	PRO-2015-0915R04-RootElements_in_XSD&JSON
	[image: image2.png]

	

	CHANGE REQUEST

	Meeting:*
	PRO#19

	Source:*
	Qualcomm Inc. (TIA)

	Date:*
	2015-08-30

	Contact:*
	Wolfgang Granzow, Qualcomm, wgranzow@qti.qualcomm.com
Nobu Uchida, Qualcomm, nuchida@qti.qualcomm.com

	Reason for Change/s:*
	It is currently unclear if JSON representations of the Content primitive parameter shall include a root element as required in XML representations or not. This contribution proposes alignment between XML and JSON representations.

	CR against: Release*
	Release 1

	CR against: WI*
	 FORMCHECKBOX
 Active <Work Item number>
 FORMCHECKBOX
 MNT Maintenace / < Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>

Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0004 V.1.3.0

	Clauses/Sub Clauses*
	N/A

	Type of change: *
	 FORMCHECKBOX
 Editorial change

 FORMCHECKBOX
 Bug Fix or Correction

 FORMCHECKBOX
 Change to existing feature or functionality

 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR is a mirror CR? YES FORMCHECKBOX
 NO FORMCHECKBOX
 if YES, please indicate the document number of the original CR:
<Document Number)<CR Number of the original CR to the current Release>

	Template Version:23 February 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
From the current specifications in TS-0004 it is not clear whether or not JSON serialized representations of data, especialy of the Content primitive parameter, shall include a root element or not.
The present text in clause 8.4 seems to assume that any root elements are not required in JSON representations. However, the text in clauses 7.1.1 and 7.4.2 now clearly defines the root elements applicable to the Content parameter.

In XML representations, the presence of a single root element is essential. XML data without any root element cannot be validated against its associated XSD. In order to achieve better consistency between XML and JSON representations, this contribution proposes to mandate the existence of a root element in JSON serialized data as well. This actually also simplifies conversions between JSON and XML representations. It is suggested that the root element includes the assigned “m2m:” namespace prefix, as this is required for XSD validation.
As another change, it is proposed to remove the namespace and schemaLocation attributes from the root element declaration in the XML example in clause 8.3. This information can be easily supplied at the receiving side and does not need to be included into the serialized data exchanged over the Mca and Mcc reference points. It is normally not needed being part of the data when executing XSD validation . This also represents an alignment between XML and JSON serialized data representations.

-----------------------Start of change 1---

8.1 XML serialization
8.1.1 Method
XML serialization of request or response primitives refers to the process of representing the primitive as an XML document.
The XML document shall be a well-formed XML document compliant with W3C XML 1.0 [1]. It shall be restricted to Unicode characters and encoded using UTF-8 as described in RFC 3629 [21].
The structure and data types of XML serialized request and response primitives shall be consistent with the XSD defined in CDT-requestPrimitive-v1_0_0.xsd and CDT-responsePrimitive-v1_0_0.xsd, respectively. The data types used in these XSD files comply with the definitions in clause 6 and clause 7 of this specification.

Note that the XSD files included in the present release employ the long names for primitive parameters and other XML elements and attributes, but the primitive serialization is required to use the corresponding short names (as defined clause 8.2 of this specification).

NOTE: XML Schema files that use short names might be made available at a future date.
The primitive Content parameter is serialized just like any other element of complex type. Generally, the Content parameter may include only a partial set of attributes specified for the resource type as indicated in the Resource Type parameter, e.g. for partial Update or Retrieve Request procedures. For Notification Request primitives, the Content parameter includes a Notification data object as defined in clause 7.4.1.1 and the datatype definition given in CDT-notification-v1_0_0.xsd.

8.1.2 Examples
An example that shows a request primitive serialized into an XML document is shown below. This example shows the create request for an instance of a <contentInstance> resource. Only mandatory primitive parameters and resource attributes are shown.

<?xml version="1.0" encoding="UTF-8"?>
<m2m:rqp xmlns:m2m="http://www.onem2m.org/xml/protocols">
 <op>1</op>
 <to>//cse1.mym2msp.org/</to>
 <fr>/cse1234/app567</fr>
 <rqi>0002bf63</rqi>
 <ty>4</ty>
 <pc>
 <m2m:cin>
 <cnf>application/xml:1</cnf>
 <con>PHRpbWU+MTc4ODkzMDk8L3RpbWU+PHRlbXA+MjA8L3RlbXA+DQo=</con>
 </m2m:cin>
 </pc>
</m2m:rqp>

The XML elements have the following meaning:

· rqp: Root element of the Request primitive, which includes a reference to an XSD file which defines its datatype.

· op:
Operation parameter of datatype m2m:operation: in this example value = 1 indicates a “Create” operation.

· to:
To parameter of type m2m:anyURI: URI of the target resource.

· fr:
From parameter of type m2m:ID: ID of the Originator (either AE-ID or CSE-ID).

· rqi:
Request Identifier parameter of type m2m:requestID: this could e.g. represent a counter number.

· ty:
Resource Type parameter of datatype m2m:resourceType: indicating type of the resource to be created (value = 4 indicates that a <contentInstance> resource shall be created).

· pc:
Content parameter of datatype m2m:primitiveContent: the attributes of the resource to be provided by the Originator.

· cin: Root element of the <contentInstance> resource of datatype m2m:contentInstance: this includes the mandatory attributes (and optional attributes not shown in this example) supplied by the request Originator.. In this example, the cn parameter includes an instance of a <contentInstance> resource which consists of two attributes: contentInfo (cnf) – which specifies base64 encoding - and the content (con) itself.

8.2 JSON serialization
8.2.1 Terminology

The following conventions are used in the clause that follows.

· The italicized terms object, member, name, array, number, string, boolean and null are to be interpreted as in RFC 7159 [19]

· The italicized term element is to be interpreted to encompass oneM2M Primitive Parameters, Resource Attributes and other elements or attributes used inside oneM2M complex type definitions

8.2.2 Method

The primitive shall be encoded as a JSON object, conforming to the requirements of RFC 7159 [19]. This JSON object shall be restricted to Unicode characters defined in The Unicode Standard and encoded using UTF-8 as described in RFC 3629 [21]. The names in each object in the JSON shall be unique.
The structure of the top-level primitive object shall be determined by the data type definitions in clause 6 and clause 7 of this specification, as follows:

1. All member’s names shall be the short name defined in clause 8.2.

2. If an element is defined in this specification as having a complex type, then it is serialized in the JSON member as an object and its children are recursively serialized as members of that object, using short names as defined in clause 8.2.

3. The membership of each nested object shall respect the cardinality constraints from the corresponding XSD complex type definition,

4. If an element is defined in this specification as having an atomic data type that is numeric in nature (e.g. xs:integer or a type derived from it) then its value is serialized into the JSON member as a number.

5. If an element is defined as having an atomic data type that is non-numeric then its value is serialized into the JSON member as a string.

6. If an element is defined as xs:boolean (or a type derived from xs:boolean) then it is serialized in the JSON member as a boolean.

7. If an element is defined as having an xs:list type in the corresponding XSD then it is serialized in the JSON member as an array.

8. If an element instance has a null value then it is serialized into the JSON member as a null, regardless of the data type that it has in the corresponding XSD.

9. If an element is defined as having maxOccurs > 1 in the corresponding XSD then its parent JSON member is serialized as an array.
10. If an element has an XSD data type that is a simple type with XML attributes, then it is serialized in the JSON member as an object. The XML attributes appear as members of that object (using their short names) and the value of the element is serialized as a member of that object with the special name “val”.

11. The members (at each level) may be serialized in any order. The order in which they appear in the corresponding XSD file is immaterial.

The Content parameter is treated just like any other parameter of complex type. It is serialized as an object and its members are the attributes and/or child resource references of the Resource that is being transferred. The Content parameter is not required to contain all the attributes of the Resource. The JSON representation of the Content parameter shall be encapsulated by a member name as defined in the first column of Tables 7.4.2-1 and 7.4.2-2 .
8.2.3 Examples

Here is an example that shows the payload of a request message serialized using JSON:

{“op”: 1, “fr”: “//xxxxx/2345”, “to”: “//xxxxx/99”, “rqi”: “A1234”, “pc”: {“m2m:sch”:{“se”: “* 0-5 2,6,10 * * * *”}}, “ty”: 18}

· op: operation (in this case it’s Create)

· fr: ID of the Originator (either the AE or CSE)

· to: URI of the target resource

· rqi: request identifier (this is a string)

· pc: attributes of the <schedule> resource with member name “m2m:sch” to be provided by Originator. This is serialized as a nested JSON object

· ty: type of resource to be created (in this case a Schedule resource). This is a number.

Note that the Operation (op) parameter is present only in Request primitives. The presence of this parameter in JSON serialized primitive representations allows to differentiate Request primitives from Response primitives.
-----------------------End of change 1---

A.1. Example AE/CSE implementation featuring mapping between short and long names for XML serialization
Figure I.2-1 shows an example where the oneM2M defined XSD files are used as input to a code generator. Such code generators are available for most object-oriented programming languages such as e.g. Java, C++ and Python. The following descriptions include some code examples given in Python syntax. However, corresponding expressions in C++ or Java look very similar.

Code generators generate a library of XSD binding classes corresponding to each of the data types defined in the input XSD files. This library can then be imported into the source code of the respective programming language which implements an AE or CSE.

For example, if this library is denoted schemaLib, instances of a request primitive and of a resource type <contentInstance>, denoted in the Python source code fragment below as reqPrimInstance (internal representation of m2m:requestPrimitive) and contentInstance1 (as internal representation of m2m:contentInstance), respectively, can simply be generated as follows:

 import schemaLib

 …
 reqPrimInstance = schemaLib.requestPrimitive()

 contentInstance1 = schemaLib.contentInstance()

Each of the instances created in this way represents a data object reflecting the same tree structure as defined in the XSD files that served as input to the code generator.

Any request primitive parameter in reqPrimInstance as defined above can be addressed and assigned values as follows:

 reqPrimInstance.operation = operation #e.g. operation = 1 for CREATE
 reqPrimInstance.to = path #path = address of target resource
 reqPrimInstance.from_ = originator #originator=identifier representing the originator

 reqPrimInstance.requestIdentifier = str(requestIDCounter) #counter in string format
 reqPrimInstance.resourceType = resourceType #e.g. resourceType = 4 for <contentInstance>
Parameters defined as complex type in the XSD such as e.g. the Filter Criteria primitive parameter can be assigned values as follows:

 reqPrimInstance.filterCriteria.createdBefore = ‘20161201T000000’
 reqPrimInstance.filterCriteria.createdAfter = ‘20150501T123000’
 reqPrimInstance.filterCriteria.labels = ‘label1 label2 label3’
 reqPrimInstance.filterCriteria.attribute.append(pyxb.BIND())
 reqPrimInstance.filterCriteria.attribute[0] = schemaLib.attribute("name0","value0")

Note that the class attribute names in the source code are identical with the XML element or attribute names as used in the XSD files (sometimes minor exceptions can occur, for instance in case that a name used in the XSD represents a reserved name in the source code. In such case the code generator typically would append a special suffix to the name, e.g. “_”). Since the XSD uses the long parameter and resource attribute names, these also appear as class attributes in the source code. From an implementation perspective, this is preferable compared to using short names. Using short names in the XSD would result in short names in the source code. However, these short names have essentially lost their semantics and are therefore more difficult do memorize. Any misspelling in the code may easily result in another well-defined short name such that identifying errors in the source code becomes more difficult.
A code generator as considered here, typically also provides a set of class methods and utility functions which allow to generate code objects from a given XML representation, and inversely, to generate XML representations from a code object. For example, consider that a string variable, denote reqPrimXML represents a serialized request primitive as follows (note that this representation corresponds to the example given in clause 8.3.2 but with long names used here):

 reqPrimXML =

 ‘<?xml version="1.0" encoding="UTF-8"?>
 <m2m:requestPrimitive xmlns:m2m="http://www.onem2m.org/xml/protocols">
 <operation>1</operation>
 <to>//cse1.mym2msp.org/cse8976/container123</to>
 <from>//cse1234/app567</from>
 <requestIdentifier>0002bf63</requestIdentifier >
 <resourceType>4</resourceType>
 <primitiveContent>
 <contentInstance>
 <contentInfo>application/xml:1</contentInfo>
 <content>PHRpbWU+MTc4ODkzMDk8L3RpbWU+PHRlbXA+MjA8L3RlbXA+DQo=</content>
 </contentInstance>
 </ primitiveContent>
 </m2m:requestPrimitive>’
Assuming that the auto-generated library schemaLib includes a utility function createFromDocument(), the following code statement creates an instance reqPrimInstance from the XML serialized request primitive in the string variable reqPrimXML:

 reqPrimInstance = schemaLib.createFromDocument(reqPrimXML)

The root element of the XML string (i.e. m2m:requestPrimitive in this example) identifies the template (class) that need to be used to create the data object reqPrimInstance. All value settings of the parameters are taken from the XML string, e.g. reqPrimInstance.operation is set to 1.
The reverse operation, i.e. generation of an XML string from the data object reqPrimInstance is typically possible with a class method toxml() as follows:

 reqPrimXML = reqPrimInstance.toxml()
If any value settings of reqPrimInstance have not been changed in the given code, the above statement generates the same XML string as given above. Both operations, createFromDocument() and toxml(), also allow to verify the compliance of the XML representations with the XSD that was used as input when generating the schemaLib source code.

The question arises, if there is a way to generate XML or JSON representations that include the short names as defined in clause 8.2 when employing XSD with the long names as described above.

The following outlines two possible ways to resolve this issue.

The first straightforward approach is to use a text parser which replaces the long names used in XML or JSON strings with their corresponding short names, or vice-versa. We denote such functions as map_L2S() and map_S2L(). This approach is illustrated in the box labelled “AE or CSE source code” in Figure I.2-1 for an XML serialized string.

Given a string reqPrimXML representing an XML serialized request primitive with long names as described above, the statement

 reqPrimXML_sh = map_L2S(reqPrimXML)

would produce an XML string that includes the short names as shown in the representation already given in clause 8.3.2.

The reverse operation, generating an XML representation with long names from a representation with short names could be done with

 reqPrimXML = map_S2L(reqPrimXML_sh)

Both mapping functions require a mapping table which includes all long names and their associated short names. The required mapping table can be derived from Tables 8.2.2-1, 8.2.2-2, 8.2.3-1 to 8.2.3-5, 8.2.4-1 and 8.2.5-1.

In order to work in both mapping directions, the mapping table must represent a one-to-one relationship between short and long names.

The second approach is essentially a code-optimized variant of the above first approach.

The source code of the described createFromDocument() and toxml() functions could be extended by the programmer by including the functionality of map_S2L() directly into createFromDocument() and including the functionality of map_L2S() directly into toxml(). An additional function argument could be included which allows to enable and disable the mapping function.

[image: image1]
Figure I.2‑1: Example AE or CSE implementation: processing based on long names, XML representations using short names
CHECK LIST

· Does this change request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Have any mirror crs been posted?
· Does this change request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable?
· Does this change request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
Set of

XSD files

Code

Generator

AE or CSE source code

library of XSD binding classes and functions

map_S2L()

map_L2S()

createFromDocument()ent

toxml()

processing

objects

with long names

messages including

serialized XML with short names

messages including

serialized XML with short names

© 2015 oneM2M Partners
 Page 7 (of 9)

[image: image2.png]