	Doc# MAS-2015-0634R04-CR_TR-0007_Management_of_Semantic_Instance
Change Request
	[image: image2.png]

	

	CHANGE REQUEST

	Meeting:*
	MAS#19

	Source:*
	KETI

	Date:*
	2015-09-07

	Contact:*
	Minwoo Ryu, Jaeho Kim, Sungchan Choi, Ting Martin Miao, KETI, minu@keti.re.kr

	Reason for Change/s:*
	Introducing semantic instances management functionality

	CR against: Release*
	Rel-2

	CR against: WI*
	 FORMCHECKBOX
 Active WI-5

 FORMCHECKBOX
 MNT Maintenance / < Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TR-0007 V.2.5.0

	Clauses/Sub Clauses*
	

	Type of change: *
	 FORMCHECKBOX
 Editorial change

 FORMCHECKBOX
 Bug Fix or Correction

 Change to existing feature or functionality

 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO
This CR is a mirror CR? YES FORMCHECKBOX
 if YES, please indicate the document number of the original CR: <Document Number) : NO FORMCHECKBOX

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
The current document introduces semantic instances management functionality which enables to provide basic operations for managing the semantic instance including create, update, delete etc. The operations to be provided by the semantic instance management functionality are mapped to oneM2M primitives. The semantic instance management functionality is recommended to be added in the section of Key functionalities for Semantics.
-----------------------Start of change 1---

7.1.2.7.1
SPARQL Update Language
SPARQL 1.1 specified by W3C is used to facilitate querying and manipulating RDF graph content on the Web or in a RDF store. A SPARQL update language is specified to support two categories of update operations on a Graph Store, i.e. Graph Update and Graph Management. In the current document, Graph Update is introduced to manage the addition or removal of triples from some graphs within the Graph Store. The introduction on Graphy Management is out of the scope of current document.
 In the following subsections a list of graph update operations offered by SPARQL are introduced.
7.1.2.7.1.1
INSERT DATA Operation
The INSERT DATA operation is typically used to add some new triples, given inline in the request, into a graph stored in the Graph Store. If the graph does not exist and it can not be created for any reason, then a failure MUST be returned.
The operation can be executed by running this command: INSERT DATA triple_name { GRAPH <g> {PAYLOAD}}
where triple_name is the name of a graph into which you want to create new triples.

Many exeception cases can be handled such as:

· If the data with triple_name is requested to insert a graph that does not exist in the Graph Store, then the graph should be created if creation of a new graph is permitted, otherwise failure message will be responded.

· If the triple_name is NULL, then the default graph is presumed.
The operation can be executed using HTTP verbs by running the below command:
· Case1: a specific graph is targeted by <graph_uri>
PUT / rdf-graph-store?graph=_graph_uri_.. HTTP/1.1
 Host: host_name_
 Content-Type: text/turtle
 ... #RDF payload ...

 DROP SILENT GRAPH <graph_uri>;

INSERT DATA { GRAPH <graph_uri> { .. RDF payload .. } }
· Case2: the default graph is targeted

PUT / rdf-graph-store?default HTTP/1.1

 Host: host_name_
 Content-Type: text/turtle
 ... #RDF payload ...

 DROP SILENT DEFAULT;

 INSERT DATA { .. RDF payload .. }

7.1.2.7.1.2
DELETE DATA Operation
The DELETE DATA operation is responsible for removing some triples, given inline in the request, from a graph stored in the Graph Store.
The operation can be executed by running this command: DELETE DATA triple_name { GRAPH <g> {PAYLOAD}}.
As with INSERT DATA, DELETE DATA is meant for deletion of ground triples which results in that triple_name that contains blank nodes is disallowed in DELETE DATA operations.
The operation can be executed using HTTP verbs by running the below command:
· Case1: a specific graph is targeted by <graph_uri>
DELETE / rdf-graph-store?graph=_graph_uri_.. HTTP/1.1
 Host: host_name_
 Content-Type: text/turtle
 ... #RDF payload ...

DELETE DATA { GRAPH <graph_uri> { .. RDF payload .. } }

· Case2: the default graph is targeted

DELETE / rdf-graph-store?default HTTP/1.1

 Host: host_name_
 Content-Type: text/turtle
 ... #RDF payload ...

DELETE DATA { { .. RDF payload .. } }

7.1.2.7.1.3
DELETE/INSERT Operation

The DELETE/INSERT operation can be used to remove or add triples from/to the Graph Store based on bindings for a query pattern specified in a WHERE clause. In other words, the DELETE/INSERT operation can be used to overwrite a specific triples stored in a Graph Store. According to the definition of DELETE/INSERT operation, DELETE and INSERT operation are executed sequently and if the DELETE clause is omitted then only INSERT operation only inserts data. Same action happens as INSERT operation is omitted.
In order to fit our requirement for updating (overwriting) a specific semantic instance, we assume that both DELETE/INSERT operation can be executed sequently and guarantee that DELETE and INSERT are supposed to always be executed.
The operation can be executed using HTTP verbs by running below command:
· Case1: a specific graph is targeted by <graph_uri> (change graph)
POST / rdf-graph-store?graph=_graph_uri_.. HTTP/1.1
 Host: host_name_
 Content-Type: text/turtle
 ... #RDF payload ...

DELETE DATA { GRAPH <graph_uri> { .. RDF payload 1.. } }

INSERT DATA { GRAPH <graph_uri> { .. RDF payload 2.. } }
· Case2: the default graph is targeted (change graph)
POST / rdf-graph-store?default HTTP/1.1

 Host: host_name_
 Content-Type: text/turtle
 ... #RDF payload ...

DELETE DATA { { .. RDF payload 1.. } }

INSERT DATA { { .. RDF payload 2.. } }
· Case3: the default graph is targeted (add new graph)
POST / rdf-graph-store?default HTTP/1.1

 Host: host_name_
 Content-Type: text/turtle
 ... #RDF payload ...

INSERT DATA { { .. RDF payload .. } }
-----------------------End of change 1---

-----------------------Start of change 2---

8.5.3.5 Semantic Instance Management
8.5.3.5.1 Overview
The management of semantic instances stored in the <semantic descriptor> resource could be one of key functionalities for semantics especially when it comes to dealing with the create, update and delete operations against semantic instances. A simple way to deal with the update of semantic instances is to overwrite the whole <semantic descriptor> resource which might lead to data redundancy problem. A more efficient approach is in need to handle the management of semantic instances. We propose an approach using functions e.g SPARQL HTTP POST, SPARQL HTTP PUT etc provided by SPARQL to update or create semantic instances.

8.5.3.5.2 Concrete Example of Managing Semantic Instance
In the oneM2M system, to change a semantic instances in the <semantic descriptor> resources, the system have to change whole semantic instances
[image: image1.png]Apllication

Host: example.com
Method: POST

<body>data

<rdf:RDF

"http://www.tno.com/sareffWASH LG 123">
<rdf:type

rdf.resource="http://www.tno.com/saref#WashingMachine"/>
<saref-hasManufacturer>Samsung</saref:hasManufacturer>
</rdf:Description>

oneM2M Resource Structure

Device A

Operation A

V.

e = = e
<rdf:RDF>
<rdf:Description rdf:about="http://www.tno.com/saref{WASH LG 123">

<rdf:type rdf:resource="http

.tno.com/saref#fWashingMachine”/>

<saref-hasManufacturer>LG</saref-hasManufacturer>
</rdf:Description>

<After>
<rdf:RDF>
<rdf:Description rdf:about="htt,

/www.tno.com/sarefSWASH_LG_123">

<rdf:type rdf:resource="http:

'www.tno.com/saref#WashingMachine"/>

<saref:hasManufacturer>Samsung</saref:hasManufacturer>
</rdf:Description>

Figure X: Concreate example of managing semantic instance in the oneM2M system

·
·
·

8.5.3.5.3
Managing Semantic Instances using SPARQL update operation

·

·

·

·

·

·

·

-----------------------End of change 2---

© 2015 oneM2M Partners
 Page 1 (of 5)

[image: image2.png]