	Doc# MAS-2015-0624R01-CR_TR-0007_Ontology_support.doc
Change Request
	[image: image6.png]

	

	CHANGE REQUEST

	Meeting:*
	MAS#19

	Source:*
	InterDigital, NEC

	Date:*
	2015-09-07

	Contact:*
	Catalina Mladin, InterDigital, Catalina.Mladin@InterDigital.com
Martin Bauer, NEC, martin.bauer@neclab.eu

	Reason for Change/s:*
	Introducing architectural support for ontologies

	CR against: Release*
	Rel-2

	CR against: WI*
	 FORMCHECKBOX
 Active WI-5

 FORMCHECKBOX
 MNT Maintenance / < Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TR-0007 V.2.5.0

	Clauses/Sub Clauses*
	

	Type of change: *
	 FORMCHECKBOX
 Editorial change

 FORMCHECKBOX
 Bug Fix or Correction

 Change to existing feature or functionality

 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO
This CR is a mirror CR? YES FORMCHECKBOX
 if YES, please indicate the document number of the original CR: <Document Number) : NO FORMCHECKBOX

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
Introducing resources to support ontology storage, discovery, queries, etc. is necessary for Rel-2 sematic functionality support.
-----------------------Start of change 1---

8.5.4
Ontology Support Resources

8.5.4.1
Overview

As identified in the requirements, storage, discovery and management of ontologies within the oneM2M platform are key for supporting basic and advanced semantic functionalities within the oneM2M platform. In general, the M2M system needs to represent knowledge as a hierarchy of concepts (ontologies), either external or internal to the M2M domain, using a shared vocabulary to denote the classes, properties and interrelationships of those concepts.
In the following subsections architectural support for Ontology-related functionality is introduced.
8.5.4.2
Ontology Repository
An Ontology Repository is capable of storing multiple ontologies in the unified languages adopted by the M2M system, e.g. RDFS/OWL. For easy illustration of the examples, in this section we assume the M2M system adopts RDFS/OWL in describing ontologies. Figure 8.5.4.2-1 provides an example of Ontology Repository with the oneM2M Base Ontology, SSN and Saref ontologies represented by individual resources.

This structure provides support for re-use of existing ontologies, the ability to access both internal and external ones and for ontology import into the system. It also allows to fulfil the requirements for ontology discovery, as well as addition and updates, via CRUD operations.

[image: image1.emf]OntologyRepositorySarefSSNoneM2M Base

Figure 8.5.4.2-1 Ontology Repository example

Resources of type <CSEBase> and <AE> optionally can have one Ontology Repository resource. The ontology resource is further described in the following sections.
8.5.4.3
Ontology Resource

The <ontology> resource is used to store the representation of an ontology. This representation may contain ontology descriptions in a variety of formats, given the requirements for re-use of existing ontologies, for support for ontologies available only externally and for support of ontology import into the system. The ontology description is made available to the semantic-related functions of the oneM2M system provided by applications or CSEs.
Various approaches to defining an ontology resource are identified in the following sections, with the goal of providing an architecture to support all the identified requirements, as well as the flexibility needed for advanced features.

The “Unstructured” approach seeks to provide the oneM2M system access to any ontology document in a format supported by the system. The “Structured” approach aims to provide a oneM2M resource structure suitable for representing ontology information within the system. Another method seeks to provide flexibility in using both of these concepts through a dual use approach.
8.5.4.3.1
Use of Ontologies
In the following, a number of examples are given what applications, but also the semantic functionalities supported by the oneM2M platform itself, may need from an ontology.

1. get all classes of an ontology
2. get all object | data properties of ontology
3. get direct subclasses of class A
4. get also transitive subclasses class A
e.g. if information from instances of class A is requested, all subclasses of class A also need to be included as they are also instances of class A
5. get all the superclasses of class A
e.g. if for derived ontologies the class of the base ontology needs to be found from which the class is derived, for example to apply rules defined for the base ontology, e.g. for creating a resource structure
6. get all object | data properties where class A is in the domain
e.g. to find out what properties an instance of class A can possibly have
7. get all object | data properties where class A is in the range
8. get all sub-properties of a property A
e.g. if information concerning property A is requested all sub-properties of A also need to be included
9. get classes that are equivalent to class A
8.5.4.3.1
Unstructured approach

Using OWL 2.0 as an ontology format example to be supported by the oneM2M system and based on W3C specifications (http://www.w3.org/TR/owl2-syntax/#IRIs) the following apply:

“Ontologies and their elements are identified using Internationalized Resource Identifiers (IRIs) [RFC3987]; thus, OWL 2 extends OWL 1, which uses Uniform Resource Identifiers (URIs). Each IRI MUST be absolute (i.e., not relative). In the structural specification, IRIs are represented by the IRI UML class. Two IRIs are structurally equivalent if and only if their string representations are identical.”
And

“Ontology documents are not represented in the structural specification of OWL 2, and the specification of OWL 2 makes only the following two assumptions about their nature:

• Each ontology document can be accessed via an IRI by means of an appropriate protocol.

• Each ontology document can be converted in some well-defined way into an ontology (i.e., into an instance of the Ontology UML class from the structural specification).”
Therefore current methods of accessing and importing ontologies requires access to the respective ontology document via an IRI (Internationalized Resource Identifiers) as specified in RFC3987. Given that access to the ontology document has been obtained, this approach also provides for local storage of the document in a content attribute which is available to the platform based on access control rules.

Given the possible need to have access to multiple versions of an ontology, and to different formats, a specialized attribute contentFormat provides information necessary for the system to interpret the information available in the content attribute.

[image: image2.emf]OntologycontentFormatcontentdescription<subscription>0..n0..10..n0..n

Figure 8.5.4.3.1-1: <ontology> resource for ontology document access
The <ontology> resource above contains the child resources specified in table 8.5.4.3.1-1.
Table 8.5.4.3.1-1: Child resources of <ontology> resource in the unstructured approach
	Child Resources of <semanticDescriptor>
	Child Resource Type
	Multiplicity
	Description

	[variable]
	<subscription>
	0..n
	See [i.39], clause 9.6.8 where the type of this resource is described.

The <ontology> resource above contains the attributes specified in table 8.5.4.3.1-2.
Table 8.5.4.3.1-2: Attributes of <ontology> resource in the unstructured approach
	Attribute Name
	Multiplicity
	RW/RO/WO
	Description

	expirationTime
	1
	RW
	See clause 9.6.1 in Error! Reference source not found..

	Labels
	0..1
	RW
	See clause 9.6.1 in Error! Reference source not found..

	creationTime
	1
	RO
	See clause 9.6.1 in Error! Reference source not found..

	lastModifiedTime
	1
	RO
	See clause 9.6.1 in Error! Reference source not found..

	Description
	0..1
	RW
	Text description of the ontology

	contentFormat
	1..n
	RW
	Attribute providing information about the format of the content attribute. It may indicate the content as:

IRI – for an ontology to be accessed via the IRI provided in the content attribute

OR

File format – for an ontology for which the document is stored in the content attribute. In this case contentFormat also provides a description of the ontology format, e.g. OWL, Turtle, etc.

	Content
	0..n
	RW
	Depending on the contentFormat attribute, it may be interpreted either as:

The IRI of the corresponding ontology document

OR

The content of the corresponding ontology document

SPARQL request on ontology procedure via Retrieve Operation

This procedure shall be used for SPARQL requests to <ontology> resources. A Semantic Request parameter, defined as follows has to be provided:

· Semantic Request: Contains a SPARQL request to be executed on the ontology content.
The contentFormat attribute of the <ontology> has to represent a file format. The result corresponds to the result of the execution of the SPARQL request on the content attribute of the <ontology> resource and shall be returned to the Originator using a successful Response message.
Editor's note: The table detailing the SPARQL request on ontology procedure needs to be provided.
In the following, the SPARQL content for the Semantic Request parameter for all the examples defined in Section 8.5.4.3.1 is given:
1. get all classes of an ontology
SELECT ?subject WHERE { ?subject rdfs:subClassOf+ owl:Thing }
2. get all object | data properties of ontology
SELECT ?subject WHERE { {?subject rdf:type+ owl:ObjectProperty } UNION {?subject rdf:type+ owl:DatatypeProperty } }
3. get direct subclasses of class A
SELECT ?subject WHERE { ?subject rdfs:subClassOf saref:Command }
4. get also transitive subclasses class A
SELECT ?subject WHERE { ?subject rdfs:subClassOf + saref:Command }
5. get all the superclasses of class A
SELECT ?object WHERE { saref:SetAbsoluteLevelCommand rdfs:subClassOf + ?object }
6. get all object | data properties where class A is in the domain
SELECT ?subject ?object WHERE { ?subject rdfs:domain saref:Service }
7. get all object | data properties where class A is in the range
SELECT ?subject ?object WHERE { ?subject rdfs:range saref:Command }
8. get all sub-properties of a property A
SELECT ?subject WHERE { ?subject rdfs:subPropertyOf om:singular_unit
9. get classes that are equivalent to class A
SELECT ?class WHERE {{ saref:Device owl:equivalentClass ?class} UNION {?class owl:equivalentClass saref:Device}}
8.5.4.3.2
Structured approach

The structured approach provides a oneM2M resource structure suitable for representing ontology information within the system.

In this case, the resource structure seeks to represent and maintain all the class and relationship information provided by the ontology definition. As such individual <class> and <relationship> sub-resources are defined, with attributes providing the corresponding mapping.

[image: image3.emf]Ontologydescription<subscription>0..n0..10..n0..n<relationship><class>

Figure 8.5.4.3.2-1: <ontology> resource for ontology document access
The <ontology> resource above contains the child resources specified in table 8.5.3.3.2-1.
Table 8.5.4.3.2-1: Child resources of <ontology> resource in the structured approach
	Child Resources of <semanticDescriptor>
	Child Resource Type
	Multiplicity
	Description

	[variable]
	<class>
	0..n
	

	[variable]
	<relationship>
	0..n
	

	[variable]
	<subscription>
	0..n
	See [i.39], clause 9.6.8 where the type of this resource is described.

The description attribute provides high-level description of the ontology. The attributes of two sub-resources are detailed in the following tables, providing also examples based on the oneM2M Base Ontology. Additional attributes may be envisioned and added for to further enable new functionality.

Table 8.5.4.3.2-2: Attributes of <class> resource
	Attribute Name
	Multiplicity
	RW/RO/WO
	Description

	isSubjectOf
	1..n
	RW
	URI(s) of a <relationship> resource for which the class is a subject
E.g. for oneM2M Base class <Service> this attribute may be the URI of: <hasOperation>, <consistsOf>,

	isObjectOf
	1..n
	RW
	URI(s) of a <relationship> resource for which the class is an object
E.g. for oneM2M Base class <Service> this attribute may be the URI of: <hasService>, <isExposedBy>

	hasSubclass
	0..n
	RW
	URI to another class which is a subclass of the one being defined E.g. for oneM2M Base class <thing> this attribute may be the URI of <device>

	isSubclassOf
	0..n
	RW
	URI to another class resource which is a superclass of the one being defined
E.g. for oneM2M Base class <device> this attribute may be the URI of <thing>

	equivalentTo
	0..n
	RW
	URI to another class resource which is the equivalent of this class.

Table 8.5.4.3.2-2: Attributes of <relationship> resource

	Attribute Name
	Multiplicity
	RW/RO/ WO
	Description

	relationshipCategory
	0..n
	RW
	Optional, describes the relationship type, e.g. Synonymy, Antonymy, Hyponymy, Meronymy, Holonymy.

	hasSubject
	1..n
	RW
	URI(s) of a <class> resource who is a subject for this relationship

	hasObject
	1.. n
	RW
	For Object relationships/properties, a URI(s) to a class which is the object for this relationship. For Data properties it would contain a data type

	restriction
	0..n
	RW
	Restrictions posed by this relationship, as they map to the OWL use of restriction

Figures 8.5.4.3.2-1 and 8.5.4.3.2-2 further detail how the oneM2M Base Ontology would be represented using the structured approach (not all of the currently defined classes and relationships have been depicted).

Note: Notations like <serviceClass> and<hasOperationRel> are meant to convey that these represent the <service> resource of <class> type and <hasOperation> resource of <relationship> type. The notation isSubjectOf (hasOperation) denotes an attribute of isSubject of type with the value hasOperation.

[image: image4.emf]Ontology<is_aRel><serviceClass><subscription>IsSubjectOf(refersTo)IsObjectOf(hasFunctrionality)<is_exposed_byRel><hasOperationRel><consists_ofRel>isSubjectOf (hasOperation)IsObjectOf(Is exposed by)<measuringClass><controllingClass><functionalityClass><refersToRel>IsObjectOf(is_a)IsObjectOf(is_a)HasSubject(Functionality)HasObject(measuring)HasSubject(Functionality)HasObject(Service)HasSubject(Service)HasObject(Operation)HasSubject(Functionality)HasObjec(Aspect)HasSubject(Service)HasObject(Service)isSubjectOf (consistsOf)IsObjectOf(hasService)HasObjectL(controlling)IsObjectOf(is_a)

Figure 8.5.4.3.2-2: Example of <ontology> resource as a representation of the oneM2M Base Ontology
Editor's Note: Not all aspects of ontologies are represented as resources yet, e.g. individuals and implicitly defined classes.
8.5.4.3.3
Dual approach
The unstructured approach presented above has the advantage of providing direct access to the ontology file which then can be locally stored, cached, etc. It represents a simple method of accessing a broad range of ontologies in a straightforward manner. Using semantic requests on <ontology> resources, the aspects of the ontology relevant to the requester can be retrieved, making use of the full expressiveness of SPARQL.

Editor's Note: SPARQL can also be used for partial updates, which has not been described yet,
The structured approach, in turn enables creates a resource representation of the ontology that creates a resource for every aspect of the ontology.. The resource structure enables inter-ontology mapping within the platform, as well as providing ways for representing ontology extensions, especially to externally defined ontologies. It also enables use of ontology sections and easier to identify partial updates of the ontology, which may trigger semantic annotation updates. It is also envisioned to enable reasoning-related features, as each class/ relationship is discoverable and addressable.

Figure 8.5.4.3.3-1 presents a dual mode approach to the ontology resource definition which allows both representations to be used by the system, for maximum flexibility and increased system capabilities.

[image: image5.emf]OntologycontentFormat<relationship>content<class>description<subscription>IsSubjectOfhasSubclass0..n1..n0..n0..nIsObjectOf1..nisSubclassOfequivalentTo0..n0..n0..n0..10..nrelationshipCategoryhasSubject1..n0..nhasObjectrestriction1..n1..n0..n

Figure 8.5.4.3.3-1: Ontology resource structure in the Dual Approach
-----------------------End of change 1---

© 2015 oneM2M Partners
 Page 1 (of 9)

[image: image6.png]Ontology

description
<subscription>
0..n
0..1
0..n
0..n
<relationship>
<class>

Ontology
<is_aRel>
<serviceClass>
<subscription>
IsSubjectOf(refersTo)
IsObjectOf(hasFunctrionality)
<is_exposed_byRel>
<hasOperationRel>
<consists_ofRel>
isSubjectOf (hasOperation)
IsObjectOf(Is exposed by)
<measuringClass>
<controllingClass>
<functionalityClass>
<refersToRel>
IsObjectOf(is_a)
IsObjectOf(is_a)
HasSubject(Functionality)
HasObject(measuring)
HasSubject(Functionality)
HasObject(Service)
HasSubject(Service)
HasObject(Operation)
HasSubject(Functionality)
HasObjec(Aspect)
HasSubject(Service)
HasObject(Service)
isSubjectOf (consistsOf)
IsObjectOf(hasService)
HasObjectL(controlling)
IsObjectOf(is_a)

OntologyRepository

Saref
SSN
oneM2M Base

Ontology
contentFormat
<relationship>

content
<class>
description
<subscription>
IsSubjectOf
hasSubclass
0..n
1..n
0..n
0..n
IsObjectOf
1..n
isSubclassOf
equivalentTo
0..n
0..n
0..n
0..1
0..n
relationshipCategory
hasSubject
1..n
0..n
hasObject
restriction
1..n
1..n
0..n

Ontology
contentFormat

content
description
<subscription>
0..n
0..1
0..n
0..n

