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Introduction
The current document introduces semantic instances management functionality which enables to provide basic operations for managing the semantic instance including create, update, delete etc. The operations to be provided by the semantic instance management functionality are mapped to oneM2M primitives. The semantic instance management functionality is recommended to be added in the section of Key functionalities for Semantics.
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7.1.2.7.1
SPARQL Update Language
SPARQL 1.1 specified by W3C is used to facilitate querying and manipulating RDF graph content on the Web or in a RDF store. A SPARQL update language is specified to support two categories of update operations on a Graph Store, i.e. Graph Update and Graph Management. In the current document, Graph Update is introduced to manage the addition or removal of triples from some graphs within the Graph Store. The introduction on Graphy Management is out of the scope of current document. 
 In the following subsections a list of graph update operations offered by SPARQL are introduced.
7.1.2.7.1.1
INSERT DATA Operation
The INSERT DATA operation is typically used to add some new triples, given inline in the request, into a graph stored in the Graph Store. If the graph does not exist and it can not be created for any reason, then a failure MUST be returned.
The operation can be executed by running this command:  INSERT DATA triple_name  { GRAPH <g>  {PAYLOAD}}
where triple_name is the name of a graph into which you want to create new triples.

Many exeception cases can be handled such as:

· If the data with triple_name is requested to insert a graph that does not exist in the Graph Store, then the graph should be created if creation of a new graph is permitted, otherwise failure message will be responded. 

· If the triple_name is NULL, then the default graph is presumed.
The operation can be executed using HTTP verbs by running the below command: 
·  Case1: a specific graph is targeted by <graph_uri>
PUT / rdf-graph-store?graph=_graph_uri_.. HTTP/1.1
    Host: host_name_
    Content-Type: text/turtle
    ... #RDF payload ...    

    DROP SILENT GRAPH <graph_uri>;

INSERT DATA { GRAPH <graph_uri> { .. RDF payload .. } }   
· Case2: the default graph is targeted

PUT / rdf-graph-store?default HTTP/1.1

    Host: host_name_
    Content-Type: text/turtle
    ... #RDF payload ...    

    DROP SILENT DEFAULT;

    INSERT DATA { .. RDF payload .. } 

7.1.2.7.1.2
DELETE DATA Operation
The DELETE DATA operation is responsible for removing some triples, given inline in the request, from a graph stored in the Graph Store.
The operation can be executed by running this command:  DELETE DATA triple_name  { GRAPH <g>  {PAYLOAD}}.
As with INSERT DATA, DELETE DATA is meant for deletion of ground triples which results in that triple_name that contains blank nodes is disallowed in DELETE DATA operations.
The operation can be executed using HTTP verbs by running the below command: 
· Case1: a specific graph is targeted by <graph_uri>
DELETE / rdf-graph-store?graph=_graph_uri_.. HTTP/1.1
    Host: host_name_
    Content-Type: text/turtle
    ... #RDF payload ...    

DELETE DATA { GRAPH <graph_uri> { .. RDF payload .. } }

· Case2: the default graph is targeted

DELETE / rdf-graph-store?default HTTP/1.1

    Host: host_name_
    Content-Type: text/turtle
    ... #RDF payload ...    


DELETE DATA { { .. RDF payload .. } }

7.1.2.7.1.3
DELETE/INSERT Operation 

The DELETE/INSERT operation can be used to remove or add triples from/to the Graph Store based on bindings for a query pattern specified in a WHERE clause.  In other words, the DELETE/INSERT operation can be used to overwrite a specific triples stored in a Graph Store. According to the definition of DELETE/INSERT operation, DELETE and INSERT operation are executed sequently and if the DELETE clause is omitted then only INSERT operation only inserts data. Same action happens as INSERT operation is omitted. 
In order to fit our requirement for updating (overwriting) a specific semantic instance, we assume that both DELETE/INSERT operation can be executed sequently and guarantee that DELETE and INSERT are supposed to always be executed.
The operation can be executed using HTTP verbs by running below command: 
· Case1: a specific graph is targeted by <graph_uri>  (change graph)
POST / rdf-graph-store?graph=_graph_uri_.. HTTP/1.1
    Host: host_name_
    Content-Type: text/turtle
    ... #RDF payload ...    

DELETE DATA { GRAPH <graph_uri> { .. RDF payload 1.. } }

INSERT DATA { GRAPH <graph_uri> { .. RDF payload 2.. } }   
· Case2: the default graph is targeted (change graph)
POST / rdf-graph-store?default HTTP/1.1

    Host: host_name_
    Content-Type: text/turtle
    ... #RDF payload ...    


DELETE DATA { { .. RDF payload 1.. } }

INSERT DATA { { .. RDF payload 2.. } }  
· Case3: the default graph is targeted (add new graph)
POST / rdf-graph-store?default HTTP/1.1

    Host: host_name_
    Content-Type: text/turtle
    ... #RDF payload ...    

INSERT DATA { { .. RDF payload .. } }  
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8.5.3.5 Semantic Instance Management
8.5.3.5.1 Overview
The management of semantic instances stored in the <semantic descriptor> resource could be one of key functionalities for semantics especially when it comes to dealing with the create, update and delete operations against semantic instances. A simple way to deal with the update of semantic instances is to overwrite the whole <semantic descriptor> resource which might lead to data redundancy problem. A more efficient approach is in need to handle the management of semantic instances. We propose an approach using functions e.g SPARQL HTTP POST, SPARQL HTTP PUT etc provided by SPARQL to update or create semantic instances.

8.5.3.5.2 Concrete Example of Managing Semantic Instance
In the oneM2M system, to change a semantic instances in the <semantic descriptor> resources, the system have to change whole semantic instances
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Host: example.com
Method: POST

<body>data

<rdf:RDF

"http://www.tno.com/sareffWASH LG 123">
<rdf:type

rdf.resource="http://www.tno.com/saref#WashingMachine"/>
<saref-hasManufacturer>Samsung</saref:hasManufacturer>
</rdf:Description>

oneM2M Resource Structure

Device A

Operation A

V.

e = = e
<rdf:RDF>
<rdf:Description rdf:about="http://www.tno.com/saref{WASH LG 123">

<rdf:type rdf:resource="http

.tno.com/saref#fWashingMachine”/>

<saref-hasManufacturer>LG</saref-hasManufacturer>
</rdf:Description>

<After>
<rdf:RDF>
<rdf:Description rdf:about="htt,

/www.tno.com/sarefSWASH_LG_123">

<rdf:type rdf:resource="http:

'www.tno.com/saref#WashingMachine"/>

<saref:hasManufacturer>Samsung</saref:hasManufacturer>
</rdf:Description>





Figure X: Concreate example of managing semantic instance in the oneM2M system
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8.5.3.5.3
Managing Semantic Instances using SPARQL update operation
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