verification failure information, the Hosting CSE shall send unsuccessful result to the Originator of the corresponding <subscription> creation procedure if it has not created the <subscription> resource, otherwise the Hosting CSE may delete the corresponding <subscription> resource.
Table 10.2.12-1: Notification Procedure
	Description

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	According to clause 10.1.5 with the following additions:

Content:
· notification data that represents the content of subscribed-to resource may be included. The content is decided by notificationContentType attribute
· subscription reference (i.e. address of the corresponding <subscription> resource) that generates this notification shall be included
· monitored operation and its Originator information shall be included when operationMonitor condition in the eventNotificationCriteria attribute is configured
· notificationForwardingURI in case the subscriber intends the group to aggregate the notifications

	Processing at Originator before sending Request
	Notification is triggered regarding subscription information in a <subscription> resource

	Processing at Receiver
	According to clause 10.1.5

	Information in Response message
	According to clause 10.1.5

	Processing at Originator after receiving Response
	 If the response includes ‘targetRemoval’ indicator which is set as TRUE, then the Notifier(i.e., the Originator of the Notify request) shall perform the procedure in the clause 10.2.12.2.1 (Notification target removal handling procedure).

	Exceptions
	According to clause 10.1.5

-----------------------End of change 1---

CHECK LIST

· Does this change request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Have any mirror crs been posted?
· Does this change request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable?
· Does this change request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
© 2015 oneM2M Partners
 Page 1 (of 7)

[image: image3.png]_1478525294.vsd
time

Noti.1
becomes
eligible

1

2

n

∼

∼

Connectionless
(Noti. can’t sent)

n

Connection

If the value of pendingNotification is set to “sendLatest”, the notification n is only sent among pending notifications.

Noti.n is sent

Noti.2
becomes
eligible

Noti.n
becomes
eligible

n+1

n+1

Noti.n+1
becomes
eligible

Noti.n+1 is sent

_1478525341.vsd
time

Noti.1
becomes
eligible

1

2

n

∼

∼

Connectionless
(Noti. can’t sent)

Connection

Noti.2
becomes
eligible

Noti.n
becomes
eligible

n+1

n+1

Noti.n+1
becomes
eligible

Noti.n+1 is sent

If the value of pendingNotification is set to “sendAllPending”, the aggregated notification is sent.

1

2

n

Agg.

Noti.Agg. is sent

